Научная статья на тему 'SOUND PROPAGATION IN MAGNETIC FLUIDS BASED ON MINERAL OILS NEAR THE GLASS TRANSITION TEMPERATURE OF THE DISPERSION MEDIUM'

SOUND PROPAGATION IN MAGNETIC FLUIDS BASED ON MINERAL OILS NEAR THE GLASS TRANSITION TEMPERATURE OF THE DISPERSION MEDIUM Текст научной статьи по специальности «Физика»

CC BY
29
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ACOUSTIC SPECTROSCOPY / NANOMATERIALS / FERROMAGNETIC COLLOIDS / MAGNETIC FLUID / DISPERSED SYSTEMS

Аннотация научной статьи по физике, автор научной работы — Parashchuk N. S., Kurilov A. D., Chanturiya G. T., Chausov D. N.

Aim. The paper establishes the dependence of the influence of the concentration of the solid phase on the acoustic parameters of a magnetic fluid based on transformer oil in a wide temperature range, including the temperature close to the glass transition point of the dispersion medium.Methodology. The research is based on methods of physical acoustics and the pulse method of variable distance under external temperature influence in particular.Results. The temperature and concentration dependences of the density, velocity and absorption coefficient of ultrasonic waves are investigated. A comparison is performed with the main theoretical models and approaches. In the temperature range near the glass transition point of the dispersion medium, additional effects are observed that are not described in the literature and are inconsistent with the currently existing theories of sound propagation in dispersed systems with a large density difference between the liquid and solid phase.Research implications. Scientific and practical interest is due to the fact that the study of non-magnetized ferromagnetic colloids with a high contrast of densities between phases near the glass transition point of the dispersion medium is relevant, since there is a lack of research in this temperature range and, moreover, additional effects associated with the displacement of the phase transition at high concentrations of the solid phase are possible.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SOUND PROPAGATION IN MAGNETIC FLUIDS BASED ON MINERAL OILS NEAR THE GLASS TRANSITION TEMPERATURE OF THE DISPERSION MEDIUM»

УДК: 534-18

DOI: 10.18384/2310-7251-2023-1-34-44

SOUND PROPAGATION IN MAGNETIC FLUIDS

BASED ON MINERAL OILS NEAR THE GLASS TRANSITION

TEMPERATURE OF THE DISPERSION MEDIUM

N. Parashchuk12 4, A. Kurilov12, G. Chanturiya3, D. Chausov12

1 Prokhorov General Physics Institute of the Russian Academy of Sciences ulitsa Vavilova 38, Moscow 119991, Russian Federation

2 State University of Education

ulitsa Very Voloshinoi 24, Mytishchi 141014, Moscow Region, Russian Federation 3Moscow University for Industry and Finance "Synergy" Leningradskii prospekt 80, Moscow 125315, Russian Federation 4 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) Kashirskoe shosse 31, Moscow 115409, Russian Federation

Abstract

Aim. The paper establishes the dependence of the influence of the concentration of the solid phase on the acoustic parameters of a magnetic fluid based on transformer oil in a wide temperature range, including the temperature close to the glass transition point of the dispersion medium.

Methodology. The research is based on methods of physical acoustics and the pulse method of variable distance under external temperature influence in particular. Results. The temperature and concentration dependences of the density, velocity and absorption coefficient of ultrasonic waves are investigated. A comparison is performed with the main theoretical models and approaches. In the temperature range near the glass transition point of the dispersion medium, additional effects are observed that are not described in the literature and are inconsistent with the currently existing theories of sound propagation in dispersed systems with a large density difference between the liquid and solid phase.

Research implications. Scientific and practical interest is due to the fact that the study of non-magnetized ferromagnetic colloids with a high contrast of densities between phases near the glass transition point of the dispersion medium is relevant, since there is a lack of research in this temperature range and, moreover, additional effects associated with the displacement of the phase transition at high concentrations of the solid phase are possible. Keywords: acoustic spectroscopy, nanomaterials, ferromagnetic colloids, magnetic fluid, dispersed systems.

Acknowledgements. The work was supported by the Foundation for Assistance to Small Innovative Enterprises (FASIE) under the project UMNIK No. 17639GU/2022.

© CC BY N. Parashchuk, A. Kurilov, G. Chanturiya, D. Chausov, 2023.

