Научная статья на тему 'Сравнительный ультраструктурный анализ порового аппарата септ клеток плодовых тел у некоторых видов рода Mycena'

Сравнительный ультраструктурный анализ порового аппарата септ клеток плодовых тел у некоторых видов рода Mycena Текст научной статьи по специальности «Биологические науки»

CC BY
61
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВНУТРИРОДОВАЯ ТАКСОНОМИЯ / GENERIC RANK TAXONOMY / КЛЕТКИ ПЛОДОВЫХ ТЕЛ / FRUIT BODY CELLS / MYCENA / ПАРЕНТЕСОМЫ / СЕПТАЛЬНЫЙ ПОРОВЫЙ АППАРАТ / SEPTAL PORE APPARATUS / УЛЬТРАСТРУКТУРА / ULTRASTRUCTURE / PARENTHESOMES

Аннотация научной статьи по биологическим наукам, автор научной работы — Степанова Амалия Аркадьевна, Кост Г., Рексер К.-Х.

В статье приведены данные по ультраструктуре порового аппарата септ клеток плодовых тел 24 видов грибов из рода Mycena. Выявлено, что: 1) в составе порового аппарата септ изученных видов отсутствуют наружные колпачки долипор; 2) 37,5% видов имели не типичные для агариковых грибов сплошные парентесомы, а остальные перфорированные. По форме, строению (отсутствие или наличие «окон») и топографии парентесом относительно долипорового утолщения у изученных видов описано 4 типа долипоровых аппаратов. Полученные данные свидетельствуют о гетерогенности и искусственности рода Mycena. Показана возможность использования ультраструктуры порового аппарата септ для решения вопросов систематики рода Mycena.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

COMPARATIVE ULTRASTRUCTURAL ANALYSIS OF SEPTAL PORE APPARATUS IN THE CELLS OF FRUIT BODIES IN SOME SPECIES OF THE GENUS MYCENA

The ultrastructure of the septal pore apparatus in the fruit body cells of 24 species from the genus Mycena was investigated. It was established that: 1) in all species examined the outer caps as the components of the septal pore apparatus were absent, 2) 37,5% of investigated species possess with continuous parenthesomes uncharacteristic for the agaricalean fungi, the rest of them had typical perforated parenthesomes. Four types of dolipore apparatus were recognized based on the structure (the presence or absence of holes) as well as the topography of parenthesomes with respect to the dolipore swellings. These types indicate that the genus Mycena is very heterogeneous and artificial. The potentials of septal pore apparatus for the solution of problems of the systematics of the genus Mycena were demonstrated.

Текст научной работы на тему «Сравнительный ультраструктурный анализ порового аппарата септ клеток плодовых тел у некоторых видов рода Mycena»

УДК 57.012.4:576.3: 582.282

СРАВНИТЕЛЬНЫЙ УЛЬТРАСТРУКТУРНЫЙ АНАЛИЗ ПОРОВОГО АППАРАТА СЕПТ КЛЕТОК ПЛОДОВЫХ ТЕЛ У НЕКОТОРЫХ ВИДОВ РОДА MYCENA

''Степанова А.А. (зав. лаб.)*, 2Кост Г. (зав. отд.), 2Рексер К.-Х. (ассист. проф.)

1 НИИ медицинской микологии им. П.Н. Кашкина, СевероЗападный государственный медицинский университет им. И.И. Мечникова, Санкт-Петербург, Россия; 2 Марбургский Университет им. Филлипса, Факультет биологии, Отдел микологии, Марбург, Германия

© Коллектив авторов, 2017

В статье приведены данные по ультраструктуре порового аппарата септ клеток плодовых тел 24 видов грибов из рода Mycena. Выявлено, что: 1) в составе порового аппарата септ изученных видов отсутствуют наружные колпачки долипор; 2) 37,5% видов имели не типичные для агариковых грибов сплошные парентесомы, а остальные - перфорированные. По форме, строению (отсутствие или наличие «окон») и топографии парентесом относительно долипорового утолщения у изученных видов описано 4 типа долипоровых аппаратов. Полученные данные свидетельствуют о гетерогенности и искусственности рода Mycena. Показана возможность использования ультраструктуры порового аппарата септ для решения вопросов систематики рода Mycena.

Ключевые слова: внутриродовая таксономия, клетки плодовых тел, Mycena, парентесомы, септальный поровый аппарат, ультраструктура

COMPARATIVE ULTRASTRUCTURAL ANALYSIS OF SEPTAL PORE APPARATUS IN THE CELLS OF FRUIT BODIES IN SOME SPECIES OF THE GENUS MYCENA

'Stepanova A.A. (head of lab.), 2Kost G. (head of dep.), 2Rexer K.-H. (ass. prof.)

1 Kashkin Research Institute of Medical Mycology of Northwestern State Medical University named after I.I. Mechnikov, St. Petersburg, Russia; 2Philipps-Universitat Marburg, FB Biologie, Systematic Botany & Mycology, Marburg, Germany

© Collective of authors, 2017

The ultrastructure of the septal pore apparatus in the fruit body cells of 24 species from the genus Mycena was investigated. It was established that: 1) in all species examined the outer caps as the components of the septal pore apparatus were absent, 2) 37,5% of investigated species possess with continuous parenthesomes uncharacteristic for the agaricalean fungi, the rest of them had typical perforated parenthesomes. Four types of dolipore apparatus were recognized based on the structure (the presence or absence of holes) as well as the topography of parenthesomes with respect to the dolipore swellings. These types indicate that the genus Mycena is very heterogeneous and artificial. The potentials of septal pore apparatus for the solution of problems of the systematics of the genus Mycena were demonstrated.

Key words: fruit body cells, generic rank taxonomy, Mycena, parenthesomes, septal pore apparatus, ultrastructure.

