Научная статья на тему 'Stability of chemical reaction fronts in the vicinity of a blocking state'

Stability of chemical reaction fronts in the vicinity of a blocking state Текст научной статьи по специальности «Физика»

CC BY
67
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕНЗОР ХИМИЧЕСКОГО СРОДСТВА / УСТОЙЧИВОСТЬ ГРАНИЦЫ РАЗДЕЛА ФАЗ / МЕХАНОХИМИЯ / БЛОКИРОВАНИЕ РЕАКЦИИ / КИНЕТИКА ХИМИЧЕСКОЙ РЕАКЦИИ / ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ / CHEMICAL AFFINITY TENSOR / SHARP INTERFACE STABILITY / MECHANOCHEMISTRY / REACTION BLOCKING / CHEMICAL REACTION FRONT KINETICS / NUMERICAL SIMULATION

Аннотация научной статьи по физике, автор научной работы — Morozov A.V., Freidin A.B., Müller W. H.

In the current work we consider a chemical reaction localized on the sharp interface between a solid and a diffusive constituent. The driving force for the reaction front propagation is a normal component of the chemical affinity tensor. The configuration of the deformed state where the driving force is zero corresponds to the reaction blocking state. The paper is aimed at studying this configuration. The utilized approach to analyze the stability of the equilibrium interphase between two deformable domains involves a linearized analysis of the kinetic equation for the perturbed interface. Previously this method was applied for an interface stability analysis in the case of phase transformations. The advantage of this method is that it also shows how the loss of stability occurs. An analytical solution for the perturbed kinetic equation is only possible for some simple configurations. Numerical procedures were applied in order to solve these types of problems. As an example, we used the numerical procedure, and the problem of the chemical reaction front propagation in a hollow cylinder is solved. For the unstable configuration we analyzed a stress state in the vicinity of the reaction blocking.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Устойчивость фронтов химических превращений вблизи состояния блокирования

В настоящей работе исследуется кинетика и устойчивость фронта химической реакции, происходящей между деформируемым и диффундирующим компонентами. В роли движущей силы выступает нормальная компонента тензора химического сродства. Напряженное состояние, при котором максимальное значение нормальной компоненты тензора сродства обращается в ноль, соответствует химическому равновесию. При этом происходит блокирование распространения фронта реакции. Устойчивость фронта реакции в окрестности состояния блокирования является предметом исследования в настоящей работе. Развиваемый подход к анализу устойчивости основан на решении линеаризованной задачи о движении возмущенного фронта реакции. Ранее этот подход был применен для исследования устойчивости межфазных границ в случае фазовых превращений. Его преимуществом является возможность исследовать, как происходит потеря устойчивости. Аналитическое решение возмущенных уравнений движения фронта реакции возможно только для некоторых простых конфигураций. В связи с этим развиты численные процедуры. В качестве примера с использованием численных процедур исследована задача о распространении фронта химической реакции в полом цилиндре. Для случая неустойчивого фронта реакции исследуется напряженно-деформированное состояние, порождаемое потерей устойчивости, и оценивается возможность разрушения.

Текст научной работы на тему «Stability of chemical reaction fronts in the vicinity of a blocking state»

Морозов А.В., Фрейдин А.Б., Мюллер В. Устойчивость фронтов химических превращений вблизи состояния блокирования // Вестник Пермского национального исследовательского политехнического университета. Механика. 2019. № 3. С. 58-64. DOI: 10.15593/perm.mech/2019.3.06

Morozov A.V., Freidin A.B., Müller W.H. Stability of chemical reaction fronts in the vicinity of a blocking state. PNRPU Mechanics Bulletin, 2019, no. 3, pp. 58-64. DOI: 10.15593/perm.mech/2019.3.06

ВЕСТНИК ПНИПУ. МЕХАНИКА

№ 3, 2019 PNRPU MECHANICS BULLETIN

http://vestnik.pstu.ru/mechanics/about/inf/

DOI: 10.15593/perm.mech/2019.3.06 УДК 539.3

УСТОЙЧИВОСТЬ ФРОНТОВ ХИМИЧЕСКИХ ПРЕВРАЩЕНИЙ ВБЛИЗИ СОСТОЯНИЯ БЛОКИРОВАНИЯ

А.В. Морозов1'2, А.Б. Фрейдин2'3'4, В. Мюллер1

Технологический университет Берлина, Берлин, Германия 2Институт проблем машиноведения РАН, Санкт-Петербург, Россия

3Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия 4Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

О СТАТЬЕ

АННОТАЦИЯ

Получена: 4 апреля 2019 г. Принята: 17 сентября 2019 г. Опубликована: 17 октября 2019 г.

