иркутский государственный университет путей сообщения
Современные технологии. Системный анализ. Моделирование № 2 (58) 2018
УДК 629.4015
DOI: 10.26731/1813-9108.2018.2(58)112-117
С. К. Каргапольцев1, Ю. А. Купцов2, П. В. Новосельцев2, В. Е. Гозбенко
1 Иркутский государственный университет путей сообщения, г. Иркутск, Российская Федерация
2 Улан-Удэнский институт железнодорожного транспорта - филиал Иркутского государственного университета путей сообщения, г. Улан-Удэ, Российская Федерация
Дата поступления: 15 апреля 2018 г.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА СЦЕПЛЕНИЯ КОЛЕСНОЙ ПАРЫ С РЕЛЬСАМИ ПРИ ТОРМОЖЕНИИ
Аннотация. Отмечены значительные отличия между величинами коэффициента сцепления колеса и рельса на железнодорожном транспорте, получаемыми экспериментально и рассчитываемыми традиционным методом. Предложен уточнённый экспериментальный метод определения коэффициента сцепления при помощи разработанного и запатентованного авторами устройства. Указывается на необходимость учета влияния технического состояния пути на величину коэффициента сцепления.
Общий алгоритм определения коэффициента сцепления проиллюстрирован на практическом примере. Аналитическое описание опытных данных предлагаемым методом удовлетворяет требованиям к достоверности результатов, что имеет важное прикладное значение при проведении тяговых расчетов и косвенно указывает на техническое состояние рельсового пути.
Определение коэффициента сцепления может производиться во время торможения движущегося специального вагона, оснащенного устройством для измерения и анализа угловой скорости колесной пары, а также устройством для измерения величины тормозного момента.
При торможении возникает колебание угловой скорости колесной пары, при этом за один период колебания происходят два события: упругое взаимодействие колесной пары и рельсов и проскальзывание их относительно друг друга. Коэффициент сцепления определяется как функция отношения времени упругого взаимодействия к периоду колебаний угловой скорости.
При этом учитывается:
- величина тормозного момента;
- сила прижатия колесной пары к рельсам;
- радиус колеса.
Важно отметить, что величина коэффициента сцепления зависит от технического состояния рельсового пути - при его ухудшении она уменьшается. Из этого следует, что на каждом участке пути, в зависимости от его конструктивных особенностей и технического состояния, определяется свой коэффициент сцепления.
Ключевые слова: коэффициент сцепления, тормозной момент, проскальзывание колеса по рельсу, техническое состояние рельсового пути.
S. K. Kargapol'tsev1, Y. A. Kuptsov2, P. V. Novosel'tsev 2, V. E. Gozbenko 1
1 Irkutsk State Transport University, Irkutsk, the Russian Federation
2 Ulan-Ude Institute of Railway Transport, branch of ISTU, Ulan-Ude, the Russian Federation Received: April 15, 2018
A METHOD FOR DETERMINING THE COEFFICIENT OF WHEEL PAIR ADHESION WITH RAILS AT BRAKING
Abstract. There are significant differences noted between the values of adhesion coefficient of the wheel and rail in railway transport, obtained experimentally and calculated by the traditional method. The article suggests a refined experimental method for determining the coefficient of adhesion using a device developed and patented by the authors. It is pointed out that it is necessary to take into account the influence of the technical condition of the track on the value of the adhesion coefficient. The general algorithm for determining the coefficient of adhesion is illustrated by a practice-oriented example. The analytical description of the experimental data by the proposed method satisfies the requirements for the reliability of the results, which is of great practical importance when carrying out traction calculations and indirectly indicates the technical condition of the track.
Determination of the coefficient of adhesion can be made during the braking of a moving special car equipped with a device for measuring and analyzing the angular velocity of a wheel pair, as well as a device for measuring the magnitude of the braking torque.
During the braking, the angular velocity of the wheel pair oscillates, while two events occur during one oscillation period: the elastic interaction of the wheel pair and the rails and their slipping relative to each other. Coefficient of adhesion is defined as a function of the ratio of the time of elastic interaction to the period of oscillations of the angular velocity. This takes into account:
- the magnitude of the braking torque;
- the force of pressing the wheel pair against the rails;
112
© С.К. Каргапольцев, Ю.А. Купцов, П.В. Новосельцев, Гозбенко В.Е., 2018
оо ео I
Modern technologies. System analysis. Modeling, 2018, Vol. 58, no. 2
- the radius of the wheel.