* Контактное лицо: Степанова Амалия Аркадьевна, тел.: (812) 303-51-40

INTRODUCTION

The genus Mycena contains many species of basidiomycetes, in which the bioactivity has been reported. The structure of many of these bioactive metabolites have been identified [Baurele J., Anke T. Planta medica. 1980. V.39; Hutzel H., et al. J. Antibiotics. 1990. V.43]. Different species of this genus are capable to producing bioactive compounds such as antimicrobial and cytotoxic metabolites [Jenete R., et al. Phytochem. 1985. V. 24], antifungal metabolites (again Candida lipolytica) produced by M. leptocephala [Vahidi H., et al. Afric. J. Biotech. 2004; V.3, №11], polysaccharides with anticarcinogenic effects and possibility inhibited the growth of sarcoma and Ehrlich solid cancers [M. laevigata: Ohtsuka S., et al. UK Patent 1331513, 1973], antifungal antibiotics hydroxystrobilurin D (3) [M. sanguinolenta: Backens S., et al. Leibigs Annalen der Chemie. 1988. V. 5]. For M. galopus mycelium specific production of monoclonal antibody [Hitchcock P., et al. Mycol. Res. 1997. V. 101]. It may be possible find in future time new medicinally important Mycena species in some phylogenetically closely related groups.

The ultrastructure of the septal pore apparatus is a very stable character and therefore it is now widely used for the delimitation and identifications of various fungal taxa [Moore R.T. Mycologia. 1978. V. 70; Patton A.M., Marchant R.A. J. Gen. Microbiol. 1978. V. 109; Khan S.R., Kimbrough J.W. Mycotaxon. 1982. V. 15; Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V. 22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a; Nakai Y. Rep. Tottori Mycol. Inst. 1986. V. 24; Wells K. Mycologia. 1994. V. 86]. However, the TEM technique was not so far used for solution of problems of systematics of agaricalean fungi at the generic level. So that it was interesting to initiate septal pore ultrastructure study using Mycena as a model genus. The first investigation we undertaken [1] concerned septal pore apparatus ultrastructure in two species of this genus. It showed the presence of both perforated (M. hiemalis) and continuous (M. galopus) parenthesomes. In the study presented below the number of the species was enlarged and morphometrical data were included in comparative analysis.

MFTERIALS AND METHODS

In present work we investigated 24 species: Mycena amicta (Fr.) Quel., M. clavularis (Batsch) Sacc., M. corynephora Maas Geest., M. filopes (Bull.) P. Kumm., M. galericulata (Scop.) Gray, M. galopus (Pers.) P. Kumm., M. hiemalis (Osbeck) Quel., M. inclinata (Fr.) Quel., M. leptocephala (Pers.) Gillet, (23.09.2002), M. meliigena (Berk. & Cooke) Sacc., M. metata (Secr. ex Fr.) P. Kumm. (18.10.2002), M. niveipes (Murrill) Murrill, M. pterigena (Fr.) P. Kumm., M. pura (Pers.) P. Kumm., M. rosella (Fr.) P. Kumm., M. stylobates (Pers.) P. Kumm, Hemimycena lactea (Pers.) Singer: Marburg's surroundings (Germany), det. Rexer K.-H.; M. sanguinolenta (Alb. & Schwein.) P. Kumm., M. speirea (Fr.) Gillet: Russia, St. Petersburg, Botanical Garden (28.08.2003), M. capillaripes Peck, M. epipterygia var. epipterygia (Scop.) Gray, M. haematopus (Pers.) P. Kumm., M. leptophylla (Peck) Sacc., M. vitilis (Fr.) Quel.: Russia, St. Petersburg, park Sosnovka (9.09.2002), det. Morozova O.

The pieces from all parts of developing fruit bodies of different ages were fixed as it was described earlier

[Traquair R.F., McKeen W.E. Can. J. Bot. 1978. V.24]. The characteristic features of the fine structure of septal pore apparatus in various parts of fruit bodies were described. The median thin sections of more than 25 septal pore apparatus of subhymenial cells in fruit bodies of different ages were examined. The size of holes in the parenthesomes and the distance between their centers on paradermal sections were measured. Confidence intervals were calculated using Microsoft Office Excel.

RESULTS AND DISCUSSION

In all 24 studied species the outer caps in their septal pore apparatus were absent. For the intact subhymenial cells of all species were typical the straight three-layered septa with two electron dense outer layers separated by the electron transparent layer that extended into dolipore swelling (Fig. 1 b). The septum thickness varies from 0,02 to 0,08 ^m and was constant for each investigated species (Table 1). As a rule, the septum thickness was in the direct correlation with the size of dolipore swellings. The exceptions are M. hiemalis, M. inclinata and M. galopus for which thick septa and small dolipore swellings were typical.

According to the size (the height and width at the level of the septum) of dolipore swellings, all investigated species are divided into four groups. Characteristic of the first group that is represented by only two species (8,3 % of all investigated species) are the largest (0,52-0,55 x 0,50-0,53 ^m) dolipore swellings. Six species (or 25,0 %) constitute the second group with their dolipore swellings varying within the intervals of 0,40-0,43 x 0,37-0,50 ^m. The third group consists 12 species (50,0 %), in which the size of their dolipore swellings varies within the intervals 0,290,38 x 0,32-0,41 ^m. And finally, the fourth group that is composed of four species (16,6 %) has the smallest dolipore swellings (0,22-0,27 x 0,26-0,40 ^m). In the majority of the species, the height of the dolipore swelling was smaller than its width. Exceptions were M. clavularis, M. stylobates, M. corynephora and M. filopes where the proportion was reverse, and M. sanguinolenta and H. lactea, where these two parameters were equal.

In the species studied here, the diameter of the canal of the dolipores varied from 0,08 to 0,16 ^m. No correlation has been found between the size of the dolipore swellings and the diameter of the pores.