Ключевые слова:

тензор химического сродства, устойчивость границы раздела фаз, механохимия, блокирование реакции, кинетика химической реакции, численное моделирование.

В настоящей работе исследуется кинетика и устойчивость фронта химической реакции, происходящей между деформируемым и диффундирующим компонентами. В роли движущей силы выступает нормальная компонента тензора химического сродства. Напряженное состояние, при котором максимальное значение нормальной компоненты тензора сродства обращается в ноль, соответствует химическому равновесию. При этом происходит блокирование распространения фронта реакции. Устойчивость фронта реакции в окрестности состояния блокирования является предметом исследования в настоящей работе. Развиваемый подход к анализу устойчивости основан на решении линеаризованной задачи о движении возмущенного фронта реакции. Ранее этот подход был применен для исследования устойчивости межфазных границ в случае фазовых превращений. Его преимуществом является возможность исследовать, как происходит потеря устойчивости. Аналитическое решение возмущенных уравнений движения фронта реакции возможно только для некоторых простых конфигураций. В связи с этим развиты численные процедуры. В качестве примера с использованием численных процедур исследована задача о распространении фронта химической реакции в полом цилиндре. Для случая неустойчивого фронта реакции исследуется напряженно-деформированное состояние, порождаемое потерей устойчивости, и оценивается возможность разрушения.

©ПНИПУ

© Морозов Александр Владимирович - стажер-исследователь, e-mail: morozov@tu-berlin.de, : 0000-0001 -7334-4339. Фрейдин Александр Борисович - д.ф.-м.н., с.н.с., e-mail: alexander.freidin@gmail.com, : 0000-0003-2916-3375. Вольфганг Мюллер - д.ест.н., профессор, зав. каф., e-mail: wolfgang.h.mueller@tu-berlin.de.

Aleksandr V. Morozov - Research, e-mail: morozov@tu-berlin.de, : 0000-0001 -7334-4339. Alexander B. Freidin - Doctor of Physical and Mathematical Sciences, Professor, e-mail: alexander.freidin@gmail.com, : 0000-0003-2916-3375. Wolfgang H. Miiller- Doctor of Natural Sciences, Professor, Head of Department, e-mail: wolfgang.h.mueller@tu-berlin.de.

Эта статья доступна в соответствии с условиями лицензии Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

STABILITY OF CHEMICAL REACTION FRONTS IN THE VICINITY OF A BLOCKING STATE

A.V. Morozov1'2, A.B. Freidin2'3'4, W.H. Müller1

Russian Federation Russian Federation

Berlin University of Technology, Berlin, Germany Institute for Problems in mechanical engineering RAS, St. Petersburg, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 4St. Petersburg university, St. Petersburg, Russian Federation

ARTICLE INFO

ABSTRACT

Received: 04 April 2018 Accepted: 17 September 2019 Published: 17 October 2019

Keywords:

chemical affinity tensor, sharp interface stability, mechanochemistry, reaction blocking, chemical reaction front kinetics, numerical simulation.

In the current work we consider a chemical reaction localized on the sharp interface between a solid and a diffusive constituent. The driving force for the reaction front propagation is a normal component of the chemical affinity tensor. The configuration of the deformed state where the driving force is zero corresponds to the reaction blocking state. The paper is aimed at studying this configuration. The utilized approach to analyze the stability of the equilibrium interphase between two deformable domains involves a linearized analysis of the kinetic equation for the perturbed interface. Previously this method was applied for an interface stability analysis in the case of phase transformations. The advantage of this method is that it also shows how the loss of stability occurs. An analytical solution for the perturbed kinetic equation is only possible for some simple configurations. Numerical procedures were applied in order to solve these types of problems. As an example, we used the numerical procedure, and the problem of the chemical reaction front propagation in a hollow cylinder is solved. For the unstable configuration we analyzed a stress state in the vicinity of the reaction blocking.

