SPECTROSCOPIC INVESTIGATION OF THE INFLUENCE OF ALUMINUM ADDITION ON CHARACTERISTIC FEATURES OF ALKALI BOROSILICATE GLASSES
V.E. Eremyashev, Zlatoust Branch of South Ural State University, Zlatoust, Russian Federation, [email protected]
G.G. Korinevskaya, Institute of Mineralogy UB RAS, Miass, Russian Federation, galkor@mineralogy. ru
R.R. Aysin, A.N. Nesmeyanov Institute of Organoelement Compounds of RAS (INEOS RAS), Moscow, Russian Federation, [email protected]
The influence of aluminum on the structure of alkali borosilicate glasses with various ratios of network former cations and modifier cations has been studied with the use of vibrational spectroscopy. It has been found that addition of modest amounts of aluminum to borosilicate glasses decreases the difference of sodium and potassium distribution between silicon- and boron-containing structural units of the glasses. This fact allows consideration of aluminum as an additive contributory to homogeneity of borosilicate glasses containing both sodium and potassium, as well as increase in thermal and chemical stability of matrix materials based on such glasses.
Keywords: borosilicate glass, spectroscopy, structure, aluminum.
Introduction
During investigation of structural peculiarities of alkali borosilicate glasses with the use of vibrational spectroscopy and NMR spectroscopy the significant difference of sodium and potassium distribution between silicate and borate structural units has been established [1, 2], which determines greater depolymerization of anion structure of sodium-containing borosilicate glasses compared to potassium glasses of similar composition. This explains appearance of structural heterogeneity in the structure of borosilicate glasses containing both sodium and potassium ions [3], besides, it negatively affects physi-cochemical characteristics of matrix materials based on them [4].
With the aim of looking for additives increasing homogeneity of alkali borosilicate glasses, the influence of aluminum addition on structural features of sodium and potassium borosilicate glasses has been studied by vibrational spectroscopy at various ratios of network former cations and modifier cations. The choice of aluminum as an additive has been caused by the assignment of aluminum to network former cations, highly active in distribution of sodium and potassium ions, which manifest themselves as modifier cations in the glass structure [5-8]. Addition of aluminum to glass composition suggests redistribution of modifier cations between structural units due to their participation in compensation of electrical charge for the AlO4 tetrahedrons.
Experimental
Aluminum-free and aluminum-containing sodium and potassium borosilicate glasses of the chosen composition were synthesized with the use of following reactants: analytical grade SiO2, high purity grade B2O3, chemical purity grade Al2O3, chemical purity grade Na2CO3 and K2CO3, according to the procedure described in [2, 9]. Table 1 contains the composition of the synthesized glasses and their reference designations. The investigation of the characteristic structural features was carried out by infrared spectroscopy (IR) and Raman spectroscopy. IR transmission spectra were registered on the single-beam Fourier-transform IR spectrometer Nicolet 6700 Thermo Scientific with the use of KBr pellet pressing technique. The iHR 320 Labram spectrometer with Olimpus BX41 microscope was used for registration of Raman spectra. The obtained spectra are shown in Fig. 1-4.
