Научная статья на тему 'Сравнительный анализ эффективности наполнения нано- и микрокомпозитов'

Сравнительный анализ эффективности наполнения нано- и микрокомпозитов Текст научной статьи по специальности «Нанотехнологии»

CC BY
187
27
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по нанотехнологиям, автор научной работы — А И. Буря, Г В. Козлов, А Г. Ткачев

Показано, что эффективность наполнения для нанокомпозитов гораздо выше, чем для микрокомпозитов. Это обусловлено гораздо большей площадью контакта полимерная матрица-наполнитель в случае первых. Эффективность наполнения корректно описывается в рамках одной и той же модели для обоих указанных классов полимерных композитов, что предполагает отсутствие для них качественных различий.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — А И. Буря, Г В. Козлов, А Г. Ткачев

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

It was shown that filling efficiency for nanocomposites is much higher then for microcomposites. This was due to much larger area of polymer matrix – filler contact in the case of first ones. The filling efficiency is described correctly within the framework of the same model for both indicated polymer composites types that assumes absence for them qualitative distinctions.

Текст научной работы на тему «Сравнительный анализ эффективности наполнения нано- и микрокомпозитов»

УДК 541.64: 536.4

Канд. техн. наук А. И. Буря1, Г. В. Козлов1, канд. техн. наук А. Г. Ткачев2

1 Государственный аграрный университет, г. Днепропетровск

2ООО «ТИТЦМ», г. Тамбов, Россия

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ЭФФЕКТИВНОСТИ НАПОЛНЕНИЯ НАНО- И МИКРОКОМПОЗИТОВ

Показано, что эффективность наполнения для нанокомпозитов гораздо выше, чем для микрокомпозитов. Это обусловлено гораздо большей площадью контакта полимерная матрица-наполнитель в случае первых. Эффективность наполнения корректно описывается в рамках одной и той же модели для обоих указанных классов полимерных композитов, что предполагает отсутствие для них качественных различий.

Как известно [1], одной из основных задач, решаемой при наполнении полимеров, является повышение жесткости последних, которая характеризуется величиной модуля упругости Е. Насколько успешно решается эта задача, можно судить по изменению коэффициента эффективности модуля к, который определяется из уравнения [2]:

k = Ек - Ем (1 -Фн ) э ЕнФн '

(1)

где Ек, Ем и Ен - модули упругости композита, полимерной матрицы и наполнителя, соответственно, фн -объемное содержание наполнителя.

Цель настоящей работы - сравнительный анализ эффективности наполнения для нано- и микрокомпозитов на основе фенилона, наполненных нанотрубка-ми и короткими волокнами, соответственно.

В качестве полимерного связующего исследуемых композитов использован линейный гетероцепной сополимер фенилон С-2 следующего химического строения:

Г

-HN —

V

H O

I II

N — C —

CO —

А

J

Используемые углеродные нанотрубки (УНТ) получены газофазным осаждением углерода на катализаторе в результате каталитического пиролиза углерод-содержащих газов. УНТ представляют собой одномерные наноразмерные нитевидные образования поликристаллического графита в виде сыпучего порошка черного цвета. Гранулы микрометровых размеров имеют структуру спутанных пучков многостенных трубок длиной более 2 мкм с наружным и внутренним диаметром 10-60 и 10-20 нм, соответственно. Использованы нанокомпозиты с содержанием УНТ 3,5, 7 и 10 масс. %.

Приготовление композиций осуществлялось методом сухого смешивания в аппарате с вращающимся электромагнитным полем. Навески фенилона и нанот-рубок загружали в металлическую емкость. Туда же добавляли ферромагнитные частицы (длиной 15-17мм) в количестве 0,04-0,06 от объема действия электромагнитного поля, величина магнитной индукции которого была не ниже 0,02 Тл. Продолжительность смешивания составляла 20-30 с. Под действием вращающегося электромагнитного поля ферромагнитные частицы совершают интенсивное хаотическое движение, за счет чего вышеуказанные компоненты равномерно смешиваются, т. е. подавляется процесс агрегации нанотрубок. Продукты износа ферромагнитных частиц удалялись из приготовленной композиции методом магнитной сепарации.

Процесс таблетирования порошкообразных композиций осуществляли на гидравлическом прессе ПСУ-50. При изготовлении заготовки, которая соответствует изделию (образцу) по форме и размерам, учитывали, что ее размеры при распрессовке из формы и особенно при прогревании во время сушки увеличиваются примерно на 1-2 % по сравнению с размерами формы, в которой проводилось таблетирование.

Перед формированием полиамид фенилон С-2 необходимо тщательно сушить. Переработка невысушен-ного фенилона ухудшает его прочностные показатели, приводит к образованию поверхностных дефектов (раковин, пузырей и т. д.). Сушка таблетированных заготовок производилась в термошкафу 8РТ-200 в течение 2-3 час. при температуре 473-523 К. Сушку осуществляли таким образом, чтобы таблетка из термошкафа сразу же загружалась в пресс-форму, нагретую до 523 К.