It is important to note that the value of the coefficient of adhesion depends on the technical condition of the track - as the latter deteriorates, the former decreases. From this it follows that on each section of the track, depending on its design features and technical condition, its own coefficient of adhesion is determined.
Keywords: coefficient of adhesion, braking torque, wheel slip on the rail, technical state of the track.
Введение
Применяемые на железных дорогах разных стран нормативы максимальных величин расчетных коэффициентов сцепления довольно сильно различаются по величине. Например, на железных дорогах Франции величину коэффициента сцепления утах принимают равной 0,33 для электровозов переменного тока, 0,25 для электровозов постоянного тока и 0,285 для тепловозов. В Японии для электровозов принимают величину коэффициента сцепления равной 0,326 при переменном токе и 0,265 при постоянном. На железных дорогах Германии нормативными значением утах считается 0,33 для электровозов [1-4].
Эксперименты по определению коэффициента сцепления показывают большой разброс значений. Например, при скорости 15 км/ч разброс значений находится в пределах от 0,22 до 0,39; при скорости 35 км/ч - в пределах от 0,23 до 0,34 и так далее [5-9].
Это не позволяет найти достаточно надежно расчетное значение, пригодное для тяговых расчетов.
К числу факторов, которые существенно влияют на величину коэффициента сцепления, принято относить следующие:
- наличие загрязнения на головке рельсов;
- площадь контакта между колесом и рель-
сом;
- геометрические параметры рельсового пути (наличие кривых, подъемов, спусков);
- влияние внешней среды (температура, влажность воздуха и другие) [10, 11].
Однако в числе причин, влияющих на величину коэффициента сцепления, не указывается деформативность рельсового пути в продольном направлении [3]. В работе [3] представлены результаты экспериментальных исследований по измерению эксплуатационного уровня сцепления при различных тормозных режимах в условиях Сибири и Забайкалья.
В этой работе выяснилось, что более чем в половине опытов предельные реализованные коэффициенты сцепления ниже расчетного уровня. Наблюдались участки со сверхнизкими значениями предельного коэффициента сцепления.
Определение угловой скорости колесной
пары
Динамическое исследование взаимодействия колесной пары и рельсового пути показало, что при торможении возникает колебание угловой скорости колесной пары [12-19].
График изменения угловой скорости показан на рис. 1.
w (с1)
tl t2
т
г (с)
Рис. 1. График изменения угловой скорости вращения колесной пары при торможении
иркутским государственный университет путей сообщения
Современные технологии. Системный анализ. Моделирование № 2 (58) 2018
На этом рисунке:
¿1 - время упругого взаимодействия колесной пары и рельсов (с.);
¿2 - время проскальзывания колесной пары по рельсам (с.);
Т - период колебаний угловой скорости, он
равен:
Т =_г=Т №
где Ср - продольная жесткость рельсового пути (Н/м), которая уменьшается при ухудшении его технического состояния;
Я - радиус колеса (м);
I - осевой момент инерции колесной пары
(кг-м2);
ю0 - угловая скорость основного вращения колесной пары:
V
ю0 = — 0 Я
где V- скорость поезда (м/с).
Таким образом, при ухудшении технического состояния рельсового пути уменьшается Ср -продольная жесткость рельсового пути, а период колебаний Т увеличивается.
В работе [4] установлена зависимость коэффициента сцепления:
(2)
V =
М ■ (1 - С08—1)
'
(3)
где М - тормозной момент (Н-м);
Q - сила прижатия колеса к рельсам (Н).
Из уравнения (3) видно, что при увеличении периода колебаний угловой скорости Т (ухудшении технического состояния рельсового пути) коэффициент сцепления уменьшается.
Эксперимент по определению коэффициента сцепления Эксперимент по определению коэффициента сцепления выполняется при помощи устройства, показанного на рис. 2.
Устройство для измерения и регистрации угловой скорости колесной пары вагона состоит из стандартного скоростемера 1, который при помощи рамки 2 крепится болтами 3, 4 к крышке 5 буксы 6 колесной пары, валик 7 скоростемера через жестко насаженную на него муфту 8 получает вращение от оси 9 колесной пары через ввертыш 10 и штифт 11, которые жестко связаны между собой.
Штифт 11 входит в продольный паз муфты 8 плотно без зазора.