РАСПРОСТРАНЕНИЕ ЗВУКА В МАГНИТНЫХ ЖИДКОСТЯХ НА ОСНОВЕ МИНЕРАЛЬНЫХ МАСЕЛ ВБЛИЗИ ТЕМПЕРАТУРЫ СТЕКЛОВАНИЯ ДИСПЕРСИОННОЙ СРЕДЫ

Паращук Н. С.1,2, Курилов А. Д.1,2, Чантурия Г. Т.3, Чаусов Д. Н.1,2

1 Институт общей физики имени А. М. Прохорова Российской академии наук 119991, г. Москва, ул. Вавилова, д. 38, Российская Федерация

2 Государственный университет просвещения

141014, Московская область, г. Мытищи, ул. Веры Волошиной, д. 24, Российская Федерация

3 Московский финансово-промышленный университет «Синергия» 125315, г. Москва, Ленинградский проспект, д. 80, Российская Федерация

4 Национальный исследовательский ядерный университет «МИФИ» 115409, г. Москва, Каширское шоссе, д. 31, Российская Федерация

Аннотация

Цель. Целью данной работы является установление зависимости влияния концентрации твёрдой фазы на акустические параметры магнитной жидкости на основе трансформаторного масла в широком диапазоне температур, в том числе вблизи точки стеклования дисперсионной среды.

Процедура и методы. Проведённые в данной работе исследования основаны на методах физической акустики, в частности импульсном методе переменного расстояния при внешнем температурном воздействии.

Результаты. Исследованы температурные и концентрационные зависимости плотности, скорости и коэффициента поглощения ультразвуковых (далее - УЗ) волн. Проведено сравнение с основными теоретическими моделями и подходами. В области температур возле точки стеклования дисперсионной среды наблюдаются дополнительные эффекты, не описанные в литературных источниках и не согласующиеся с существующими на данный момент теориями распространения звука в дисперсных системах с большой разностью плотностей между жидкой и твердой фазой.

Теоретическая значимость. Научный и практический интерес представляет исследование ненамагниченных ферромагнитных коллоидов с высоким контрастом плотностей между фазами вблизи точки стеклования дисперсионной среды, так как в этой области температур наблюдается недостаточность исследований и, к тому же, возможны дополнительные эффекты, связанные со смещением фазового перехода на высоких концентрациях твердой фазы.

Ключевые слова: акустическая спектроскопия, наноматериалы, ферромагнитные коллоиды, магнитная жидкость, дисперсные системы.

Благодарность. Работа выполнена при поддержке Фонда содействия малому инновационному предпринимательству (ФАСИП) проекта УМНИК № 17639ГУ/2022.

Introduction

By now, the behavior of ultrasonic waves in colloids and suspensions of nanoparti-cles has been studied in sufficient detail at room and high temperatures [1-5]. Non-magnetized magnetic liquids with nanoscale ferroparticles can be considered as an ordinary colloid, since in the absence of external magnetic fields, structural mechanisms will be absent. This means that their acoustic studies could be compared with those of a similar concentration range of colloids, for example [6-13].

It is also interesting to study colloids containing rather high volume concentrations of solid particles in the region of low temperatures close to the glass transition point of the dispersion medium. This interest is conditioned not only by the insufficiency of studies of these substances under these conditions, but also by the possibility of considering the liquid-solid phase transition from the side of acoustic quantities. The low operating frequency of the studies was chosen due to the possibility of considering the liquid-glass phase transition on a macroscopic scale, which will allow us to judge the internal changes in the concentrated colloid during further studies.

Thus, the purpose of this work is to study the concentration series of magnetic fluids (hereinafter referred to as MFs), based on transformer oil near the glass transition temperature of the dispersion medium at a low operating frequency and analyze the results obtained.

Materials and methods of research

The object of research, as mentioned above, is a magnetic fluid based on transformer oil (hereinafter referred to as MFTO), represented by a concentration series [0.2%, 0.5%, 1%, 2%, 5%, and 10% volume concentrations of ferroparticles of magnetite with an average size of D = 15nm (see Fig. 1)]. Ferroparticles of magnetite are stabilized by oleic acid, which is a surfactant in this dispersed system.

