УДК 621.9.014.8; 621.9.015
Е.Г.ЗЛОТНИКОВ, канд. техн. наук, доцент, [email protected], 8(812) 328 89 36 В.В.МАКСАРОВ, д-р. техн. наук, профессор, [email protected], 8(812) 328 89 36 Национальный минерально-сырьевой университет «Горный», Санкт-Петербург
E.G.ZLOTNIKOV, PhD in eng. sc., associated professor, [email protected], 8(812) 328 89 36 V.V.MAKSAROV, Dr. in eng. sc.,professor, [email protected], 8(812) 328 89 36 National Mineral Resources University (Mining University), Saint Petersburg
СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ И БРИКЕТИРОВАНИЯ МЕТАЛЛИЧЕСКОЙ СТРУЖКИ В АВТОМАТИЗИРОВАННЫХ ПРОИЗВОДСТВАХ
Предлагаются современные методы переработки и брикетирования металлической стружки в автоматизированных производствах. Рассмотрены основные виды оборудования, схема построения технологической линии переработки стружки, выявлены ключевые моменты, связанные с управлением процессами стружкообразования, стружкодробления, очистки стружки от смазочно-охлаждающей жидкости и брикетирования.
Ключевые слова: автоматизация производства, стружка, очистка, переработка, брикетирование.
MODERN TECHNOLOGIES FOR PROCESSING AND BRIQUETTING
OF METAL SHAVINGS IN AUTOMATED FACTORIES
Offering modern methods of processing and briquetting metal chips in automated production. Considered the basic types of equipment, a scheme for constructing the production line processing chips, identified key issues related to the management process of chip formation, chip crushing, cleaning chips from cutting fluid and briquetting.
Key words: production automation, chips, cleaning, processing, report-retained.
В процессе производственной деятельности машиностроительных предприятий образуется большое количество разнообразных отходов, многие из которых являются ценным вторичным сырьем. Решение задач ресурсосбережения требует включения отходов в технологический цикл предприятия, позволяет увеличить рентабельность производства, снизить экологическую нагрузку на окружающую среду, что актуально в условиях истощения запасов природных ресурсов, особенно металлов и сплавов, широко используемых в машиностроении.
Ценным видом отходов является металлическая стружка, образующаяся при механообработке в больших объемах. На заводе
средней величины ее количество может составлять около 18-20 тыс.т в год.
Эффективная утилизация металлической стружки, образующейся при механической обработке, представляет для машиностроительных предприятий серьезную проблему. Обычно стружка загрязнена всевозможными примесями: смазочно-охлаждающей жидкостью (СОЖ), маслом, влагой, кварцевым песком, шламом, мусором, что усложняет проблему ее переработки на месте образования. При хранении стружка интенсивно ржавеет и слеживается, в больших объемах происходят термические процессы, связанные с окислением и саморазогревом стружки, испарением СОЖ и загрязнением атмосферы.
Общая загрязненность стружки СОЖ, влагой, маслом и песком составляет 10-15 %, что снижает ее металлургическую ценность. Вместе с тем, в стружке содержатся элементы Si, Сг, №, Си, V, Т^ Мо, В, что делает ее привлекательной для переплава.
Возможность прямого использования в литейном производстве предприятий отходов в виде металлической стружки ограничена из-за наличия загрязнений, сыпучего состояния, затрудняющего доставку и загрузку стружки в плавильные агрегаты, а также вследствие большого угара во время плавки.
Наиболее эффективный комплексный подход к решению обозначенной проблемы состоит, во-первых, в целенаправленном формировании свойств образующейся стружки в условиях автоматизированного производства, организации раздельного сбора стружки из различных металлов и, во-вторых, оборудовании механических производств технологическими линиями переработки и брикетирования стружки.
Первая задача связана с проблемой надежного дробления и удаления стружки из зоны резания, что имеет большое значение при использовании твердосплавных резцов, особенно при обработке пластичных материалов. Нагретая до высоких температур стружка в виде непрерывной ленты может наматываться на заготовку и резец, портить обрабатываемую поверхность и представляет собой серьезную опасность для станочников.
Рис. 1. Схема термического нанесения локальной метастабильности на обрабатываемый материал 1 - след локального воздействия; 2 - след плоскости резания; 3 - устройство локального воздействия
Особую актуальность задача управления процессом стружкодробления приобретает при обработке изделий на автоматических станках, станках с ЧПУ и использовании манипуляторов.
Для получения транспортабельной формы стружки в виде отдельных кусочков, сегментов, колец, коротких завитков или сплошной пружины применяют специальные способы стружкозавивания и стружко-ломания. Обычно для этого на передней поверхности резца на пути сходящей стружки создают специальные препятствия в виде лунок, канавок, сферических выступов или углублений вдоль режущей кромки, а также накладных нерегулируемых уступов и регулируемых стружколомов.