Ввертыш 10, соединенный с осью 9 колесной пары при помощи резьбы, вращается вместе с ней с угловой скоростью юк и передает это вращение через штифт 11 и муфту 8 скоростемеру 1.
Сигнал от скоростемера 1 передается на регистрирующее устройство 12 и представляется в нем в виде графика зависимости угловой скорости вращения колесной пары от времени ю(0.
Рис. 2. Устройство для измерения и регистрации угловой скорости колесной пары вагона
Modern technologies. System analysis. Modeling, 2018, Vol. 58, no. 2
При торможении колесной пары ее угловая скорость состоит из двух частей: угловая скорость ю0 основного вращения и угловая скорость Юд дополнительного колебательного вращения:
,, _^max s
ШД-ШД >
Coskt;
(4)
где ю^Т*- амплитуда дополнительного колебательного вращения угловой скорости;
к - круговая частота колебаний угловой скорости;
k =
СР • ^
(5)
где Ср - продольная жесткость рельсового пути (Н/м);
I - осевой момент инерции колесной пары (кгм2).
Выразим круговую частоту к колебаний угловой скорости через период Т этих колебаний, полученный по результатам этих испытаний:
к=2^. (6)
Выразим продольную жесткость рельсового пути из формул (2) и (3):
С =
4 • п2•I
T2 • R2
(Н/м).
(7)
Вычисленный по формуле (3) коэффициент сцепления является достаточным для обеспечения устойчивого (без юза) движения колесной пары при заданном тормозном моменте.
При увеличении тормозного момента требуемый коэффициент сцепления будет больше. При увеличении тормозного момента может возникнуть критическое состояние, близкое к «юзу» колесной пары по рельсам.
8. Строится кривая зависимости коэффициента сцепления от величины тормозного момента для конкретного участка пути в его реальном техническом состоянии, на основе которой устанавливается предельное значение коэффициента сцепления.
Пример.
Известны значения:
- силы прижатия колеса к рельсам Q = =22-104 Н;
- тормозного момента М = 2,5-104 Н-м;
- радиуса колеса Я = 0,5 м.
В процессе эксперимента получено:
- время упругого взаимодействия колесной пары и рельсов ^ = 0,00677 е.;
- период колебаний угловой скорости Т = 0,022677 с.
По формуле (7) продольная жесткость рельсового пути:
С =
4 • 3,142 • 400
'р 0,0226772 • 0,52
= 122706487 Н/м
Эксперимент по определению продольной жесткости и коэффициента сцепления выполняется в следующей последовательности.
1. Специальный вагон, оснащенный устройством для измерения угловой скорости колесной пары и построения графика этой скорости по времени, а также устройством для измерения тормозного момента движется по исследуемому участку;
2. На исследуемом участке включается тормоз только одной колесной пары, на который установлен скоростемер;
3. Записывается график изменения угловой скорости колесной пары по времени.
4. Определяется по этому графику период Т (с.) колебаний угловой скорости этой колесной пары.
5. Определяется по этому графику время (с.) упругого взаимодействия колесной пары и рельсов.
6. Измеряется величина тормозного момента М (Н-м).
7. По формуле (3) вычисляется коэффициент сцепления между колесной парой и рельсами.
По формуле (3) коэффициент сцепления:
2 • п • 0,00677 2,5-10 • (1 - cos-)
0,02677
= 0,234.
V =-
22 -104 • 0,5
Заключение
Коэффициент сцепления колеса и рельса зависит, в том числе, и от деформативности рельсового пути в продольном направлении, которая зависит от его технического состояния и количественно оценивается продольной жесткостью.
Коэффициент сцепления в качестве нормативного показателя при тяговых расчетах должен корректироваться применительно к конкретным реальным условиям поездной работы.
Нормативный коэффициент сцепления должен устанавливаться для проблемных участков железнодорожного пути.
Предлагаемый способ дает более объективное значение коэффициента сцепления, потому что учитывает техническое состояние рельсового пути.
иркутский государственный университет путей сообщения
Современные технологии. Системный анализ. Моделирование № 2 (58) 2018
БИБЛИОГРАФИЧЕСКИМ СПИСОК
1. Nicola B. , Nicolo Z., Antonio G., Determination of Wheel-Roller Friction Coefficient on Roller Rigs for Railway Applications //, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp. 13488-13497.