Table 1

The sizes of the septa and dolipore swellings in the fruit bodies subhymenial cells of some Mycena species

Species The septa thickness, pm The height and width of dolipore swellings, pm Diameter of the septal pore, pm The type ofdolipore apparatus

M. clavularis 0,05±0,0017 0,55±0,0017 0,53±0,0018 0,09±0,0017 d

M. stylobates 0,06±0,0249 0,52±0,0033 0,50±0,0465 0,09±0,0124 d

M. leptocephala* 0,04±0,0005 0,43±0,0249 0,44±0,0249 0,10±0,0017 a

M. vitilis 0,07±0,0012 0,42±0,0008 0,50±0,0023 0,16±0,0015 d

M. rosella 0,05±0,0040 0,41±0,0124 0,43±0,0498 0,11±0,0498 a

M. epipterygia var. epipterygia 0,05±0,0017 0,40±0,0045 0,41±0,0034 0,09±0,0177 a

M. corynephora 0,04±0,0083 0,40±0,0285 0,37±0,0012 0.10±0.0287 d

M. sanguinolenta 0,05±0,0124 0,40±0,0124 0,40±0,0207 0.10±0.0179 c

M. pura 0,04±0,0124 0,38±0,0207 0,40±0,0124 0,13±0,0083 d

M. meliigena 0,04±0,0083 0,37±0,0028 0,38±0,0028 0,09±0,1245 c

M. amicta 0,03±0,0017 0,37±0,0207 0,41±0,0249 0,10±0,0124 d

H. lactea 0,06±0,0017 0,37±0,0207 0,37±0,0332 0,08±0,0249 a

M. niveipes 0,04±0,0083 0,33±0,0249 0,40±0,0124 0,40±0,0124 c

M. speirea 0,03±0,0124 0,32±0,0124 0,36±0,0207 0,12±0,0011 d

M. leptophylla 0,06±0,0005 0,32±0,0015 0,40±0,0015 0,12±0,0015 d

M. capillaripes 0,03±0,0005 0,32±0,0034 0,37±0,0114 0,09±0,0017 b

M. metata 0,04±0,0017 0,31±0,0456 0,38±0,0083 0,11±0,0012 d

M. haematopus 0,04±0,0014 0,30±0,0035 0,35±0,0047 0,12±0,0571 c

M. galopus 0,07±0,0016 0,30±0,0360 0,32±0,0240 0,12±0,0166 a

M. inclinata 0,07±0,066 0,29±0,0249 0,33±0,0243 0,09±0,0017 a

M. filopes 0,02±0,1245 0,27±0,0008 0,26±0,0207 0,08±0,0076 d

M. hiemalis 0,08±0,0034 0,26±0,0045 0,40±0,0332 0,13±0,0028 d

M. galericulata 0,05 ± 0,1207 0,25±0,0207 0,31±0,0249 0,09±0,0083 a

M. pterigena 0,05 ± 0,0041 0,22±0,0249 0,31±0,0705 0,10±0,0023 a

Note. * Here and also in Tables 2 and 3 the names of the species with the continuous parenthesomes are in bold letters.

To run a few steps forward, table 1 show that the species containing septal pore apparatus with perforated pa-renthesomes occur as often as those containing continuous parenthesomes. The obtained data demonstrated (Tables 1 and 2, Fig. 2, Fig. 1a-f, Fig. 3 a) that 37,5 % from 24 species possess with continuous parenthesomes and 62,5 % are distinguished by perforated parenthesomes with numerous holes (Fig. 2 c, d, Fig. 1 g-i). Four types of dolipore apparatus (Fig. 2) can be identified among the investigated species according to the presence or absence of holes, outlines and topography of parenthesome in relation to the dolipore swellings.

Fig. 2. Schematic diagrams of the four types of dolipore apparatus in some species of the genus Mycena and Hemimycenalactea: (a), continuous arched parenthesomes that are located at some (variable) distance from dolipore swelling; (6), continuous parenthesomes that have horseshoe outline and almost touch the dolipore swellings; (c), perforated hemispherical parenthesomes that envelope dolipore swelling and come closely to the septum; (d), perforated hemispherical parenthesomes that set against the oblique borders of dolipore swellings.

a - M. epipterygia, M. galericulata, M. galopus, M. inclinata, M. leptocephala, M. pterigena, M. rosella, H. lactea; b - M. capillaripes; c - M. haematopus, M. meliigena, M. niveipes, M. sanguinolenta; d - M. amicta, M. clavularis,

Fig. 1. Ultrastructure of the septal pore apparatus in the cells of subhymenium: a - M. galopus, b - M. galericulata, c - M. pterigena, M. leptocephala, M. capillaripes, f - M. filopes, g - M. meliigena, h - M. niveipes, i - M. metata. Bars: a- i- 0,1 |m.

M. corynephora, M. filopes, M. hiemalis, M. leptophylla, M. metata, M. pura, M. vitilis, M. speirea, M. stylobates.

DS - dolipore swelling, P - parenthesome, S - septum.

^m (Table 2).

Table 2

The quantitative parameters of parenthesomes in the fruit bodies subhymenial cells of some Mycena species

Species

M. stylobates

H. lactea

Fig. 3. Ultrastructure of the parenthesomes in the cells of

subhymenium: a - M. galericulata, b - M. meliigena, c - M. speirea, d - M. metata. Bars: a - 0,1 |m, b-d - 0,5 |m.

Eight species, or 33,8 % (Mycena leptocephala, M. galericulata, M. epipterygia, M. inclinata, M. galopus, M. pterigena, M. rosella and H. lactea) have dolipore apparatus with the continuous arched parenthesomes (Fig. 2 a), that are located at some (variable) distance (0,01-0,14 ^m) from dolipore swellings. This distance depends on the physiological conditions of the adjacent cells of a hypha. Only in M. capillaripes (4,2 % of investigated species), dolipore swellings have continuous arched horseshoe-shaped parenthesomes with their borders set against the dolipore swellings or lying at some distance (0,02-0,06 ^m) from it (Fig. 2 b). Four species or 16,6 % (M. meliigena, M. haematopus, M. sanguinolenta and M. niveipes) have dolipore apparatus with perforated hemispherical parenthesomes that envelope dolipore swellings and come closely to the septum (Fig. 2 c). The remaining 11 species, or 45,8 % (M. speirea, M. corynephora, M. hiemalis, M. pura, M. amicta, M. clavularis, M. filopes, M. metata, M. vitilis, M. stylobates and M. leptophylla) have the dolipore apparatus with perforated hemispherical parenthesomes that were set against the borders of the dolipore swelling (Fig. 2 d). The parenthesomes in the young and mature fruit body cells of the species of all four groups as a rule were continuous with the cistern of endoplasmic reticulum lying on each side of the septum. However, in some mature cells these cisterns were not revealed in the vicinity of the septum.