Table 1
Chemical composition of the synthesized glasses
Sample Composition, mole fractions
15N35B 0.15Na2O • 0.3 5B2O3-0.5SiO2
35N15B 0.35Na2O-0.15B2O3-0.5SiO2
15K35B 0.15K2O-0.35B2O3-0.5SiO2
35K15B 0.35K2O-0.15B2O3-0.5SiO2
A15N35B 0.9(U15Na2O0.35B2O3^.5SiO2)+0.1Al2O3
A35N15B 0.9(U35Na2O0.15B2O3^.5SiO2)+0.1Al2O3
A15K35B 0.9(0.15K2O-0.35B2O3-0.5SiO2)+0.1Al2O3
A35K15B 0.9(0.35K2O-0.15B2O3-0.5SiO2)+0.1Al2O3
400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600
Wavenumber, cm"1 Wavenumber, cm"1
Fig. 1. IR spectra of the sodium glasses: a - glasses with low content of sodium and high content of boron, b - glasses with high content of sodium and low content of boron (designations of the samples correspond to Table 1)
400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600
Wavenumber, cm"1 Wavenumber, cm"1
Fig. 2. IR spectra of the potassium glasses: a - glasses with low content of potassium and high content of boron, b - glasses with high content of potassium and low content of boron (designations of the samples correspond to Table 1)
Results and Discussion
All IR spectra of the synthesized glasses (Fig. 1 and 2) contain bands with maxima near 460-480, 610-800, 800-1200 and 1350-1490 cm-1. In the IR spectra of aluminum-free sodium glasses (Fig. 1) the increase of alkali metal content and the decrease of boron content leads to the increase of band intensity for the maximum near 460-480 cm-1, the change of band shape for the maximum near 610-800 cm-1, and the decrease of band intensity for the maximum near 1350-1490 cm-1. In the spectrum of 35N15B glass the following features are observed: the band with the maximum near 1030 cm-1, which dominates in the spectrum of 35N15B glass, separates into two components with maxima near 945 cm-1 and 1070 cm-1.
Changes in the IR spectra of aluminum-free potassium glasses with similar changes in composition are also related to the change in band shape in the range 800-1200 cm-1 and the decrease of band intensity for the maximum near 1350-1490 cm-1 (Fig. 2). At low content of potassium and high content of boron in the glass composition (15K35B) the band with maximum near 1030 cm-1 and the plateau near 900 cm-1 are observed in the range 800-1200 cm-1. At the increase of potassium content and the decrease of boron content in the glass composition (35K15B) the maximum of this band shifts to 1000 cm-1 with significant change in the position and intensity of its branches.
The IR spectra of all synthesized aluminum-containing sodium and potassium glasses (A15N35B, A35N15B, A15K35B, A35K15B) are characterized by higher intensity of bands with the maxima near 610-800 cm-1, significant changes in band shape in the range 800-1200 cm-1, and the increase of band intensity for the maximum near 1350-1490 cm-1. It is especially noticeable in the spectra of glasses with low content of alkali metal and high content of boron (Fig. 1 and 2).
IR absorption near 460-480 and 1050-1090 cm-1 is related to deformation and asymmetric stretching vibrations of Si-O-Si(Al) bonds in complex silicate anions [10-12], its intensity in spectra is determined by the content of SiO2 in the glass composition. The band near 610-800 cm-1 makes itself evident as the superimposed on one another bands due to symmetric vibrations of Si(Al)-O-Si bonds, asymmetric stretching vibrations of B-O-B bonds, deformation vibrations of B-O bond in the BO3 triangles, and vibrations of the bonds in the AlO4 tetrahedrons. This complicates the use of absorption in this range for discussion of changes in the glass structure. Absorption in the range 940-980 cm-1 is related to deformation and asymmetric stretching vibrations of B-O bond in the BO4 tetrahedra, which allows estimating the change of boron ions content in the tetrahedral coordination [10, 12]. The band in the range 1350-1490 cm-1 is related to deformation and stretching vibrations of B-O bonds of the BO3 triangles. Decrease of its intensity reflects the decrease of the tri-coordinated boron content in the glass structure [10, 11]. Changes in IR spectra of glasses observed at aluminum addition correlate with the increase of the fraction of BO3 triangles, the decrease of BO4 tetrahedra, and the changes in the nearest environment of silicon atoms through the development of AlO4 tetrahedra in the glass structure, as well as the formation of bridging intertetrahedral Si-O-Al bonds.
The Raman spectra of all synthesized aluminum-free sodium and potassium glasses strongly differ from each other. In the Raman spectrum of 15N35B glass (Fig. 3a) there are intensive bands with maxima at 510 and 1150 cm-1, as well as the set of closely spaced bands of lower intensity with the maxima near 630, 700, 760 and 800 cm-1. In the Raman spectrum of 35N15B glass (Fig. 3b) intensive bands with the maxima near 600, 955 and 1090 cm-1 are observed. In the Raman spectrum of 15K35B glass (Fig. 4a) we have registered the intensive band with the maximum at 510 cm-1, the set of closely spaced bands of lower intensity with the maxima near 630, 700, 770 and 800 cm-1, as well as three weak broad bands with the maxima near 940, 1150 and 1450 cm-1. The Raman spectrum of 35K15B glass (Fig. 4b) is characterized by the band with the maximum near 600 cm-1 and the plateau near 530 cm-1, as well as the narrower intensive band 1095 cm-1 and weak bands with the maxima near 940 and 1450 cm-1.