В автоматизированном производстве применяют также кинематический способ дробления стружки, заключающийся в использовании принудительных колебаний резца в направлении подачи. При этом толщина стружки меняется, стружка распадается на отдельные кусочки. Этот метод несколько снижает стойкость инструмента и требует применения специальных устройств, встраиваемых в механизм подачи станка, что усложняет его конструкцию.
К наиболее эффективным методам, позволяющим надежно управлять процессом дробления сливной стружки при чистовой и получистовой обработке, относятся методы предварительного локального термического воздействия (ЛТВ), криогенного воздействия (ЛКВ) и пластического воздействия (ЛПВ),осуществляемые на внешней поверхности срезаемого слоя [1, 2].
Особенностью процесса точения заготовок после применения предварительного ЛТВ является периодическое изменение условий резания в зонах термического воздействия по сравнению с исходным материалом. Схема практической реализации метода нанесения локальной метастабильности на обрабатываемый материал термическим способом воздействия представлена на рис. 1.
Создаваемая на обрабатываемой поверхности заготовки по специально заданной траектории локальная метастабильность в области предполагаемого припуска сре-
38 -
ISSN 0135-3500. Записки Горного института. Т.209
заемого материала с глубиной и шириной воздействия hm, Ьш приводит к локальным изменениям структуры материала и образованию упруго-диссипативных свойств, отличных от основного материала [3, 4].
При использовании метода предварительного ЛКВ режущая кромка инструмента в плоскости резания пересекается с зоной локального криогенного воздействия, которая, находясь в метастабильном состоянии по сравнению с основным металлом, создает мгновенное изменение напряженно-деформированного состояния с последующим отделением отрезков стружки от обрабатываемого материала.
Рассмотренные методы обеспечивают возможность автоматизации и управления процессом стружкодробления при механической лезвийной обработке на станках-автоматах и станках с ЧПУ в широком диапазоне материалов и режимов резания.
Развитие автоматизированных производств в машиностроении требует решения задачи автоматизации отвода и уборки стружки, образующейся при обработке на металлорежущих станках. Известны способы транспортирования стружки с помощью ленточных, винтовых, скребковых, вибрационных и других конвейеров. К их недостаткам относятся невозможность отвода стружки непосредственно из зоны резания и малая эффективность при транспортировке сливной стружки.
Для каждого вида металлической стружки необходимо определить наиболее рациональный состав оборудования технологической линии системы переработки и брикетирования. В состав оборудования входят: дробилка для измельчения длинной витой стружки в мелкую, центрифуга (сепаратор) для отделения остатков СОЖ, брикетировоч-ный пресс. К дополнительным блокам относятся: накопители и транспортеры, вибросито-сепаратор концевых отходов, магнитный сепаратор (для отделения стальной стружки от цветной), специальный скиповый подъемник, фильтры СОЖ, воздушные фильтры. При реализации способа горячего брикетирования требуются печи для обжига стружки -газовые, электрические или индукционные.
Для измельчения сливной витой стружки до сыпучего состояния применяются различные виды стружкодробилок: ножевые, роторные, молотковые и др., обладающие различными свойствами. Так, молотковые дробилки при высокой производительности чувствительны к засоренности исходной стружки различными твердыми и концевыми отходами металлообработки. При работе одновалковых стружкодробилок возможны аварийные остановки из-за забивания стружкой зазора между сеткой и ротором с его последующим заклиниванием. Многовалковые дробилки имеют быстрый износ режущих кромок, требуют частой и достаточно трудоемкой перезаточки ножей.
Перспективным является применение стружкодробилок, в которых измельчение стружки происходит за счет трения витков друг о друга, без резания или ударов. Такое дробление позволяет разрывать плотные комки длинной сливной витой стружки, требует минимум энергии при небольшом износе рабочих частей и высокой аварийной устойчивости за счет автоматического отделения крупных предметов.
Для отделения остатков СОЖ от стружки применяются различные сепараторы. Технологичны в работе центрифуги НО с горизонтальным расположением барабана, обеспечивающие большое центробежное ускорение (ивр = 740-1440 мин1) и высокую степень сепарации, в которых СОЖ отводится через клиновой решетчатый экран. При начальной влажности стружки 10-15 % остаточная составляет 1 -2 %. Горизонтальная компоновка облегчает обслуживание, система электронного пуска и регулирования частоты вращения позволяет оптимизировать энергопотребление.