The parenthesome membranes (regardless of the dolipore type) are three-layered and asymmetric (with the thicker outer layer, Fig. 1 c, d, f, h, arrow, Fig. 3 a, double arrows). The inner (in accordance of dolipore swelling) parenthesome membrane (i.e. facing the dolipore swelling) is thicker and more electron opaque than the outer one. In all species the dark lamella lying inside parenthesome is located at the equal distance from the outer and inner membranes regardless of the dolipore type (Fig. 3 a, double arrows). Only in M. рtеrigenа the lamella is displaced towards the inner parenthesome membrane (Fig. 1 c, arrow). In M. corynephora and M. stylobates it is the thickest and most electron-dense of all species studied. In M. galericulata (Fig. 3 a, white arrow) and M. leptocephala, the transversely oriented electron dense "bridges" are found that connect the lamella with both parenthesome membranes. Previously similar electron dense "bridges" was revealed inside parenthesomes of Pleurotus cystidiosus [Moore R.T., Patton A.M. Mycologia. 1975. V. 67] and Hirschioporus pargamenus (syn. Trichaptum pargamenum) [Traquair R.F., McKeen W.E. Can. J. Bot. 1978. V.24].

The parenthesome thickness was stable and typical for each species. It does not depend on the type and development stage of the cell. The value of the parenthesome thickness varies dependent on the fungal species from 0,02 to 0,04

M. galopus

M. galericulata

M. pterigena

M. leptocephala

M. inclinata

M. epipterygia var. epipterygia

M. rosella

M. capillaripes

M. metata

M. sanguinelenta

M. pura

M. leptophylla

M. filopes

M. niveipes

M. vitilis

M. clavularis

M. corynephora

M. speirea

M. haematopus

M. hiemalis

M. amicta

Parenthesome thickness, pm

0,04

0,04

0,04

0,04

0,04

0,03

0,03

0,03

0,03

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0,03

0,03

0,03

0,03

0,03

0,03

0,03

0,03

0,03

0,03

0,03

0,03

0,03

0,03

Distance from the centre of the septal pore to parenthe-some, pm

0,40±0,0047

0,29±0,0033

0,28±0,0050

0,23±0,0057

0,23±0,0017

0,37±0,0026

0,31±0,0124

0,23±0,0028

0,28±0,0200

0,27±0,0571

0,31±0,0053

0,29±0,0267

0,28±0,0200

0,24±0,0026

0,26±0,0026

0,28±0,0028

0,33±0,0022

0,41±0,0017

0,30±0,0032

0,32±0,0034

0,26±0,0025

0,28±0,0044

0,26±0,0028

Diameter of parenthesome holes, pm

0,05x0,06

0,05x0,06

0,05x0,06

0,05x0,06

0,05x0,06

0,04x0,05

0,04x0,05

0,04x0,05

0,04x0,05

0,04x0,05

0,03x0,04

0,03x0,05

0,03x0,06

0,03x0,04

Distance between the centers

of the holes, pm

0,14

0,07

0,08

0,05 x 0,06

0,13

0,07

0,07

0,07

0,08

0,10

0,07

0,07

0,09

0,11

Tdoe

e of oli-pore apparatus

d

d

d

d

d

d

d

d

d

d

d

M. meliigena 0,02 0,22±0,0012 0,02x0,03 0,08

Note: The confidence intervals for parenthesome thickness, diameters of the holes and the distance between the centers of parenthesome holes are constant and therefore they are not given in the table.

According to the parenthesome thickness, the species studied here can be divided into three groups. In the first group containing five species (20,8%) dolipores have the thick (0,04 ^m) parenthesomes. It should be noted that only one species (M. stylobates) in this group has perforated parenthesomes, and the other four (H. lactea, Mycena galopus, M. galericulata and M. pterigena) have the a-type (continuous) parenthesomes. In the second, most numerous (18 species, or 75,0 %) group, parenthesomes are either continuous (a and b types) or perforated (c and d types) and they have middle thickness (0,03 ^m). The third group with only one species (4,1%) is characterized by the thinnest parenthesomes (c type). No correlation was found bе-tween parenthesome thickness and the size of dolipore swellings (see Tables 1 and 2).

It is apparent from Tables 1 and 3 that the second and fourth types of dolipore apparatus, the width of parenthesomes are smaller than width of the dolipore swelling. For the exception M. galopus where continuous parenthesomes were somewhat wider than the dolipore swelling. The width of parenthesomes in the third (c) type of dolipore apparatus was larger, than that of swelling.

In the species with perforated parenthesomes the holes were numerous and ellipsoid in outlines (Table 2, Fig. 3 b-d, arrows). No correlations between the diameter of parenthesome holes and parenthesome topography relative to dolipore swelling as well as between the size of the dolipore swellings and diameters of parenthesomes holes were found.

a

a

a

a

a

a

a

a

b

c

c

c

Table. 3

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The qualitative parameters of the parenthesomes in the fruit bodies subhymenial cells of some Mycena species

Species Height and width of parenthesome, pm Form (proportion of its height to width) of parenthesome, urn Type of dolipore apparatus

M. clavularis 0,53 ± 0,0207 0,15 ± 0,0124 0,28 d

M. niveipes 0,42 ± 0,0017 0,14 ± 0,0021 0,33 c

M. hiemalis 0,41 ± 0,0019 0,14 ± 0,0019 0,34 d

M. stylobates 0,40 ± 0,0045 0,12 ± 0,0014 0,30 d

M. sanguinolenta 0,40 ± 0,0026 0,13 ± 0,0012 0,33 c

M. leptocephala 0,40 ± 0,0010 0,14 ± 0,0011 0,35 a

M. meliigena 0,40 ± 0,0029 0,13 ± 0,0000 0,33 c

M. pura 0,39 ± 0,0124 0,11 ± 0,0000 0,28 d

M. rosella 0,38 ± 0,0332 0,10 ± 0,0115 0,26 a

M. epipterygia var. epipterygia 0,38 ± 0,0083 0,08 ± 0,0124 0,21 a

M. amicta 0,38 ± 0,0000 0,12 ± 0,0083 0,31 d

M. vitilis 0,41 ± 0,0118 0,13 ± 0,0059 0,31 d

M. haematopus 0,37 ± 0,0029 0,11 ± 0,0012 0,29 c

M. metata 0,36 ± 0,0011 0,12 ± 0,0011 0,33 d

M. leptophylla 0,33 ± 0,0177 0,08 ± 0,0000 0,24 d

M. galopus 0,32 ± 0,0031 0,10 ± 0,0115 0,31 a

M. corynephora 0,32 ± 0,0017 0,11 ± 0,0000 0,34 d

M. spierea 0,32 ± 0,0034 0,11 ± 0,0000 0,34 d

M. inclinata 0,30 ± 0,0017 0,12 ± 0,0012 0,40 a

M. galericulata 0,28 ± 0,0031 0,09 ± 0,0013 0,32 a

M. pterigena 0,28 ± 0,0017 0,09 ± 0,0017 0,32 a

H. lactea 0,28 ± 0,0028 0,08 ± 0,0000 0,28 a

M. capillaripes 0,28 ± 0,0063 0,11 ± 0,0000 0,39 b

M. filopes 0,24 ± 0,0011 0,05 ± 0,0000 0,20 d

As it is evident from Table 3, the widest parenthesomes were typical for M. clavularis; the narrowest occur in M. filopes. In accordance with this, most elongate parenthesomes were typical for the first species and the lowest for the second one. The parenthesome parameters of the other species studied occupy intermediate position.