Addition of aluminum to glass composition significantly influences the position and intensity of the Raman bands. In the Raman spectrum of aluminum-containing sodium glass A15N35B (Fig. 3a) the significant decrease of the band intensity with the maxima near 630, 700 and 1150 cm-1 is observed. In spite of obvious differences in the spectra of parent glasses 15N35B and 15K35B, taking into account slight differences in intensity ratios and extra plateaus, the spectrum of aluminum-containing potassium glass A15K35B (Fig. 4a), has the similar appearance to the Raman spectrum of A15N35B glass. In the low-frequency (300-800 cm-1) part of the Raman spectrum of aluminum-containing sodium glass A35N15B (Fig. 3b) the band of complex shape with the maximum near 510 cm-1 and plateaus near 570,
t
300 500 700 900 1100 Wavenumber, cm"1
1300 1500
1090
600 955 1 \ ъ
345 450/ \ Ак^^ДО V/ У 1050 ^ 1470
Д/0 35N15B
/
I \750 1470 A35N15B
300
500
700
900
1100 1300 1500
Wavenumber, cm"
Fig. 3. Raman spectra of the sodium glasses: a - glasses with low content of sodium and high content of boron, b - glasses with high content of sodium and low content of boron (designations of the samples correspond to Table 1)
5Д0 a
/ \
/ 478 \ 11 700 770
Г М VteOO 1150 1450
/1 \
/ I5.34 15K35B
J 1 800 f k70 | 1450
\ 742 /1 A15K35B
10^5
b
600
530Л
424J \
338 Х/Г V 940 J \ 147°
490 ^ 1070 35K15B
/ \ 570
394/ % \ 1470
I V 750 _l_l_ _l_l A35K15B _1_1_
300 500 700 900 1100 1300 1500 Wavenumber, cm"1
300 500
700 900 1100 1300 1500
Wavenumber, cm"
Fig. 4. Raman spectra of the potassium glasses: a - glasses with low content of potassium and high content of boron, b - glasses with high content of potassium and low content of boron (designations of the samples correspond to Table 1)
630 and 750 cm-1 is registered. In the high-frequency part of the Raman spectrum of this glass the band with the maximum near 1050 cm-1 is observed, with strongly expressed asymmetry as viewed from low wavenumbers. Besides, the band of low intensity with the maximum 1470 cm-1 is clearly defined in the spectrum. The Raman spectrum of aluminum-containing potassium glass A35K15B (Fig. 4b) is distinguished from the spectrum of A35N15B glass only by the slight shift of the band maxima (510^490 cm-1 and 1050^1070 cm-1) and better defined plateaus near 570, 630 and 750 cm-1. Hence the aluminum addition increases resemblance of the Raman spectra of sodium and potassium glasses of similar composition, both with low and high content of alkali metal.
The bands with the maxima near 400-600 cm-1 in the low-frequency part of the Raman spectra of borosilicate glasses are related to symmetrical stretching and deformation vibrations of Si-O-Si(Al) and Si(Al)-O-B bridging bonds in anions with complex structure [13, 14]. High intensity of these bands,
observed in the Raman spectra of all investigated glasses indicate the relatively high polymerization degree of their anion structure. The band with the maximum near 630 cm-1 reflects the vibrations of mixed silicon-boron rings, and decrease of intensity for this band indicates decrease of boron content in the glass composition or at decrease of its participation in formation of the mixed borosilicate rings. The bands in the range 700-800 cm-1 are related to vibrations of B-O bonds included in the BO4 tetrahedra, which helps us to use these bands for estimation of the boron state in the glass structure. The bands in the range 950-1150 cm-1 are related to the manifestation of stretching vibrations of the Si-O- nonbridg-ing bonds in Q2 and Q3 structural units [15]. Their presence in the glass spectra indicates participation of sodium and potassium ions in coordination of the nonbridging bonds, while the observed change of symmetry in these bands at aluminum addition arises from the presence of the AlO4 tetrahedrons in the nearest environment of those structural units. The band with the maximum near 1470 cm-1 reflects the vibrations of the BO3 structural units. Low intensity of this band in the spectra of borosilicate glasses generally points at boron in tetrahedral coordination (BO4) dominating in the structure of such glasses.