20

10° 101 102 D, nm

Fig. 1 / Рис. 1. Quantitative distribution of MFTO particle sizes based on the dynamic light scattering method / Количественное распределение размеров частиц MFTO на основе метода динамического рассеяния света Source: compiled by the authors.

The principle of measuring acoustic parameters of MFTO (propagation velocity and absorption coefficient of ultrasonic waves is based on the pulse method of variable distance, the study was conducted at a frequency/ = 3,65MHz, the amplitude of the signal U = 20 V, the period between packets t = 150us. The transducers are made of lithium niobate ferroelectric (LiNbO3) with a two-component coating consisting of chromium, which has good adhesive properties, and nickel, selected due to weak chemical activity to prevent interaction with the test sample. The calculated error of the measurement data does not exceed 1% for speed and 5-7% for the sound absorption coefficient. The external temperature impact is implemented using a thermostatic chamber with an accuracy of temperature setting up to 0.1 K, and the MFTO density was studied using a pycnometer having a nominal volume of 5 ml. To obtain the dependence of the type p(T), a pycnometer with an MFTO sample was placed into a thermostatic chamber for a period of 10 min, after which measurements were made on laboratory scales GOS-METER VL-220M, having a measurement accuracy up to 10_7 kg.

<1 □ 0% 5% Д о 2% 10% ю 308К-- 308к|

—1- a) 1 1 1 Ь) 1 -1-

00 О О о О оо О / У

ti □ □ □ □ □ □ □ - ✓ / / О У -

ЛД Д Д д д дд / Р

« 1 <\ 1 <1 « <3 V 1 1

266 280 294 T, к 308 322 0 2 4 6 Ф,% 8 10

1400 1300 1200

1100

1000

900

800

E

CT

Fig.2 / Рис.2. a - Temperature dependence of the density p(T) in MFTO, and b - concentration dependence of p(^) in MFTO: the straight line is (р)(ф) according to formula (1) / a -температурная зависимость плотности p(T) MFTO, b - концентрационная зависимость

р{.ф) MFTO, прямая - ртеор(^) по формуле (1) Source: compiled by the authors.

The results of measuring the density of MFTO are shown in Fig. 2. The coincidence of experimental data with theoretical calculations based on the additivity model (1) allows us to judge the reliability of the concentrations provided by 9 and apply other conclusions from continuum mechanics to the calculations of acoustic parameters [14]

(р) = (1 - + фр2, (1)

where (р) is the MF density, ф is the concentration of the solid phase in MFs, pt is the density of pure transformer oil, and p2 is the density of magnetite.

Experimental results

Based on the calculations of (1) to MFTO, as mentioned above, it is possible to use other insights from continuum mechanics, in particular the calculation of the coefficient of adiabatic compressibility (ft)

(¡3) = (1 - <рЖ + q>$2, and, according to the known (ft) and (p), calculate the Laplacian velocity of sound

= ((pmyi

and the main amendments to c0 introduced by Ritov and Isakovich [14; 15]

( ai a2 V

Acv = сл

Дст=-Тс0 (p) P2Cp2{—-—),

(1 + -fi)2 + $(1 + bjï)2 - a^(1 + bjï)

where Cpl and Cp2 are the specific heat capacities of the liquid and solid phase at p = const, al and a2 are the coefficients of thermal expansion of the liquid and solid

phase. ( = a-frp*)'. and b

Thus, the final calculation of the values of the propagation velocity of ultrasonic waves will be presented as

Ltheory

c0+Acv+AcT. (2)

The results of calculations (2) are shown in Fig. 3.

ViV

1600

« 0% Д 2%

□ 5% О 10%

Д 278K О 298K

О 308K < 288K □ 268К

1600

Fig. 3 / Рис. 3. a - Temperature dependence of the sound speed c(T) in MFTO, and b - concentration dependence с(ф) in MFTO: straight lines are ctheory(qi) according to formula (2), 1 - 308K, 2 - 298K, 3 - 288K, 4 - 278K, 5 - 268K / a - температурная зависимость скорости звука с(Т) в MFTO, б - концентрационная зависимость с(ф) в MFTO, прямые -

итеор

(ф) по формуле (2), 1 - 308К, 2 - 298К, 3 - 288К, 4 - 278К, 5 - 268К

Source: compiled by the authors.