©PNRPU

Introduction

Various experimental and theoretical observations of the propagation of chemical reaction fronts in deformable solids show the influence of mechanical stresses on the reaction front kinetics (see, e.g., papers on silicon oxidation [1-3], on silicon lithiation [4-9] or on intermetallic compound growth [10-12]). Chemical reaction retardation and even blocking by mechanical stresses were experimentally observed in e.g. [13-18]. A special attention was paid to the influence of mechanical stresses on the stability of the growing interface [19-23]. These problems are actual in the solid electrolyte interfaces modelling for the Li-ion batteries [24, 25].

In general, two major processes control the propagation of a sharp chemical reaction front: (i) difusion of a reactant in the body undergoing a chemical reaction, (ii) consumption of the diffusive reactant by a chemical reaction at the reaction front. Thus, stresses may affect the reaction front propagation via the influence on diffusion or/and the influence on the reaction rate.

In order to couple chemical reaction rate with the mechanical stresses, some models include additional stress dependent cross-effect terms in the diffusion flux which appear basing on generalized expressions of stress-dependent scalar chemical potentials [5-7,26-30].

But the velocity of the reaction front may be controlled rather by the reaction rate than by the diffusion (see, e.g., [31, 32] and references therein). In this case the influence of stresses on the reaction rate becomes important. In classical

physical chemistry the reaction rate is determined by a scalar chemical affinity equal to a combination of scalar chemical potentials of the reaction constituents [33]. Scalar chemical potentials were derived for the case of phase transformations in gases and liquids where stresses were reduced to a scalar pressure [34].

In the last decades of XXth century it was recognized that in the case of solid phases a chemical potential was a tensor. Tensorial nature followed from the fact that the equilibrium was considered not just in a point of the interface but at oriented surface element [35-38]. Later a tensorial nature of the chemical potential was discussed in [39, 40]. These results could be considered as a prelude to the tenso-rial chemical affinity, and in [41-43] it was shown that in the case of a propagating reaction front the driving force is equal to the normal component of the chemical affinity tensor that, in turn, equals to the combination of the chemical potential tensors of solid constituents and the chemical potential of the diffusive constituent. By this approach, mechanical stresses affect the reaction rate via the chemical affinity tensor. A kinetic equation for the propagating chemical reaction front was formulated in the form of the dependence of the normal component of the reaction front velocity on the normal component of the chemical affinity tensor.

The approach was approved by the solution of a number of boundary value problems for elastic and inelastic solid undergoing chemical reactions and, in particular, demonstrated that stresses can accelerate, retard and even block the reaction (see [44,45] and reference therein). The latter gave

reasons to construct so called forbidden zones in strain space formed by strains at which the direct reaction cannot go [46, 47]. The boundary of the forbidden zone is formed by strains at which the reaction front corresponds to chemical equilibrium, and in the present paper we focus on the reaction front behavior when it approaches to the equilibrium. We start with examinations of the stability of the equilibrium reaction front. It should be noted that the stability of the interface between two phases during the phase transformation was previously studied by various approaches, see e.g., [48-57].

In the present paper we follow the procedure of the kinetic stability analysis developed for the case of phase transformations in [56, 57]. The procedure is based on the examinations of the behavior of the front perturbations. If the perturbations grow due to the kinetic equation, then the unperturbed state is unstable. In the case of the equilibrium chemical reaction front this is reduced to the linear stability analysis that includes perturbed jump conditions, diffusion equation and reaction front evolution equation. Far from equilibrium we use numerical simulations.

The paper is organized as follows. In Section 2 we briefly describe the approach and formulate the kinetic equation for the chemical reaction front propagation based on the chemical affinity tensor. In Section 3 results of the numerical simulations of the reaction front propagation are presented. We analyze the interface kinetics for the cases of stable and unstable configurations for the axial symmetry problem of a solid cylinder undergoing a chemical reaction. We explore the transition of the interface motion to the unstable mode. Finally, in Section 4, we study the stresses redistributions due to stability loss which may lead to intensive plastic deformations or fracture.