После загрузки заготовки в пресс-форму ее начинали смыкать до соприкосновения верхнего пуансона с таблеткой. Потом материал нагревали до 598 К и выдерживали без давления 10 мин., после чего давление повышали до 50 МПа. При таких температуре и давлении материал выдерживали в течение 5 мин. Да-

© А. И. Буря, Г. В. Козлов, А. Г. Ткачев, 2007

ISSN 1607-6885 Hoei Mamepia.nu i технологи в металурги та машинобудувант №2, 2007

61

лее образец охлаждали под давлением и температуре 523 К и затем вынимали из пресс-формы.

Механические испытания на сжатие выполнены на испытательной машине БР-100 при температуре 293 К и скорости деформации 10-3 с-1. Образцы для испытаний имели диаметр 10±0,5 мм и высоту 15±0,5 мм.

На рис. 1 приведена зависимость коэффициента эффективности модуля к от содержания нанотрубок Фн для исследуемых нанокомпозитов. Как можно видеть, эта зависимость имеет экстремальный характер при монотонном увеличении фн. Это предполагает1, что причиной экстремизма указанной зависимости является соответствующее изменение Е . В свою очередь, экстремальное изменение Е определяется соответствующей вариацией относительной доли межфазных областей фмф, что следует из уравнения [3]:

описывается уравнением:

Ек

Е

^ Л/1

= 1 +111

(фн +Фмф )7.

(2)

На рис. 2 приведена зависимость кэ( фмф), которая оказалась приблизительно линейной и аналитически

1,5

1,0

0,5

0,05

0,10

фя

Рис. 1. Зависимость коэффициента эффективности модуля кэ от содержания нанотрубок фн для нанокомпозитов фенилон/УНТ

кэ

1,5 -

1,0 -

0,5 -

0,05

0,10

фмф

Рис. 2. Зависимость коэффициента эффективности модуля кэ от относительной доли межфазных областей фмф для нанокомпозитов фенилон/УНТ

кэ = 0,35 + 6,65фмф .

(3)

Следовательно, эффективность наполнения композитов определяется уровнем межфазных взаимодействий полимерная матрица-наполнитель, который количественно выражен величиной фмф. Поэтому для оценки предельных значений кэ в случае нано- и микрокомпозитов оценим соотношение величин фн и для каждого из указанных случаев. Как известно [4], и полимерная матрица композитов, и поверхность частиц наполнителя, взаимодействующие при формировании межфазных областей, являются фрактальными объектами. При взаимодействии таких объектов существует единственный линейный масштаб I, определяющий расстояние их взаимопроникновения [5]. Поскольку в полимерных композитах модуль упругости наполнителя, как правило, выше соответствующего показателя для полимерной матрицы, то предполагается [4], что в этом случае происходит внедрение наполнителя в полимерную матрицу и тогда I равно толщине межфазного слоя ' Затем можно записать [5]:

( г \2(1-1п )/1

'мф

' а| ■

^ а

(4)

где а - нижний линейный масштаб фрактального поведения полимерной матрицы, гн - радиус частиц наполнителя, 1 - размерность евклидова пространства, в котором рассматривается фрактал (очевидно, в нашем случае 1=3), 1п - фрактальная размерность поверхности частиц наполнителя.

Для исследуемых УНТ средняя величина г =17,5 нм, величина а принимается равной длине статистического сегмента ' полимерной матрицы, которая определяется следующим образом [6]:

/ - г /

ст ^ '

го'0 >

(5)

где - характеристическое отношение, которое является показателем статистической гибкости цепи [7], '0 - длина скелетной связи основной цепи, равная для фенилона 1,4 Е.

Величину 1 в первом приближении можно принять равной 2,0 [8]. Как известно, 1 =2,0 означает гладкую поверхность наполнителя, что приводит к растяжению макромолекулярных клубков на ней [9] и, как следствие, росту по сравнению с аналогичным параметром для объемной полимерной матрицы. Поэтому для оценок согласно уравнению (4) принято =9 [10] и тогда а=1 =1,26 нм. При указанных параметрах урав -нение (4) дает 'мф=7,34 нм. Далее можно использовать уравнение [11]:

к

0

0

Ф мф = Фн

гн + ^мф ^

-1

что при гн=17,5 нм и 1мф=7,34 нм дает: Фмф = ^6Фн.

(6)

(7)

Для коротких волокон в случае микрокомпозитов уравнение (7) будет иметь другой вид. Так, при г =4000 нм [12] расчет согласно уравнениям (4) и (6) при прочих равных условиях дает:

Фмф = °,225фн,

(S)

что определяет значительно более низкую степень усиления микрокомпозитов по сравнению с нанокомпо-зитами при прочих равных условиях.

Следовательно, согласно уравнениям (7) и (8) получим для нано- и микрокомпозитов, соответственно, следующие соотношения:

Фмф +Фн = 2,S6^k;

Фмф +Фн = 1,225Фн .