Conclusion
The characteristic features of obtained Raman spectra indicate the difference in distribution of modifier cations between various kinds of structural units in the structure of aluminum-free and aluminum-containing sodium and potassium borosilicate glasses. In aluminum-containing glasses the development of the AlO4 structural units, participating in formation of the bridging Si-O-Al bonds, is observed in the studied composition range. The fraction of the BO4 tetrahedra decreases, while the fraction of the BO3 triangles, which form the isolated boron ring structures, increases. Mostly these changes appear in the glasses with low content of alkali metals and high content of boron. In the glasses with high content of alkali metals and low content of boron the changes touch upon the silicate part of the glass structure, too. The decrease of the fraction of silicate structural units with nonbridging oxygen atoms (Qn) is under way, as well as the decrease of the fraction of nonbridging bonds in the composition of the borate structural units. It correlates with the decrease of participation of alkali metal cations in the coordination of the charge of boron-containing structural units BO4, which decreases the difference in the distribution of sodium and potassium between silicate and borate structural units and enhances the structural semblance of sodium and potassium glasses with the similar composition. The significant fraction of sodium and potassium ions in the structure of aluminum-containing glasses participate in the coordination of the charge of aluminum in tetrahedral coordination, which corresponds to stronger binding of Na+ and K+ and promotes increase of thermal and chemical stability of matrix materials based on such glasses.
We are grateful for financial support of RFBR (grant No 14-08-00323-a).
References
1. Du L.-S., Stebbins J.F. J. Solid-state NMR Study of Metastable Immiscibility in Alkali Borosilicate Glasses. Journal of Non-Crystalline Solids, 2003, V. 315, pp. 239-255.
2. Eremyashev V.E., Shabunina L.A. [Influence of R and K Parameters on Anionic Sructure of Alkaline Borosilicate Glasses]. Bulletin of South Ural State University. Ser. Chemistry, 2011, vol. 6 (33), pp. 68-72. (in Russ.)
3. MacKenzie J.W., Bhatnagar A., Bain D., Bhowmik S., Parameswar C., Budhwani K., Feller S.A., Royle M L., Martin S.W. 29Si MAS-NMR Study of the Short Range Order in Alkali Borosilicate Glasses. Journal of Non-Crystalline Solids, 1994, vol. 177, no. 2, pp. 269-276.
4. Roderick J.M., Holland D., Howes A.P., and Scales C.R. Density-Structure Relations in Mixed-Alkali Borosilicate Glasses by 29Si and nB MAS-NMR. Journal of Non-Crystalline Solids, 2001, vol. 293-295, pp. 746-751.
5. Mysen B. O. Structural Behavior of Al3+ in Silicate Melts: In Situ, High-Temperature Measurements as a Function of Bulk Chemical Composition. Geochimica et Cosmochimica Acta, 1995, vol. 59, no.3, pp.455-474.
6. Eremyashev V.E., Osipov A.A., Volkov A.U., Bykov V.N. [Structure of Aluminosilicate Glasses and Melts of NaAlSi3O8-Na2Si2O5 according to RAMAN data]. Rasplavy [Melts], 2004, no. 3, pp. 9296. (in Russ.)
7. Eremyashev V.E., Osipov A.A., Bykov V.N. [Structure of Aluminosilicate Glasses and Melts of KAlSi3O8-K2Si2O5 according to RAMAN data]. Rasplavy [Melts], 2005, no. 4, pp. 93-95. (in Russ.)