1. Chemical affinity tensor and kinetic equation

Our further considerations of the kinetics of a chemical reaction front are based on the concept of a chemical affinity tensor A, [41-43]. According to the concept, the reaction rate at the oriented surface element with the normal N can be expressed through the normal component ANN of the chemical affinity tensor as

ra = k*c I 1 - exp I -

RT

(2)

where k* is the kinetic coefficient, c is the diffusive constituent molar concentration, T is the temperature, R is the universal gas constant. Note that formula (2) just generalizes the kinetic equation formulated for the case of a scalar chemical potential [58]. Then the normal component of the reaction front velocity, W, can be expressed from the mass balance via the reaction rate as:

^ n-M-W =-ra,

P-

(3)

where p- and M_ are the mass density and molar mass of the constituent B_. Chemical equilibrium, i.e., front propagation blocking, takes place if stresses at the reaction front are such that

ann = 0

(4)

Further we consider the case of linear elastic solid constituents, so the stresses o and strains £ in materials B_ and B+ are related by Hooke's law:

o- = C- : £_, o+ =

C+ : (e+- £ch )

(5)

where C and C+ are the stiffness tensors of solid constituents, £ch is the chemical transformation strain. We take the chemical potential of the diffusive constituent in the form

In general, a chemical reaction between the solid, B_ and a diffusive, B*, constituents can be written as follows:

M ^ =-q„ (T ) + RTln-

c

(6)

n_B_ + nB ^n,B,

(1)

where B+ is the product of the reaction and the n's refer to the corresponding stochiometric coefficients. As shown in Fig. 1, the B* constituent diffuses through the material B+ and reacts with the material B- at the sharp interface.

Fig. 1. Schematic representation of the chemical reaction process in deformable solids

where M* and are the molar mass and specific chemical potential of the constituent B*, c* and "q* (T) are reference

values of the concentration and chemical energy. Then, if to neglect the pressure produced by the diffusive constituent at the reaction front compared with stresses produced in solid constituents by the transformation strain and external loading, in a quasistatic case, the expression of ANN takes the form (see details in [41-43]):

ann =

n_M_ _ c

-X+ nRTln —.

P- c*

(7)

where

^«+ : (e+-£ch) + «± : (s+-£-), (8)

Y = Y + — G : £--

* 2 " " 2

and y is the temperature dependent combination of chemical energies of the species (free energies of solid constitu-

c

ents in stress-free states and reference chemical potential of the diffusive constituent).

Stresses and strains in Eq. (8) as well as concentration of the diffusive component in the second summand of Eq. (7) have to be found at the chemical interface by solving corresponding equilibrium and diffusion equations. To find stresses and strains one has to solve the following boundary value problem

V-a = 0,

■*o,

a - N |r = to,

(9)

u |r = 0, a - N |r = 0,

11 ch ' 11 ch '

where conditions across chemical reaction front rch represent displacements and traction continuity, r and r2 are the surfaces where Dirichlet and Neumann boundary conditions are applied respectively.

It is assumed that the diffusion process is faster than the chemical reaction, so the stationary diffusion equation is considered. Boundary value problem for the diffusion is then

Ac = 0,

DN • Vc +n ra = 0 at the chemical interface, (10)

D N • Vc+a (c - c*) = 0 at the reactant supply surface,

where D is the diffusion coefficient, a is the surface mass transfer coefficient, c is the diffusive constituent solubility, and stress-dependent reaction rate ra appears in the condition on the moving boundary.

If stresses and concentration at the reaction front are found, then the front velocity can be calculated from kinetic equation (2), (3).

2. Numerical simulations of the reaction front propagation

A hollow cylinder with internal and outer radii, a and b, undergoing the chemical reaction localized on a cylindrical reaction front of the radius p, is considered. The problem is stated in a plain strain formulation. The reaction starts at the outer surface of the cylinder and propagates towards its center (Fig 2).