(9)

(iG)

Далее, при максимальной степени усиления Е /Е =12 согласно уравнению (2) получим предельные значения фн, равные 0,348 для нано- и 0,820 - для микрокомпозитов, что дает предельные значения фмф =0,652 и 0,180, соответственно. Из уравнения (1) при максимальном значении Е для композитов на основе фени-лона, равном 12Е =23,64 ГПа (в испытаниях на сжатие) получим предельно достижимые значения кд: 4,23 для нано- и 1,89 - для микрокомпозитов. Используя полученные выше предельные значения и уравнение (3), получим предельно достижимые значения к : 4,69 для нано- и 1,55 - для микрокомпозитов, что хорошо согласуется с оценкой согласно уравнению (1).

Таким образом, изложенные выше результаты предполагают, что эффективность наполнения для наноком-позитов значительно выше, чем для микрокомпозитов. Этот эффект определяется более высокой долей межфазных областей в нанокомпозитах при одинаковом содержании наполнителя в силу гораздо большей пло-

щади контакта полимерная матрица-нанонаполнитель, что является основным отличием многофазных нано-систем от аналогичных микросистем [13]. Еще одним важным выводом является то, что эффективность наполнения и для нано-, и для микрокомпозитов описывается в рамках одной и той же модели, что предполагает отсутствие качественных различий для этих классов полимерных композитов.

Перечень ссылок

1. Липатов Ю. С. Физико-химические основы наполнения полимеров. - M.: Химия, 1991. - 259 с.

2. Yu Z., Ait-Kadi A., Brisson J. Nylon/Kevlar composites. I. Mechanical properties. Polymer Eng. Sci. - i99i - v. 3i, № 16. - Р. 1222-1227.

3. Mаламатов А. Х., Козлов Г. В., Mикитаев M. А. Mеха-низмы упрочнения полимерных нанокомпозитов. - M.: Изд-во РХТУ им. Mенделеева, 2GG6. - 24G с.

4. Новиков В. У., Козлов Г. В., Бурьян О. Ю. Фрактальный подход к межфазному слою в наполненных полимерах // Mеханика композитных материалов. - 2GGG. -т. 36, № l.- С. 3-32.

5. Hentschel H.G.E., Deutch J.M. Flory-type approximation for the fractal dimension of cluster-cluster aggregates. Phys. Rev. A. - l9S4. - v. 29, № 12. - Р. l6G9-l6ll.

6. Wu S. Chain structure and entanglement. J. Polymer Sci.: Part B: Polymer Phys. - 19S9. - v. 27, № 4. - Р. 723-741.

7. Будтов В. П. Физическая химия растворов полимеров. СПб., Химия, 1992. - 3S4 с.

S. Avnir D., Farin D., Pfeifer P. Molecular fractal surfaces.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Nature, 19S4. - v. 3GS, № 5959. - Р. 261-263. 9. Пфейфер П. Взаимодействие фракталов с фракталами: адсорбция полистирола на пористой поверхности Al2O3. В кн.: Фракталы в физике. Ред. Пьетронеро Л., Тозатти Э. -M.: Mир, 19SS. - С. 72-Sl. IG. Mаламатов А. Х., Козлов Г. В., Антинов Е. M., Mикита-ев M. А. Mеханизм формирования межфазных слоев в полимерных нанокомпозитах // Перспективные материалы. - 2GG6. № 5. - С. 54-5S.

11. Козлов Г. В., Mаламатов А. Х., Буря А. И., Липатов Ю. С. Mеханизмы упрочнения полимерных нанокомпози-тов. Доклады НАН Украины.- 2GG6. - № 7. - С. 14S-152.

12. Козлов Г. В., Буря А. И., Долбин И. В. Влияние вращающегося электромагнитного поля на структуру углепластиков на основе фенилона // Прикладная физика. - 2GG6. - № 1. - С. 14-lS.

13. Андриевский Р. А. Наноматериалы: концепция и современные проблемы // Российский химический журнал. -2GG2. - т. 56, № 5 - С. 5G-56.

Одepжанo 26.06.2007

Показано, що ефективнiсть наповнення для нанокомпозтов набагато вища, нiж для MiKp0K0Mn03umie. Це обумовлено набагато бiльшою площею контакту полiмерна матриця-наповнювач у випадку перших. Ефективтсть наповнення коректно описуеться в рамках одтег i miei ж моделi для обох вказаних кла^в полiмерних композиmiв, що припускае вiдсуmнiсmь для них ятснихрозходжень.

It was shown that filling efficiency for nanocomposites is much higher then for microcomposites. This was due to much larger area of polymer matrix -filler contact in the case of first ones. The filling efficiency is described correctly within the framework of the same model for both indicated polymer composites types that assumes absence for them qualitative distinctions.

3

r

н

ISSN 1607-6885 Hoei маmepiали i meхнoлoгiï в мemалypгiï mü машинoбyдyваннi №2, 2007

63

i Надоели баннеры? Вы всегда можете отключить рекламу.