Завершающей операцией переработки стружки является брикетирование. Экономический эффект здесь определяется уменьшением при прессовании на порядок контактной поверхности стружки, повышением плотности брикетов, что позволяет им быстро погружаться в расплавленный металл, многократно снижая окисление и угар во время плавки по сравнению с использованием сыпучей стружки. Кроме этого, за счет
3 4 5 6
Рис.2. Автоматическая линия горячего брикетирования металлической стружки
1 - погрузчик стружки; 2 - дробилка; 3 - сепаратор; 4 - фильтр; 5 - транспортер; 6, 10 - прессы; 7 - печь газовая; 8 - теплообменник; 9 - фильтр; 11 - выгрузка брикетов
уменьшения занимаемого брикетами объема (5-10 % от исходного в сыпучей стружке) существенно снижаются затраты на временное хранение и транспортировку.
Известны различные способы брикетирования стружки: с применением связующих материалов; электробрикетирование; непрерывное брикетирование в холодном состоянии; методом контактной сварки; методом кузнечной сварки.
Для брикетирования технологичным является применение компактных гидравлических прессов, позволяющих получить необходимые производительность, усилие прессования и степень сжатия брикетов.
Ряд компаний (ЗАО «ТПК Технопо-люс», ЗАО «КЕМЕТ» и др.) предлагает поставку оборудования для оснащения технологических линий переработки металлической стружки в брикеты. В основном представлено импортное оборудование, хотя есть примеры использования отечественного.
В качестве примера на рис.2 показана схема автоматической линии горячего брикетирования металлической стружки, предлагаемой компанией «Технополюс».
Рабочий процесс линии состоит из следующих операций: загрузка стальной стружки в накопительный бункер измельчителя; дробление стружки в более мелкую фракцию размером 3-5 см; выгрузка стружки на транспортер; подача в центрифугу. Затем через промежуточный накопительный бункер очищенная от СОЖ стружка транспортером подается в накопительный бункер пресса, выполняющего первое холодное брикетирование. Брикеты собираются в бункере транспортирующего конвейера и
40
затем направляются в конвейерную печь для отжига при температуре 900 °С. Здесь удаляются остатки СОЖ, затем горячие брикеты направляются в бункер пресса для выполнения завершающего этапа горячего прессования. Готовые брикеты сбрасываются в накопительный бункер. Оборудование управляется от интегрированной системы автоматического управления.
Производительность линии составляет 100-2000 кг/ч; плотность брикетов стальной или чугунной стружки 6,3-6,5 кг/дм3; остаточная влажность брикетов 0 %. Обеспечиваются требования экологии-фильтрация отработанных газов и сепарированной жидкости. Срок окупаемости капиталовложений около 0,5-1,5 года.
Дальнейшие исследования необходимо вести по следующим основным направлениям: разработка экономичных способов стружкодробления, методов сепарации СОЖ, исследование физико-механических процессов при брикетировании стружки и поиск возможности снижения энергопотребления на различных этапах технологического цикла.
ЛИТЕРАТУРА
1. Максаров В.В. Автоматизация и управление процессом стружкообразования при предварительном пластическом воздействии на обрабатываемый материал / В.В.Максаров, Ю.Ольт. СПб: Изд-во СЗТУ, 2008.
2. Максаров В.В. Управление процессом многолезвийной механической обработки / В.В.Максаров, Ю.Ольт. СПб: Изд-во СЗТУ, 2009.
3. Maksarov V, Olt J. Methods of preliminary local physical action on the workable surface of the blank / 7th International Scientific Coference. Engineering for rural development. Jelgava, Latvia. 2008.
ISSN 0135-3500. Записки Горного института. Т.209
4. Maksarov V., Olt J., Laatsit T, Leemet T. Physical argumentation of deformation processes potential control while cutting heavily processed material / 6th International DAAAM Baltic Conference industrial engineering. Tallinn, Estonia, 2008.
REFERENCES
1. Maksarov V, Olt J. Automation and process control CTpyxK006pa30BaHHa in the preliminary plastic impact on the processed material. Saint Petersburg: Publishing house of the North-Western customs administration, 2008.
2. Maksarov V., Olt J. Management of the process of многолезвийной of mechanical-processing. Saint Petersburg: Publishing house of the North-Western customs administration, 2009.
3. Maksarov V, Olt J. Methods of preliminary local physical action on the workable surface of the blank / 7th International Scientific Coference. Engineering for rural development. Jelgava, Latvia. 2008.
4. Maksarov V, Olt J., Laatsit T., Leemet T. Physical argumentation of deformation processes potential control while cutting heavily processed material / 6th International DAAAM Baltic Conference industrial engineering. Tallinn, Estonia, 2008.