For choosing the values of material parameters, we follow the stability predictions obtained from the considerations of stress induced phase transformations [56, 57]. It has been shown that in the case of a two-phase solid sphere with a spherical interface the inequality > |+, where and |+ are the shear modules of the inner and outer phases, respectively, is to be fulfilled as a necessary condition of the interface stability. The similar result for a two-phase solid cylinder also follows from the stability analysis presented in [59].

In [57] it was also mentioned that a hole in the center of a sphere could act as a destabilizing factor. In a present work, in order to avoid the influence of the hole on the stability of the reaction front, the inner radius of the cylinder was chosen much smaller than the external radius and the predicted radius of the reaction front at the blocking state, reaction blocking radius, so that a= p< b. The elastic modules taken for numerical simulations for hypothetically stable and unstable cases are listed in Table 1.

Table 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Shear and bulk modules of solid constituents used in numerical simulations

, GPa X_ , GPa , GPa , GPa

Stable set 25 45 10 25

Unstable set 45 25 25 10

The external load U0 is adjusted such that the reaction blocking occurs at the same radius for stable and unstable configuration. The initial position of the reaction front is taken far from the blocking position.

Numerical analysis was performed using finite elements. Propagation of the chemical reaction front was realized by remeshing the cylinder. Results of the numerical simulations are shown in Fig. 3, where radial coordinates of twenty equally distributed points along the chemical reaction front are plotted as a function of time.

Fig. 2. A quarter of the hollow cylinder's cross-section

Fig. 3. Radial coordinates of twenty equally distributed points at the reaction front during the chemical reaction. Light and dark gray curves correspond to stable and unstable configurations espectively

For the stable configuration, light grey curves, all the points of the interface have equal radial coordinates, so the

interface remains circular and smoothly converges to the analytically predicted reaction front blocking position. In the case of the unstable configuration, the initially circular interface keeps its shape until it approaches the equilibrium position when the loss of stability occurs. This can be concluded from the deviation of the interface points radiuses: dark grey curves in Fig 3.

The shape of the unstable reaction front in the case of initially circular interface is governed by the accuracy of the numerical calculations. An example of such a shape is shown in Fig. 4.

Fig. 4. Shape of the initially circular interface after stability loss in the vicinity of the reaction blocking

In order to demonstrate the instability kinetics, one can introduce an initial predefined perturbation of the reaction front with given shape. Fig. 5 shows the kinetics of the reaction front with introduced sinusoidal-type perturbations with small amplitude and different frequencies for the unstable configuration. The initial position and the developed shape of the reaction front are shown in solid light grey and black curves, respectively. Dashed curves denote intermediate states and the dotted curve states, for the reaction blocking, the position of the interface.

Fig. 5. Developing of the initially predefined sin-type perturbations in the case of unstable configuration. Initial amplitudes of the perturbations in both cases are equal but the frequency in the left configuration is smaller than in the right one

In the case of a stable configuration, the initially introduced perturbations vanish and the reaction front stops at the blocking state. However, in the case of an unstable configuration, the amplitude of the perturbation amplifies while approaching the blocking state. One should note that during propagation the predefined mode of the perturbations remains the same. The growth of the amplitude forms stress concentration areas, which are analyzed in detail in the next section.

3. Stresses caused by the loss of the interface stability

We consider a static configuration, where the chemical interface has a predefined sinusoidal-type shape near the blocking state, as shown in Fig 6. The unstable set of parameters is used for the simulations.

Fig. 6. Unstable configuration of a solid cylinder with defined shape of the interface. The two directions along which the stresses are analyzed are shown with arrows

Various amplitudes and frequencies for the interface shape were analyzed. Stress distributions along the radiuses of the cylinder are shown in Fig. 7-9.

Fig. 7. Distribution of the von Mises stresses along corresponding directions

Fig. 8. Distribution of the hoop stresses along corresponding directions

1,0 — 2Л0,2ы0 -Л -- Л0,со0 -Л0,2ю0

0,5 0,6 0,7 0,8 0,9 1,0 r

Fig. 9. Distribution of the radial stresses along corresponding directions

The maximum von Mises stress in OB direction increases with the amplitude and frequency of the interface shape. As shown in the previous section, the amplitude grows with the propagation of the front in the unstable configuration. This may lead to intensive plastic deformations.