8. Stebbins J., Wu J., Thompson L. Interaction between Network Cation Coordination and Non-Bridging Oxygen Abundance in Oxide Glasses and Melts: Insights from NMR Spectroscopy. Chemical Geology, 2013, vol. 346, pp. 34-46.
9. Eremyashev V.E., Osipov A.A., Osipova L.M. Borosilicate Glass Structure with Rate-Earth-Metal Cations Substituted for Sodium Cations. Glass and ceramics, 2011, vol. 68, iss. 7-8, pp. 205-208.
10. El-Egili K. Infrared Studies of Na2O-B2O3-SiO2 and A^O3-Na2O-B2O3-SiO2 Glasses. Physi-ca B, 2003, vol. 325, pp. 340-348.
11. Wan J., Cheng J., Lu P. The Coordination State of B and Al of Borosilicate Glass by IR Spectra. Journal of Wuhan University of Technology Mater, 2008, vol. 23, no 3, pp. 419-421.
12. Xiu T., Liu Q., Wang J. Alkali-Free Borosilicate Glasses with Wormhole-Like Mesopores. J. Mater. Chem, 2006, no. 16, pp. 4022-4024.
13. Furukawa T., White W. Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure. Journal of Materials Science, 1981, vol. 16, no. 10, pp. 2689-2700.
14. Manara D., Grandjean A., Neuville D. R. Advances in Understanding the Structure of Borosilicate Glasses: A Raman Spectroscopy Study. American Mineralogist, 2009, vol. 94, no. 5-6, pp. 777-784.
15. McMillan P. Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy. American Mineralogist, 1984, vol. 69, pp. 622-644.
Received 1 February 2015
УДК 544.23+666.11
СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДОБАВОК АЛЮМИНИЯ НА СТРУКТУРНЫЕ ОСОБЕННОСТИ ЩЕЛОЧНЫХ БОРОСИЛИКАТНЫХ СТЕКОЛ
1 2 3
В.Е. Еремяшев', Г.Г. Кориневская2, Р.Р. Айсин 3
1 Южно-Уральский государственный университет, филиал в г. Златоусте,
2 Институт минералогии УрО РАН, г. Миасс,
3 Институт элементоорганических соединений им. А.Н. Несмеянова РАН (ИНЭОС РАН), г. Москва
Методами колебательной спектроскопии изучено влияние алюминия на структуру щелочных боросиликатных стекол с разным соотношением катионов-сеткообразователей и катионов-модификаторов. Установлено, что при добавлении небольшого количества алюминия в состав стекол происходит уменьшение различия в распределении натрия и калия между боратными и силикатными составляющими структуры боросиликатных стекол. Это позволяет рассматривать алюминий в качестве добавки, способствующей увеличению однородности боросиликатных стекол, одновременно содержащих натрий и калий, и повышению термической и химической устойчивости матричных материалов, создаваемых на основе этих стекол.
Keywords: боросиликатные стекла, спектроскопия, структура, алюминий
Литература
1. Du, L.-S. Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses / L.-S. Du, J.F. J. Stebbins // Journal of Non-Crystalline Solids. - 2003. - V. 315. - P. 239-255.
2. Еремяшев, В.Е. Влияние параметров R и K на особенности анионной структуры щелочных боросиликатных стекол / В.Е. Еремяшев, Л.А. Шабунина // Вестник ЮУрГУ. Серия «Химия». -2011. - №6 (33). - С. 68-72.
3. 29Si MAS-NMR study of the short range order in alkali borosilicate glasses / J.W. MacKenzie,
A. Bhatnagar, D. Bain, S. Bhowmik, C. Parameswar, K. Budhwani, S.A. Feller, M.L Royle, S.W. Martin // Journal of Non-Crystalline Solids. - 1994. - V. 177. - № 2. - P. 269-276.
4. Density-structure relations in mixed-alkali borosilicate glasses by 29Si and nB MAS-NMR / J.M. Roderick, D. Holland, A.P. Howes, C.R. Scales // Journal Non-Crystalline Solids. - 2001. -V. 293-295. - P. 746-751.