According to the data of this work, a characteristic feature of the septal pore ultrastructure not only of the subhymenial cells, but also all types of developing fruit body cells in the species of the genus Mycena was the absence of outer caps (that is the portion of highly differentiated cytosol located from the outside of the parenthesomes). It is appropriate mention here that by the absence of the outer caps in the septal pore apparatus, the investigated species of Mycena differ profoundly not only from the other previously investigated species from the family Tricholomataceae (Tricholoma focale - syn.

Tr. robustum) [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a], Physalacriaceae (Flammulina velutipes) [Koida M.A. Dissert., 1999], but also from all so far investigated species of the agaricalean fungi [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a; McLaughlin D.J. Amer. J. Bot. 1972. V.59; McLaughlin D.J. Protoplasma. 1974. V.82; McLaughlin D.J. Ultrastructure and cytochemistry of basidial and basidial and basidiospore development, 1982; Patrignani G., Pellegrini S.T. Atti. Acad. Nat. Lincei. Rend. Cl. Sci. fis. Mat. e natur. 1983. V.75; Patrignani G., Pellegrini S. Caryologia. 1986. V.39; Stepanova A.A. Mycol. and Phytopatol. 1986. V.20; Thielke C. J. Ultr. Res. 1976. V.54; Craig G.D., et al. Protoplasma. 1977. V. 98]. In these fungi outer caps are clearly differentiated. It is very important to note that the lack of the outer caps in the septal pore apparatus is a taxon specific character of basidiocarps in all so far investigated species from the aphyllophoralean Basidiomycota [Inonotus tamaricis, Bjerkandera fumosa, Ganoderma applanatum: Stepanova A.A., Vasilyev A.E. Mycol. and Phytopatol. 1994b. V.28]. The members of the Agaricales are very clearly distinguished from the aphyllophoralean Basidiomycota by the presence of the outer caps [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopatol. 1994b. V.28]. The analysis of published electron micrographs [Patton A.M., Marchant R.A. J. Gen. Microbiol. 1978. V.109; Flegler S.L., et al. Can. J. Bot. 1976. V.54] also shows the absence of the outer caps in the septal pore apparatus of some so far studied species of gasteroid Basidiomycota. However, the problem of the presence/absence of the outer caps in this group of fungi requires further investigation.

The septal pore apparatus of all previously investigated species of agaricalean fungi contained the parenthesomes perforated with numerous ellipsoid holes [Patton A.M., Marchant R.A. J. Gen. Microbiol. 1978. V.109; Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a; McLaughlin D.J. Amer. J. Bot. 1970. V.57; McLaughlin D.J. Amer. J. Bot. 1972. V.59; McLaughlin D.J. Protoplasma. 1974. V.82; McLaughlin D.J. Ultrastructure and cytochemistry of basidial and basidial and basidiospore development, 1982; Stepanova A.A. Mycol. and Phytopatol. 1986. V.20; Flegler S.L., et al. Can. J. Bot. 1976. V.54; Gull K. J. Ultr. Res. 1976. V.54; Craig G.D., et al. Protoplasma. 1977. V.98; Khan S.R., Kimbrough J.W. Can. J. Bot. 1979. V.57; Koida M.A., Stepanova A.A. Mycol. and Phytopatol. 1997. V.31; Moore R.T., Patton A.M. Mycologia. 1975. V.67]. The our data [1] and current investigations show for the first time the presence of continuous parenthesomes in 9 from of 24 investigated species of agaricalean fungi from the genus Mycena, including its type species, M. galericulata.

The Mycena species with the entire parenthesomes studied in the present work can be subdivided in two groups according to their outlines and position in relation to the dolipore swelling and according to the parenthesome thickness. Five species (M. stylobates, M. galericulata, M. galopus, M. pterigena and H. lactea) have thick (0,04 ^m) parenthesomes than other four (0,03 ^m: M. leptocephala, M. inclinata, M. epipterygia and M. rosella). From they only one species (M. stylobates) has parenthesomes perforated

with numerous ellipsoid holes and therefore occupied isolated position in the group. Septal pore apparatus of M. capillaripes that was singled out as a special type according to the outline and position of parenthesomes in relation to the dolipore swelling, belongs to the second group according to the thickness of the parenthesomes. It is remarkable that based on the molecular-biochemical data [Moncalvo J.M., Vilgalys R., et al. One hundred and seventeen clades of euagarics, 2002], M. galericulata is also located apart from M. inclinata (together with M. clavularis). It is interesting to note that the last two species have parenthesomes of identical thickness, but they differ in their structure: they are continuous and arched (a type) in M. inclinata and perforated (d type) in M. clavularis. It is also interesting that these two species are similar by the size (0,22-0,37 х 0,31-0,37 ^m)of the dolipore swellings.