One should note that negative hoop stresses (Fig. 8) in both OA and OB directions do not change their sign in the vicinity of the stress concentration due to amplitude growth of the reaction front perturbation. However, an increasing

magnitude of the radial stress in the OB direction (Fig. 9) may lead to delamination. In this case not only the stress distribution but also the conditions for the chemical reaction will change.

Conclusions

An approach to study the influence of stresses on the chemical reaction front propagation was developed based on the chemical affinity concept and implemented in a numerical procedure. Stable and unstable chemical reaction front propagations were modeled numerically. Stress state caused by the growth of the instability amplitude was analyzed. It was shown that negative hoop stresses do not change their sign with a growing amplitude of the reaction front instability. Hence, they cannot cause fracture of the cylinder. However, the von Mises stress increases with the perturbation amplitude growth, which may lead to the plasticity and failure.

Acknowledgement

The authors acknowledge the support of the Russian Science Foundation (grant № 19-19-00552). Authors express special gratitude to Dr. Maxim Frolov for his valuable advices regarding numerical stability and convergence.

References

1. Sutardja P., Oldham W. Modeling of stress effects in silicon oxidation. IEEE Trans Electron Devices, vol. 36(11), pp. 2415-2421.

2. Krzeminski C., Han X.L., Larrieu G. Understanding of the retarder oxidation effects in silicon nanostructures. Appl. Phys. Lett. 2012, vol. 100:263111.

3. Fang X, Li Y., Yue M., Feng X. (2019) Chemo-mechanical coupling effect on high temperature oxidation: A review. Sci China Tech Sci, 2019, vol 62 (8), pp 1246-1254.

4. Cui Z., Gao F., Qu J. A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. Mechanics and Physics of Solids, 2012, vol. 60, pp. 1280-1295.

5. Cui Z., Gao F., Qu J. Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. Mechanics and Physics of Solids, 2013, vol. 61, pp. 293-310.

6. Levitas V.I., Attariani H. Anisotropic compositional expansion in elastoplastic materials and corresponding chemical potential: Large-strain for simulation and application to amorphous lithiated silicon. Journal of the Mechanics and Physics of Solids, 2014, vol. 69, pp. 84-111.

7. Bower A. F., Guduru P. R. A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials. Modelling and Simulation in Materials Science and Engineering, 2012, vol. 20 (4): 045004.

8. Bower A. F., Guduru P. R., Chason E. Analytical solutions for composition and stress in spherical elastic-plastic lithium-ion electrode particles containing a propagating phase boundary. International Journal of Solids and Structures, 2015, vol. 69-70, pp. 328-342.

9. Wang J.W., He Y., Fan F.F., Liu X.H., Xia S.M., Liu Y., et al. Two-phase electrochemical lithiation in amorphous silicon. NanoLetters, 2013, vol. 13 (2), pp. 709-715.

10. Cheng Y.C., Wang Y.T., Hsu F.C., Lu F.C., Wu C.L., Lin M.T. Effect of loading stress on the growth of Cn/Sn interme-tallic compounds at high temperatures. Journal of Electronic Materials, 2015, vol. 44, pp. 604-611.

11. Lee L.M., Mohamad A.A. Interfacial reaction of Sn-Ag-Cu lead-free solder alloy on Cu. A review. Advances in Materials Science and Engineering, 2013, vol. 2013, pp 123-697.

12. Chan Y.C., Yang D. Failure mechanisms of solder interconnects under current stressing in advanced electronic packages. Progress in Materials Science, 2010, vol. 55 (5), pp. 428-475.

13. Marcus R., Sheng T. The oxidation of shaped silicon surfaces. JElectrochem Soc, 1982, vol. 129(6), pp. 1278-1282.

14. Kao D.B., McVittie J.P., Nix W.D., Saraswat K.C. Two-dimensional thermal-oxidation of silicon. II. Modeling stress effects in wet oxides. IEEE Transactions on Electron Devices, 1988, vol. 35(1), pp. 25-37.

15. Mihalyi A., Jaccodine R.J., Delph T.J. Stress effects in the oxidation of planar silicon substrates. Applied Physics Letters, 1999, vol. 74(14), pp. 1981-1983.