5. Mysen, B.O. Structural behavior of Al3+ in silicate melts: In situ, high-temperature measurements as a function of bulk chemical composition / B.O. Mysen // Geochimica et Cosmochica Acta. - 1995. -V. 59. - № 3. - P. 455-474.
6. Структура алюмосиликатных стекол и расплавов разреза NaAlSi3O8-Na2Si2O5 по данным спектроскопии комбинационного рассеяния / В.Е. Еремяшев, А.А. Осипов, А.Ю. Волков,
B.Н. Быков // Расплавы. - 2004. - № 3. - С. 92-96.
7. Еремяшев, В.Е. Структура алюмосиликатных стекол и расплавов разреза KAlSi3O8-K2Si2O5 по данным спектроскопии комбинационного рассеяния / В.Е. Еремяшев, А.А. Осипов, В.Н. Быков // Расплавы. - 2005. - № 4. - С. 93-95.
8. Еремяшев, В.Е. Изучение влияния замещения катиона натрия катионами щелочноземельных металлов на структуру боросиликатных стекол / В.Е. Еремяшев, А.А. Осипов, Л.М. Осипова // Стекло и керамика. - 2011. - № 7. - С. 3-6.
9. Stebbins, J. Interaction between network cation coordination and non-bridging oxygen abundance in oxide glasses and melts: Insights from NMR spectroscopy / J. Stebbins, J. Wu, L. Thompson // Chemical Geology. - 2013. - V. 346. - P. 34-46.
10. El-Egili, K. Infrared studies of Na2O-B2O3-SiO2 and A^O3-Na2O-B2O3-SiO2 glasses / K. El-Egili // Physica B. - 2003. - V. 325. - P. 340-348.
11. Wan, J. The Coordination State of B and Al of Borosilicate Glass by IR Spectra / J. Wan, J. Cheng, P. Lu // Journal of Wuhan University of Technology Mater. - 2008. - V. 23. - № 3. - P. 419-421.
12. Xiu, T. Alkali-free borosilicate glasses with wormhole-like mesopores / T. Xiu, Q. Liu, J. Wang // J. Mater. Chem. - 2006. - № 16. - P. 4022-4024.
13. Furukawa, T. Raman spectroscopic investigation of sodium borosilicate glass structure / T. Furukawa, W. White // Journal of materials science. - 1981. - V. 16. - № 10. - P. 2689-2700.
14. Manara, D. Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study / D. Manara, A. Grandjean, D.R. Neuville // American Mineralogist. - 2009. - V. 94. - № 5-6. - P. 777-784.
15. McMillan, P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy / P. McMillan // American Mineralogist. - 1984. - V. 69. - P. 622-644.
Еремяшев Вячеслав Евгеньевич - доктор химических наук, доцент, заведующий кафедрой физики, Южно-Уральский государственный университет, филиал в г. Златоусте. 456209, г. Златоуст, ул. Тургенева, 16. E-mail: [email protected]
Кориневская Галина Геннадьевна - младший научный сотрудник, Институт минералогии УрО РАН. 456317, г. Миасс, Институт минералогии. E-mail: [email protected]
Айсин Ринат Равильевич - кандидат химических наук, научный сотрудник, Институт эле-ментоорганических соединений им. А.Н. Несмеянова РАН (ИНЭОС РАН). 119991, ГСП-1, Москва, В-334, ул. Вавилова, 28. E-mail: [email protected].
Поступила в редакцию 1 февраля 2015 г.
ОБРАЗЕЦ ЦИТИРОВАНИЯ
FOR CITATION
Eremyashev, V.E. Spectroscopic investigation of the influence of aluminum addition on characteristic features of alkali borosilicate glasses / V.E. Eremyashev, G.G. Kori-nevskaya, R.R. Aysin // Вестник ЮУрГУ. Серия «Химия». - 2015. - Т. 7, № 3. - С. 46-52.
Eremyashev V.E., Korinevskaya G.G., Aysin R.R. Spectroscopic Investigation of the Influence of Aluminum Addition on Characteristic Features of Alkali Borosilicate Glasses. Bulletin of the South Ural State University. Ser. Chemistry. 2015, vol. 7, no. 3, pp. 46-52.