2. Tomberger, C., Dietmaier, P., Sextro, W., and Six, K., 2009, "Friction in Wheel-Rail Contact: A Model Comprising Interfacial Fluids, Surface Roughness and Temperature," 8th International Conference on Contact Mechanics and Wear of Rail/Wheel System (CM2009), Firenze, Italy, 15-18 September 2009, pp. 121-132.
3. Kalker, J. J., 1991, "Wheel-Rail Rolling Contact Theory," Wear, 144(1-2), pp. 243-261.
4. Chen, H., Ishida, M., and Nakahara, T., 2005, "Analysis of Adhesion under Wet Conditions for Threedimensional Contact Considering Surface Roughness," Wear, 258(7-8), pp. 1209-1216.
5. Механика и трибология движения колесной пары в рельсовой колее [Электронный ресурс]: монография / Г. С. Гура. - М.: УМЦ ЖДТ, 2013.
6. Казаринов А. В., Горюнов Г. Н., Гудас М. В., Касандров М. Д., Липатов Л. И., Макас А. А., Спиринцев С. В. Измерения эксплуатационного уровня сцепления колес с рельсами в тормозных режимах на грузонапряженных участках Сибири и Забайкалья // Вестник ВНИИЖТа. 2010. №3. С.14-20.
7. Ахмадеева А.А., Гозбенко В.Е. Влияние профиля пути на вертикальные колебания железнодорожного экипажа // Труды Братского государственного университета. Сер. Естественные и инженерные науки. 2013. т. 1. С.186-190.
8. Новосельцев В.П., Новосельцев П.В., Суслов О.А., Гордеева А.А., Елисеев С.В. Устройство для определения продольной жесткости рельсового пути // Патент на полезную модель №138300 от 10 февраля 2014г.
9. Новосельцев В.П., Елисеев С.В., Новосельцев П.В., Гордеева А.А., Купцов Ю.А. Способ контроля устойчивости бесстыкового рельсового пути // Патент на изобретение № 2614744 от 29 марта 2017 года.
10. Правила тяговых расчётов для поездной работы № 867р от 12.05.2016 г.
11. Baek, K., Kyogoku, K., and Nakahara, T., 2008, "An Experimental Study of Transient Traction Characteristics between Rail and Wheel under Low Slip and Low Speed Conditions", Wear, 265(9 - 10), pp. 1417-1424.
12. Каргапольцев С.К., Новосельцев П.В., Купцов Ю.А. Волнообразный износ рельсов при торможении // Мир транспорта. 2017. №5. С. 46-53.
13. Гордеева А.А., Новосельцев П.В., Купцов Ю.А. Эксперименты с проскальзыванием колесных пар локомотива // Мир транс-порта, МГУПС (МИИТ) №3(70). М.-2017, С. 104-110.
14. Новосельцев В.П., Новосельцев П.В., Гордеева А.А. Влияние продольной жесткости рельсового пути на проскальзывание колесной пары локомотива по рельсу // Мир транспорта, МГУПС (МИИТ) №4(48). М.-2013, С. 34-38.
15. Каргапольцев С.К., Новосельцев П.В., Купцов Ю.А. Влияние продольной жесткости рельсового пути на динамику тягового привода локомотива // Современные технологии. Системный анализ. Моделирование. 2017.- № 3 (55).- С.174-179.
16. Гозбенко В.Е., Карлина А.И., Каргапольцев С.К. Главные координаты в решении задач вертикальной динамики транспортного средства. Системы. Методы. Технологии. 2016. № 3 (31). С. 58-62.
17. Хоменко А.П., Елисеев С.В., Гозбенко В.Е., Банина Н.В. Устройство для управления состоянием объекта защиты. Патент на полезную модель. RUS 56858 21.04.2006
18. Ахмадеева А.А., Гозбенко В.Е. Динамические свойства вагона с двухступенчатым рессорным подвешиванием. Современные технологии. Системный анализ. Моделирование. 2010. № 3. С. 60-69.
19. Корнеев С.А., Крупников И.В., Поляков С.Н., Шалай В.В. Расчётно-экспериментальный метод определения материальных параметров упруго-пластических материалов на траекториях активного деформирования малой кривизны. Омский научный вестник. 2006. № 4 (38). С. 86-90.
REFERENCES
1. Nicola B. , Nicolo Z., Antonio G., Determination of Wheel-Roller Friction Coefficient on Roller Rigs for Railway Applications. International Journal ofApplied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp. 13488-13497.