16. Heidemeyer H., Single C., Zhou F., Prins F.E., Kern D., Plies E. Self-limiting and pattern dependent oxidation of silicon dots fabricated on silicon-on-insulator material. Journal of Applied Physics, 2000, vol. 87, pp. 4580-4585.

17. Buttner C., Zacharias M. Retarded oxidation of Si nan-owires. Applied Phys. Lett. 2006, vol. 89: 263106.

18. van Havenbergh K., Turner S., Marx N., van Tende-loo G. The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by in situ transmission electron microscopy. Energy Technology, 2016, vol. 4(8), pp. 1005-1012.

19. Ortiz M., Repetto E., Si H. A continuum model of kinetic roughening and coarsening in thin films. Journal of the Mechanics and Physics of Solids, 1999, vol. 47(4), pp. 697-730.

20. Barvosa-Carter W., Aziz M.J., Gray L.J., Kaplan T. Ki-netically driven growth instability in stressed solids. Physical Review Letters, 1998, vol. 81(7), pp. 1445-1448.

21. Phan A.-V., Kaplan T., Gray L.J., Adalsteinsson D., Sethian J.A., Barvosa-Carter, W., Aziz M.J. On transient layers as new phase domains in composite materials. Modelling and simulation in materials science and engineering, 2001, vol. 9(1), pp. 309-325.

22. Barvosa-Carter W., Aziz M.J. Interfacial roughening during solid phase epitaxy: Interaction of dopant, stress, and ani-sotropy effects. Journal of Applied Physics, 2004, vol 96(10), pp. 5462-5468.

23. Zeeshan A., Venkatasubramanian V. Kinetically driven growth instability in stressed solids. Physical Review Letters, 2017, vol. 119(5): 056003.

24. Natsiavas P., Weinberg K., Rosato D., Ortiz M. Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries. Journal of the Mechanics and Physics of Solids, 2016, vol. 95, pp. 92-111.

25. Hüter C., Fu S., Finsterbusch M., Figgemeier E., Wells L., Spatschek R. Electrode-electrolyte interface stability in solid state electrolyte systems: Influence of coating thickness under varying residual stresses. AIMS Materials Science, 2017, vol. (4), pp. 867-877.

26. Knyazeva A.G. Cross effects in solid media with diffusion. J Appl Mechanics and Technical Physics, 2003, vol. 44(3), pp. 373-384.

27. Loeffel K., Anand L. A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plasticity, 2011, vol. 27, pp. 1409-1431.

28. Haftbaradaran H., Song J., Curtin W., Gao H. Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. Journal of Power Sources, 2011, vol. 196, pp. 361-370.

29. Brassart L., Suo Z. Reactive flow in solids. JMech Phys Solids, 2013, vol. 61(1), pp. 61-77.

30. Dal H., Miehe C. Computational electro-chemo-mechanics of lithium-ion battery electrodes at Finite strains. Computational Mechanics, 2015, vol. 55(2), pp. 303-325.

31. Zhao K., Pharr M., Wan Q., Wang W., Kaxiras E., Vlassak J., Suo Z. Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. Journal of The Electrochemical Society, 2012, vol. 159, pp. A238-A243.

32. Jia Z., Li T. Stress-modulated driving force for lithiation reaction in hollow nano-anodes. Journal of Power Sources, 2015, vol. 275, pp. 866-876.

33. Prigogine I., Defay R. Chemical Thermodynamics. Longmans, Green, London, 1954.

34. Gibbs J. The Collected Works of J.W. Gibbs, Vol. 1: Thermodynamics. Yale University Press, 1948.

35. Bowen R.M. Toward a thermodynamics and mechanics of mixtures. Arch Rat Mech Anal, 1967, vol. 24, pp. 370-403.

36. Truesdell C. Rational Thermodynamics. McGraw-Hill, London, 1969.

37. Grinfeld M. On conditions of thermodynamic equilibrium of phases of a nonlinearly elastic material. Soviet Math Dokl, 1980, vol. 251, pp. 824-827.

38. James R. Finite deformations by mechanical twinning. Current Opinion in Solid State and Materials Science, 2001, vol. 5, pp. 301-309.