Among a few families outside of the Agaricales studied so far, the dolipore apparatus with continuous arched (а type) parenthesomes have also been found. The species with this type of parenthesome were from family Hymenochaetaceae (subfamily Hymenochaetoideae) and members of the genera Inonotus [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopatol. 1994b. V.28; Müller W.H., et al. Mycol. Res. 2000. V.104; MooreR.T. Bot. Notis. 1980. V.133], Onnia, Phellinus, Phylloporia, Hydnochaete, Coltriciella, Cyclomyces, Coltricia, Asterodon [Müller W.H., et al. Mycol. Res. 2000. V.104; Moore R.T. Bot. Notis. 1980. V.133; Moore R.T. The challenge of the dolipore/parenthesome septum, 1985; Rajchenberg M., Bjanchinotti M.V. Mycol. Res. 1992. V.96]. Dolipores of the similar structure have been described in the species of the genera Trametes, Lenzites, Daedalea or Trichaptum [Traquair R.F., McKeen W.E. Can. J. Bot. 1978. V.24; Moore R.T. The challenge of the dolipore/ parenthesome septum, 1985; Rajchenberg M., Bjanchinotti M.V. Mycol. Res. 1992. V.96; Alexander J., et al. Mycol. Helvetica. 1989. V.3; Rajchenberg M., Bjanchinotti M.V. Nord. J. Bot. 1991. V.11], in one species from the genus Onnia [Onnia tomentosa - syn. Polyporus tomentosus] and some species of the genus Ramaria [Ramaria sanguinea: Pellegrini S., et al. Caryologia. 1991. V.44], and also within the genus Botryobasidium [Langer G. Bibliotheca Mycologia. 1994. V.158].

The other species of Mycena investigated here possess with the perforated parenthesomes. They can be combined into two groups (c and d, Fig. 1) according to their position relative to the dolipore swelling. In the septal pore apparatus of M. meliigena, M. haematopus, M. sanguinolenta and M. niveipes hemispherical parenthesomes are perforated by numerous ellipsoid holes and they enveloped the dolipore swellings and lie close to the septa (c type). Before this time, parenthesomes of this type were at first described in the fungi from order Boletales - Polyporus squamosus, Polyporus biennis and Tricholoma focale (syn. Tr. robustum) [Stepanova A.A., Vassilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a; Moore R.T. J. Gen. Microbiol. 1975. V.87]. The analysis of electron micrographs published in the papers of other authors shows that the parenthesomes of c type were typical of the septal pore apparatus of some species of the fungi from the families Polyporaceae - Coriolopsis sanguinaria (syn. Polyporus rugulosus) [Welsenach R., Kessel M. J. Gen. Microbiol. 1965. V.40] and Trametes versicolor (syn. Polystictus versicolor) [Girbardt M. Arch. Microboil. 1961. V.39], Meruliaceae

(Abortiporus biennis: Moore R.T., Patton A.M. Mycologia. 1975. V.67; Moore R.T. Marchant R. Can. J. Bot. 1972. V.50], Insertea sedis - Oxyporus latemarginatus (syn. Poria latemarginata) [Setliff E. C., et al. Can. J. Bot. 1972. V.50], Schizophyllaceae - Schizophyllum commune [Jersild R., et al. Arch. Microbiol. 1967. V.57], Boletaceae - Chalciporus rubinellus (syn. Boletus rubinellus) [McLaughlin D.J. Ultrastructure and cytochemistry of basidial and basidial and basidiospore development, 1982] and Aureoboletus gentilis (syn. Boletus cramesinus [Patrignani G., Pellegrini S. Caryologia. 1986. V.39], Suillaceae - Suillus bovinus, Tricholomataceae - Tricholoma matsutake, Agaricaceae -Crucibulum vulgare, Phallaceae - Phallus impudicus [Nakai Y. Rep. Tottori Mycol. Inst. 1986. V.24], Physalacriaceae -Armillaria limonea (syn. Armillaria mellea) [Berliner M.D., Duff R.H. Can. J. Bot. 1965. V.43], and Lycoperdonperlatum [Flegler S.L., et al. Can. J. Bot. 1976. V.54], and Clathrus cancellatus [Eyme J., Parriaud H. C. R. Acad. Sci. 1970. V.230]. In the three (M. haematopus, M. sanguinolenta and M. niveipes) out of four Mycena species studied here that have dolipores with с type of parenthesomes, the thickness of the latter was 0,03 цт, while only in one species of this group, M. meliigena, parenthesomes were thinner (0,02 цт). It was interesting to note that the same type of parenthesomes was typical for the species of another genus of the family Tricholomataceae - Tricholoma focale (syn. Tr. robustum) [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a]. However, this species possessed with the thicker (0,04 цм) parenthesomes. The thin parenthesomes as in M. meliigena were described also for Agaricus bisporus and Pholiota squarrosa [Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a]. The last two species have perforated hemispherical parenthesomes that set against the sloped edge of dolipore swelling (d type).

A proposal has been offered earlier [Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a] that the presence of perforated hemispherical parenthesomes that envelope the dolipore swelling and lie close to the septum (c-type of Mycena's parenthesomes) also typical for some species of the Polyporaceae and Boletaceae. For this type typical the stable presence of the outer parenthesome's caps without endoplasmic reticulum cistern, as well as the one-celled mature spores and four degenerating nucleus in basidium after spore discharge are indicators of their primitive position in comparison with the other agaricalean fungi. The presence of c type parenthesomes concurrently in the genera with poroid (Polyporus), tubular (Boletus s.l., Suillus) and gilled (Tricholoma, several species of Mycena) hymenophores allows us to suggest that, in the Agaricomycetes, morphological-anatomical characters change in the evolution faster than the characters of the septal pore apparatus. This suggestion is supported by the presence of continuous parenthesomes simultaneously in the Mycena species with gill hymenophore and in the hymenochaetoid genera (Inonotus, Onnia, Phellinus, Hydnochaete, Coltricia, etc.) with poroid hymenophore. Our data support the Moore's [Moore R.T. Bot. Notis. 1980. V.133; Moore R.T. A. van Leewenhoek. 1986. V.52; Moore R.T. Taxonomic implications of septal ultrastructure in aphyllophorales, 1988] opinion that the structure of the septal pore apparatus is a conservative character.