2. Tomberger, C., Dietmaier, P., Sextro, W., Six, K., 2009, Friction in Wheel-Rail Contact: A Model Comprising Interfacial Fluids, Surface Roughness and Temperature. 8th International Conference on Contact Mechanics and Wear of Rail/Wheel System (CM2009), Firenze, Italy, 15-18 September 2009, pp. 121-132.
3. Kalker J. J. Wheel-Rail Rolling Contact Theory. Wear, 144(1-2), 1991, pp. 243-261.
4. Chen H., Ishida M., Nakahara T. Analysis of Adhesion under Wet Conditions for Threedimensional Contact Considering Surface Roughness. Wear, 258(7-8), 2005, pp. 1209-1216.
5. Gura G. S. Mekhanika i tribologiya dvizheniya kolesnoi pary v rel'sovoi kolee [Mechanics and tribology of movement of a wheel pair in a track gauge] [Electronic resource]: monografiya [a monograph]. Moscow: UMTs ZhDT Publ., 2013.
6. Kazarinov A. V., Goryunov G. N., Gudas M. V., Kasandrov M. D., Lipatov L. I., Makas A. A., Spirintsev S. V. Izmereniya eks-pluatatsionnogo urovnya stsepleniya koles s rel'sami v tormoznykh rezhimakh na gruzonapryazhennykh uchastkakh Sibiri i Zabaikal'ya [Measurements of the operation level of the coupling of wheels with the rails in the braking regimes on the freight-stressed sections of Siberia and Transbaikalia]. Vestnik VNIIZhTa [Vestnik of the Railway Research Institute], 2010, No.3, pp.14-20.
7. Akhmadeeva A.A., Gozbenko V.E. Vliyanie profilya puti na vertikal'nye kolebaniya zheleznodorozhnogo ekipazha [Influence of the track profile on the vertical oscillations of the railway vehicle]. Trudy Bratskogo gosudarstvennogo universiteta. Ser. Estestvennye i inzhenernye nauki [Proceedings of the Bratsk State University. Ser. Natural and engineering sciences], 2013, vol. 1, pp.186-190.
8. Novosel'tsev V.P., Novosel'tsev P.V., Suslov O.A., Gordeeva A.A., Eliseev S.V. Ustroistvo dlya opredeleniya prodol'noi zhestkosti rel'sovogo puti [The device for determining the longitudinal stiffness of the track]. Patent na poleznuyu model' No.138300 ot 10 fevralya 2014g [Patent for utility model No. 1388300 dated February 10, 2014].
оо ео I
Modern technologies. System analysis. Modeling, 2018, Vol. 58, no. 2
9. Novosel'tsev V.P., Eliseev S.V., Novosel'tsev P.V., Gordeeva A.A., Kuptsov Yu.A. Sposob kontrolya ustoichivosti besstykovogo rel'sovogo puti [A method for controlling the stability of a continuous rail track]. Patent na izobretenie No. 2614744 ot 29 marta 2017 goda [Patent for invention No. 2614744 dated March 29, 2017].
10. Pravila tyagovykh raschetov dlya poezdnoi raboty No. 867r ot 12.05.2016 g. [Rules of traction calculations for train service No. 867r dated May 12, 2016].
11. Baek K., Kyogoku K., Nakahara T. An Experimental Study of Transient Traction Characteristics between Rail and Wheel under Low Slip and Low Speed Conditions", Wear, 265(9 - 10), 2008, pp. 1417-1424.
12. Kargapol'tsev S.K., Novosel'tsev P.V., Kuptsov Yu.A. Volnoobraznyi iznos rel'sov pri tormozhenii [Wave-like wear of rails during braking]. Mir transporta [World of Transport], 2017, No.5, pp. 46-53.
13. Gordeeva A.A., Novosel'tsev P.V., Kuptsov Yu.A. Eksperimenty s proskal'zyvaniem kolesnykh par lokomotiva [Experiments with the slippage of wheel pairs of locomotive]. Mir transporta [World of Transport], MGUPS (MIT) No.3(70), Moscow, 2017, pp. 104-110.
14. Novosel'tsev V.P., Novosel'tsev P.V., Gordeeva A.A. Vliyanie prodol'noi zhestkosti rel'sovogo puti na proskal'zyvanie kolesnoi pary lokomotiva po rel'su [Influence of the longitudinal rigidity of the rail track on the slippage of the locomotive wheel pair along the rail]. Mir transporta [World of Transport]. MGUPS (MIT) No.4(48), Moscow, 2013, pp. 34-38.