39. Rusanov A.I. Surface thermodynamics revisited. Surface Science Reports, 2005, vol. 58 (5-8), pp. 111-239

40. Rusanov A.I. Termodinamicheskie osnovy mehanohimii. [Thermodynamic foundations of mechanochemistry]. Nauka, St. Petersburg, 2006

41. Freidin A.B. Chemical affinity tensor and stress-assist chemical reactions front propagation in solids. ASME 2013 International Mechanical Engineering Congress and Exposition, November 13-21, 2013, San Diego, California, USA

42. Freidin A., Vilchevskaya E., Korolev I. Stress-assist chemical reactions front propagation in deformable solids. Int. J. Engineering Science, 2014, vol. 83, pp. 57-75

43. Freidin A.B. On a chemical affinity tensor for chemical reactions in deformable solids. Mechanics of Solids, 2015, vol. 50(3), pp. 260-285

44. Freidin A.B., Korolev I.K., Aleshchenko S.P., Vilchev-skaya E.N. Chemical affinity tensor and chemical reaction front propagation: Theory and FE-simulations. International journal of Fracture, 2016, vol. 202, pp. 245-259

45. Poluektov M., Freidin A.B., Figiel L. Modelling stress-affected chemical reactions in nonlinear viscoelastic solids with application to lithiation reaction in spherical Si particles. International Journal of Engineering Science, 2018, vol. 128, pp. 44-62

46. Freidin A.B., Sharipova L.L., Morozov N.F. On locking strains in mechanochemistry of chemical reactions fronts. Chebyshevskii Sbornik, 2017, vol. 18 (3), pp. 469-481

47. Freidin A.B., Sharipova L.L. Forbidden strains and stresses in mechanochemistry of chemical reaction fronts. In: Generalized Models and Non-classical Approaches in Complex Materials (Advanced Structured Materials Vol. 89, Springer), pp. 335-348

48. Grinfeld M. Metody mekhaniki sploshnykh sred v teorii fazovykh prevrashchenii [Methods of continuum mechanics in the theory of phase transformations]. Nauka, Moscow, 1990

49. Grinfeld M.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York, 1991

50. Gurtin M.E. Two-phase deformations of elastic solids. Arch. Ration. Mech. Analysis, 1983, vol. 84, pp. 1-29

51. Eremeyev V.A., Zubov L.M. On the stability of equilibrium of nonlinear elastic bodies with phase transformations. Izv. AN USSR Mekh. Tverdogo Tela, 1991, vol. 2, pp. 56-65

52. Fried E. Stability of a two-phase process in an elastic solid. Journal of Elasticity, 1993, vol. 31(3), pp. 163-187

53. Osmolovsky V. Variatsionnaia zadacha o fazovykh pere-khodakh v mekhanike sploshnykh sred [The variational problem of phase transitions in continuum mechanics]. Publ. of SPb university, St.Petersburg, Russia, 2000

54. Grabovsky Y., Truskinovsky L. Roughening instability of broken extremals. Archive for Rational Mechanics and Analysis, 2011, vol. 200, pp. 183-202

55. Grabovsky Y., Truskinovsky L. Marginal material stability. Journal of Nonlinear Science, 2013, vol. 23, pp. 891-969

56. Yeremeyev V.A., Freidin A.B., Sharipova L.L. Non-uniqueness and stability in problems of equilibrium of elastic two-phase bodies. Doklady Physics, 2003, vol. 48, pp. 359-363

57. Yeremeyev V.A., Freidin A.B., Sharipova L.L. The stability of the equilibrium of two-phase elastic solids. J. of Appl. Math. and Mech., 2007, vol. 71, pp. 61-84

58. Glansdorff P., Prigogine I. Thermodynamic theory of stability and fluctuation. Wiley-Interscience, New York, 1971

59. Vilchevskaya E.N., Freidin A.B. On phase transitions in a domain of material inhomogeneity. I. Phase transitions of an inclusions in a homogeneous external field. Mechanics of Solids, 2007, vol. 42 (5), pp. 823-840.

i Надоели баннеры? Вы всегда можете отключить рекламу.