Previosly we [Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a] revealed for the species of "nodal" family Hygrophoraceae - Hygrophorus hypothejus the simultaneous combination of the progressive (presence of perforated hemispherical parenthesomes that set against the oblique borders ofdolipore swellings and storage substances in developing basidia) and primitive (one-nucleated mature basidiospores). In this study we revealed for 9 species Mycena the combination of primitive cytological (continuous parenthesomes) and progressive anatomical (gill hymenophore) characters. Also we revealed [4] another example of such kind combination in the ultrastructure of septal pore apparatus in two species from ascomycetous family Microascaceae - Scedo-sporium apiospermum - (teleomorph - Pseu-dallescheria boydii). We note the presence the primitive (without bounding membrane) and typical (with outer membrane) Woronin bodies in the composition of septal pore apparatus of this species. All this cases present the examples of heterobathmy [Tahtadzhyan A.L. Voprosyi evolyutsionnoy morfologii, 1954], the ingenious universal assumption which according our data also "work" for the Kingdom Fungi. According the Tahtadzhyan A.L. [Tahtadzhyan A.L. The questions of the evolutionary morphology, 1954] the species in which present combination of primitive and progressive characters possible to consider as "nodal" in evolution of plant. Thus, evidently the capacity of ultrastructural data for phylogenetical investigations in fungi also.

Dolipore apparatus of d type, that was typical for the M. speirea, M. corynephora, M. hiemalis, M. pura, M. amicta, M. clavularis, M. filopes, M. metata, M. vitilis, M. stylobates and M. leptophylla, have hemispherical parenthesomes perforated by numerous ellipsoid holes and they set against the sloped edge ofdolipore swelling (Fig. 1 d). This type ofthe dolipore apparatus is characteristic feature of many species of the agaricalean fungi [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vassilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a; Koida M.A., Stepanova A.A. Mycol. and Phytopatol. 1997. V.31]. It is described [Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a] in the families Pleurotaceae (Pleurotus ostreatus - syn. Pleurotus cornucopuae), Hygrophoraceae (Hygrophorus hypothejus), Amanitaceae (Amanita muscaria), Psathyrellaceae (Coprinellus truncorum - syn. Coprinus truncorum, C. domesticus, Psathyrella candolleana), Cortinariaceae (Rozites caperata), Strophariaceae (Pholiota squarrosa), Entolomataceae (Entoloma sordidulum) and Russulaceae (Russula cyanoxantha, Lactarius pubescens) as well as in the Physalacriaceae (Flammulina velutipes). Dolipores of this type of parenthesomes can also be seen on the micrographs in the papers by the other authors. They were present in the species from the Psathyrellaceae -Coprinus stercorarius [syn. Coprinopsis tuberosa: Ellis T. T., et al. Mycologia. 1972. V.64], Agaricaceae [Thielke C. Arch. Mikrobiol. 1972 a. V.82; Craig G.D., et al. Protoplasma. 1977. V.98], Strophariaceae [Khan S.R., Kimbrough J.W. Mycotaxon. 1982. V.15; Nakai Y. Rep. Tottori Mycol. Inst. 1986. V.24; Wells K. Mycologia. 1994. V.86; Gull K. J. Ultr. Res. 1976. V.54], Russulaceae [Patrignani G., Pellegrini S. Atti. Acad. Nat. Lincei. Rend. Cl. Sci. fis. Mat. e natur. 1983. V.75], Physalacriaceae [Flammulina velutipes: Koida M.A. Disseert., 1999], Pleurotaceae and Bolbitiaceae [Nakai Y. Rep. Tottori Mycol. Inst. 1986. V.24]. They were also seen in

other papers devoted to fungi from the families Hericiaceae [Hericium coralloides: Flegler S.L., et al. Can. J. Bot. 1976. V.54], Ceratobasidiaceae [Thanatephorus practicola -syn. Th. cucumber], Corticiaceae [Waitea circinata: Tu C.C., et al. Can. J. Bot. 1977. V.55], Phanerochaetaceae [Pseudolagarobasidium: Maekawa N., Hasebe K. Mycoscience. 2002. V.43], Hymenochaetaceae (Coltricia perennis), Stereaceae [Stereum hirsutum, Polyporaceae -Trametes versicolor (syn. Coriolus versicolor), Clavulinaceae [Clavulina rugose], Ganodermataceae [Ganoderma lucidum - syn. Ganoderma orbiforme] [Nakai Y. Rep. Tottori Mycol. Inst. 1986. V.24], Fomes fomentarius [Moore R.T Bot. Notis. 1980. V.133], Oxyporus latemarginatus [syn. Poria latemarginata: Setliff E.C., et al. Can. J. Bot. 1972. V. 50], Polyporus arcularius (syn. Favolus alveolarius) [Flegler S.L., et al. Can. J. Bot. 1976. V.54] and Bjerkandera fumosa, Ganoderma applanatum [Thielke C. Arch. Mikrobiol. 1972 a. V.82], Clavariadelphaceae [Clavariadelphus pistillaris: Pellegrini S., et al. Caryologia. 1991. V.44]. D-type of parenthesomes can also be found in the families Phallaceae [Aseroë arachnoidea - syn. Lysurus arachnoideus], Agaricaceae [Calvatia nipponica - syn. Lasiosphaera nipponica], Phallaceae [Phallus impudicus: Nakai Y. Rep. Tottori Mycol. Inst. 1986. V.24] and Clavariadelphaceae [Clavariadelphuspistillaris: Pellegrini S., et al. // Caryologia. 1991. V.44].

By the parenthesome structure and topography Mycena meliigena, M. haematopus, M. sanguinolenta and M. niveipes were similar with Tricholoma focale (syn. Tr. robustum) [Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a]. As the analysis of the illustrations published by other authors show they were also similar with Armillaria limoneae (syn. Armillaria mellea) [Berliner M.D., Duff R.H. Can. J. Bot. 1965. V.43] and Tricholoma matsutake [Nakai Y. Rep. Tottori Mycol. Inst. 1986. V.24]. However, these three species of Mycena are singled out not from the Tricholomataceae but also from the other agarics by the absence of the outer caps. The Mycena species with the d-type of dolipores are more closely related to the agaricalean fungi that have similar (d) type of the septal pore apparatus [Agaricaceae: Thielke C. Arch. Mikrobiol. 1972 a. V.82; Craig G.D., et al Protoplasma. 1977. V.98; Psathrellaceae: Nakai Y. Rep. Tottori Mycol. Inst. 1986. V.24; McLaughlin D.J. Amer. J. Bot. 1972. V.59; Thielke C. Arch. Mikrobiol. 1972 a. V.82]. And finally, the Mycena species with the continuous parenthesomes of а and b types occupy the isolated position with respect to the agaricalean fungi studied so far.