15. Kargapol'tsev S.K., Novosel'tsev P.V., Kuptsov Yu.A. Vliyanie prodol'noi zhestkosti rel'sovogo puti na dinamiku tyagovogo privoda lokomotiva [Influence of the longitudinal rigidity of the track on the dynamics of traction drive locomotive]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2017, No. 3 (55), pp.174-179.
16. Gozbenko V.E., Karlina A.I., Kargapol'tsev S.K. Glavnye koordinaty v reshenii zadach vertikal'noi dinamiki transportnogo sredstva [The main coordinates in solving the problems of the vehicle vertical dynamics]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2016, No. 3 (31), pp. 58-62.
17. Khomenko A.P., Eliseev S.V., Gozbenko V.E., Banna N.V. Ustroistvo dlya upravleniya sostoyaniem ob"ekta zashchity [Device for controlling the state of the protection object]. Patent na poleznuyu model' [Patent for utility model RUS 56858 21.04.2006].
18. Akhmadeeva A.A., Gozbenko V.E. Dinamicheskie svoistva vagona s dvukhstupenchatym ressornym podveshivaniem [Dynamic properties of the car with two-stage spring suspension]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2010, No. 3, pp. 60-69.
19. Korneev S.A., Krupnikov I.V., Polyakov S.N., Shalai V.V. Raschetno-eksperimental'nyi metod opredeleniya material'nykh parametrov up-rugo-plasticheskikh materialov na traektoriyakh aktivnogo deformirovaniya maloi krivizny [A calculation-experimental method for determining the material parameters of elastoplastic materials on the trajectories of active deformation of small curvature]. Omskii nauchnyi vestnik [The Journal Omsk Scientific Bulletin], 2006, No. 4 (38), pp. 86-90.
Информация об авторах
Authors
Каргапольцев Сергей Константинови - д. т. н., профессор, Иркутский государственный университет путей сообщения, e-mail: [email protected]
Купцов Юрий Алексеевич - аспирант, Улан-Удэнский институт железнодорожного транспорта филиал Иркутского государственного университета путей сообщения, г. Улан-Удэ, e-mail: [email protected]
Новосельцев Петр Викторович - к. т. н., доцент, Улан-Удэнский институт железнодорожного транспорта, Иркутский государственный университет путей сообщения, e-mail: [email protected]
Гозбенко Валерий Ерофеевич - д. т. н., профессор кафедры «Математика», Иркутский государственный университет путей сообщения, г. Иркутск, e-mail: [email protected]
Kargapol'tsev Sergei Konstantinovich - Doctor of Engineering Science, Prof., Irkutsk State Transport University, e-mail: [email protected]
Kuptsov Yurii Alekseevich - Ph.D. student, Irkutsk State Transport University, e-mail: [email protected]
Novosel'tsev Petr Viktorovich - Ph.D. in Engineering Science, Assoc. Prof., Ulan-Ude Institute of Railway Transport, Irkutsk State Transport University, e-mail: [email protected]
Gozbenko Valeriy Erofeevich- Doctor of Engineering Science, Prof., the Subdepartment of Mathematics, Irkutsk State Transport University, Irkutsk, e-mail: [email protected]
Для цитирования
For citation
Каргапольцев С. К. Способ определения коэффициента сцепления колесной пары с рельсами при торможении // С. К. Каргапольцев, Ю. А. Купцов, П. В. Новосельцев, В. Е. Гозбенко // Современные технологии. Системный анализ. Моделирование. - 2018. - Т. 58 № 2. - С. 112-117. - DOI: 10.26731/1813-9108.2018.2(58).112-117.
Kargapol'tsev S. K., Kuptsov Yu. A., Novosel'tsev P. V., Gozbenko V. E. Sposob opredeleniya koeffitsienta stsepleniya kolesnoi pary s rel'sami pri tormozhenii [A method for determining the coefficient of wheel pair adhesion with rails at braking]. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern technologies. System analysis. Modeling], 2018, Vol. 58, No. 2, pp. 112-117. DOI: 10.26731/1813-9108.2018.2(58). 112-117._
иркутский государственный университет путей сообщения
Современные технологии. Системный анализ. Моделирование № 2 (58) 2018
УДК 62.752; 621:534; 629.4015; 20
DOI: 10.26731/1813-9108.2018.2(58).118-125
Ю. В. Ермошенко, Выонг Куанг Чык
Иркутский государственный унивeрcитeт путeй cообщeния, г. Иркутск, Российская Федерация Дата поступления: 28 мая 2018 г.
ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКИХ РЕАКЦИЙ В СОЕДИНЕНИЯХ ЭЛЕМЕНТОВ ПОДВЕСОК: НОВЫЕ ПОДХОДЫ
Аннотация. Рассматриваются особенности динамических взаимодействий элементов механических колебательных систем через оценку возникающих динамических реакций связей. Цель исследования заключается в разработке технологии построения математических моделей, обеспечивающих возможности определения динамических реакций связей. Используется метод структурного математического моделирования, позволяющий ввести в рассмотрение структурную схему эквивалентной в динамическом отношении системы автоматического управления.
Предлагается методика определения динамических жесткостей и смещений в характерных точках. Авторами вводится понятие об амплитудно-частотной характеристике динамической реакции связи по отношению к внешнему возмущению. Показано, что оценка динамического состояния объекта через динамические реакции связей обладает особенностями. Показаны возможности проявления новых динамических эффектов при совместном действии синфазных внешних гармонических возмущений одной частоты, что может интерпретироваться как процесс изменения приведенной жесткости системы.
Отношение реакций к внешнему воздействию может быть использовано для корректировки динамического состояния объекта; при этом амплитудно-частотная характеристика систем отображает новые виды режимов динамического гашения колебаний по обеим координатам объекта. Одновременное действие двух возмущений изменяет величины динамических реакций связей и технологию определения реакций. Для оценки параметров состояния используются передаточные функции системы. Предложен метод структурных преобразований исходных расчетных схем, обеспечивающий простые приемы определения динамических реакций связей. Приводятся результаты вычислительного моделирования в построении амплитудно-частотных характеристик динамических реакций связей.
Ключевые слова: транспортная подвеска, механическая колебательная система, структурная математическая модель, передаточные функции, динамическая реакция связей.
Yu. V. Ermoshenko, Vuong Quang Truc
Irkutsk State Transport University, Irkutsk, the Russian Federation Received: May 28, 2018
DETERMINATION OF DYNAMIC RESPONSES IN CONNECTIONS OF SUSPENSION ELEMENTS: NEW APPROACHES
Abstract. The article considers the features of dynamic interactions of elements of mechanical oscillation systems through the evaluation of the arising dynamic responses of constraints. The purpose of the study is to develop a technology for constructing mathematical models that provide the ability to determine dynamic responses of constraints. A method of structural mathematical modeling is used, which allows us to introduce a structural scheme of the dynamically equivalent automatic control system.
The paper proposes a technique for determining the dynamic stiffnesses and displacements at characteristic points. The authors introduce the concept of the amplitude-frequency characteristic of the dynamic response of constraint with respect to the external perturbation. It is shown that the evaluation of the dynamic state of an object through dynamic responses of constraints has its specific features. The possibilities of manifesting new dynamic effects under the joint action of in-phase external harmonic disturbances of the same frequency are provided, which can be interpreted as a process of changing the reduced stiffness of the system. The use of the ratio of the responses to external influences can be used to correct the dynamic state of the object; while the amplitude-frequency characteristic of the systems displays new regimes of dynamic damping of oscillations along both coordinates of the object. The simultaneous action of two disturbances changes the values of the dynamic responses of constraints and the technology for determining the responses. To evaluate the state parameters, the transfer functions of the system are used. The authors propose a method of structural transformations of the initial computational schemes, which provides simple techniques for determining the dynamic responses of constraints. The paper presents the results of computational modeling in the construction of amplitude-frequency characteristics of dynamic responses of constraints.
Keywords: transport suspension, mechanical oscillatory system, structural mathematical model, transfer functions, dynamic response of constraints.
Транспортные подвески различных кон- нительные динамические нагрузки, что нашло от-структивно-технических форм используются для ражение в работах [1-3]. Основными элементами улучшения динамических свойств транспортных подвесок являются упругие и инерционные эле-объектов, взаимодействующих с опорной поверх- менты, взаимодействие которых используется для ностью, имеющей неровности, создающие допол- динамического поглощения энергии относитель-
118
© Ю. В. Ермошенко, Выонг Куанг Чык, 2018