No strong correlation has been found in the present work between the thickness and the type (continuous/ perforated) of parenthesome and the size of the dolipore swellings. So, in the species that have large dolipore swellings (M. clavularis and M. stylobates) their parenthesomes differ in their thickness vary from 0,03 to 0,04 цш. M. meliigena with its thinnest (0,02 цш) parenthesomes has the dolipore swellings of a medium size, but M. pterigena that has the smallest dolipore swellings posses with thickest (0,04 цм) parenthesomes. In the majority of the Mycena species studied, the lamella inside parenthesomes takes up a central position, the situation typical for the Agaricomycetes [Patton A.M., Marchant R.A. J. Gen. Microbiol. 1978. V.109; Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a; Stepanova A.A.

Mycol. and Phytopatol. 1986. V.20; Flegler S.L., et al. Can. J. Bot. 1976. V.54; Moore R.T., Patton A.M. Mycologia. 1975. V.67] including the tricholomean fungi from the other genera than Mycena [Tricholoma focale - syn. Tr. robustum: Stepanova A.A., VasilyevA.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a; Flammulina velutipes: Koida M.A., Stepanova A.A. Mycol. and Phytopatol. 1997. V.31]. M. pterigena was an exception with the lamella displaced towards the inner parenthesome membrane. The exceptions from the other taxa were the species of the genera Coprinellus [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a], Coprinus [Ellis T.T., et al. Mycologia. 1972. V.64] and Inonotus [Stepanova A.A., Vassilyev A.E. Mycol. and Phytopatol. 1994b. V.28] where, contrary, the lamella was displaced towards the outer parenthesome membrane.

On the whole, the comparative analysis of our own and literature data shows that within the Agaricomycetes, occur species with continuous (a type) and perforated (c and d types) parenthesomes. In a few investigated species of Basidiomycota with gastroid fruiting bodies, c and d types of dolipore apparatus were found.

Nakai Y. [Nakai Y Rep. Tottori Mycol. Inst. 1986. V.24], based on the study of 32 species from 11 orders of Basidiomycota, consider the ultrastructure of the septal pore apparatus as a taxonomic character of the family rank. On the whole, the modern knowledge about the septal pore ultrastructure of agaricalean fungi, makes it possible to conclude that the characters of the family rank are not only the presence or absence of holes in the parenthesomes, but also their outlines and position with respect to the dolipore swellings and position of the lamella inside parenthesomes, the presence or absence of outer caps in the septal pore apparatus, the presence or absence of endoplasmic reticulum around outer caps, symmetrical/ asymmetrical structure of the outer caps on the either side of the septum, their form, diameter and contents (granules or fibrils, or both), also their distribution in the fruit body, stability or plasticity (with regard to the pattern of ultrastructural changes) during fruit body development. According to the data we obtained for the agaricalean fungi before [Stepanova A.A., Vasilyev A.E. Mycol. and Phytopathol. 1988. V.22; Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a;

Stepanova A.A. Mycol. and Phytopatol. 1986. V.20; Koida M.A., Stepanova A.A. Mycol. and Phytopatol. 1997. V.31], the parenthesome thickness was the taxonomic character of the generic rank. So, in the Boletaceae, Boletus edulis has thick (0,05 ^m) parenthesomes, while Suillus luteus from genus Suillus - 0,04 ^m, in the genus Psathyrella

- P candolleana - 0,03 ^m; in the Russulaceae - Russula cyanoxantha has parenthesomes with thickness 0,03 ^m and Lactarius pubescens - 0,05; in the Tricholomataceae, Tricholoma focale's (syn. Tr. robustum) parenthesomes are 0,04 ^m, whereas (Physalacriaceae) Flammulina velutipes's

- 0,03 ^m.

Van Driel K.G A. et al. [5] investigated dolipores in Cantharellus species and found that the parenthesomes were perforated. Additionally, they confirmed the results of Kost G. [Kost G. Zeitschrift für Mykologie. 1984. V.50], that in Rickenella perforated parenthesomes were found. So they could show that in Hymenochaetales and Cantharellales, which are normally characterized by dolipores with continuous parenthesomes, genera with perforated parenthesomes were included. The interpretation of Van Driel K.G.A, et al. [5] was supported, that the imperforate type gave rise to the perforate septal pore cap-type. Our results show that such a transition from continuous to perforated parenthesome also happened in Agaricales s. str. This means that a perforated parenthesome developed several times during the evolution of Agaricomycetes.

The data of the present work show that the application of the ultrastructural characters of the septal pore apparatus is very perspective in the solution the problems of systematics of the agaricalean fungi at the generic level. However, for the final solution of the problem of the degree of similarities or distinctions among the investigated species of Mycena, comparative analysis of the anatomy of the developing fruit bodies, ultrastructural data about the basidium and cystidia morphogenesis should be also made. In sum, all these data very important step forward to understand the phylogenesis within the Agaricomycetes [Stepanova A.A., Vasilyev A.E. Ultrastructural bases of mushroom morphogenesis, 1994a].

ACKNOWLEDGEMENTS

We thank Annette Schrievers and Helga KisselbachHeckmann for technical assistance. The first author appreciates the DAAD for financial support of her stay in Germany. We are grateful Olga Morozova for determination of fungi, which first author collect in Russia.

REFERENCES

1. Rexer K.-H., Stepanova A.A. The septal pore apparatus of Mycena galopus and M. hiemalis. In: Agerer R., Piepenbring M., Blanz P. (eds.) Frontiers in Basidiomycote Mycology. IHW Verlag, Eching, 2004: 309-314.

2. Celio G.J., Padamsee M., Bryn T.M., et al. Septal pore apparatus and nuclear division of Auriscalpium vulgare. Mycologia. 2007; 99 (5): 644-654.

3. Jenkinson T.S., Celio G.J., Padamsee M., et al. Conservation of cytoplasmic organization in the cystidia of Suillus species. Mycologia. 2008; 100 (4): 539-547.

4. Stepanova A.A., de Hoog S., Vasilyeva N.V. Intra- and interspecific diversity of ultrastructural markers in Scedosporium. Fungal Biology. 2016; 120: 147-154.

5. Van Driel K.G A., Humbel B.M., Verkleij A.J., et al. Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycological research. 2009; 113: 559-576.

Поступила в редакцию журнала: Рецензент: Богомолова Т.С.

i Надоели баннеры? Вы всегда можете отключить рекламу.