Similar ideas are used in the calculations of the absorption coefficient of ultrasonic waves with the difference that the dispersion in the case of a has a much greater [16] manifestation. Otherwise, the proper absorption of aint is calculated by the formula

4

aint — Ы2

2pc03 '

where q is the shear, and ( is the bulk viscosity of the carrier fluid. Corrections are also added to its own absorption: thermal

R2a)2 2 2 _. ( p1 p1 \2

a^—lTcM Cp fe^ + 0,2)^—-—) .

where Xi and x2 are the thermal conductivity of the dispersion medium and the solid phase, respectively, and the viscosity

G. =----:—-

and the final expression is represented as

^theory ^int ^ ^rf ^ ^

T-

(3)

The results of theoretical calculations (3) are presented in Fig. 4.

35 30

Ъ 25

СМ

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

СО

с,-20

2 15

см" ^10

< 0% Д 2%

□ 5% О 10%

о

о

о

Д О

о

о

о

5 -

л G г, О

И^д Л D□ Оо

< ûл Dp^ °0

266 280

294

Г, к

308 322

О 268К □ 278К Д 288К <] 298К О 308К

а) .

Ь) 5' 4/ 3/ ' / /

-I-Г1-?-Г,-г

' Т' -W

О

' / / 2' -I ' / / /

' / / /а

iii '

' /о / / л л

л / и ✓ \ооР / 'д/ ✓ ' О и, ' л '

_l_I_I_I_L

4 6

ф, %

10

35 30

R

25 Ч

К)

20 о

I

К) 15 «

К)

10 5 0

Fig. 4 / Рис. 4. a - Temperature dependence of the sound absorption coefficient j^(T), and

b - concentration dependence ^ (ф): lines are ^f22 (ф), 1 - 308K, 2 - 298K, 3 - 288K, 4 - 278K, 5 - 268K / a - температурная зависимость коэффициента поглощения звука jï (Т), b - концентрационная зависимость р- (ф), прямые - th*°ry (ф), 1 - 308К, 2 - 298К, 3 - 288К, 4 - 278К, 5 - 268К Source: compiled by the authors.

In the case of the speed of sound, Acv does not exceed the calculated error throughout the temperature and concentration range of measurements, and AcT begins to make a significant contribution, increasing with decreasing temperature, only at MFTO concentrations ф more than 2%. A similar behavior is typical for atheory.

Conclusions

The acoustic values of ctheory and atheory depend on the inertial properties of the dispersed system in which ultrasonic waves propagate. The viscous and thermal mechanisms are taken into account by introducing corrections to the initial values of c0 and

^int.

The general type of interactions of sound waves with colloidal systems in the form of magnetic fluids is determined not only by the carrier medium, but also by the concentration of the solid phase in the dispersed system. In the case of small concentrations of magnetic fluid based on transformer oil, the acoustic parameters satisfy the classical descriptions of energy dissipation due to viscous and thermal waves at the phase interfaces. However, with an increase in the concentration of the solid phase, there is a discrepancy between theoretical calculations and experimental data due to the occurrence of additional absorption factors of ultrasonic waves in this system, which increase with the approach to the glass transition point of the dispersion medium.

V40y

It is noteworthy that the discrepancy between theoretical data and experimental results increases not only with an increase in the concentration of the solid phase, but

also with an approach to the glass transition temperature of the dispersion medium.

These effects can be justified by the displacement of the phase transition point of the

MFs with increase in the concentration of the solid phase.

REFERENCES / ЛИТЕРАТУРА

1. Dukhin A. S., Goetz P. J. Acoustic spectroscopy for concentrated polydisperse colloids with high density contrast. In: Langmuir, 1996, vol. 12, iss. 21, pp. 4987-4997. DOI: 10.1021/la951085y.

2. Sazan H., Piperno S., Layani M., Magdassi Sh., Shpaisman H. Directed assembly of nano-particles into continuous microstructures by standing surface acoustic waves. In: Journal of Colloid and Interface Science, 2019, vol. 536, pp. 701-709. DOI: 10.1016/j.jcis.2018.10.100.

3. Qiu L., Zhu N., Feng Y., Michaelides E. E., Zyla G., Jing D., Zhang X., Norris P. A., Markides Ch. N., Mahian O. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. In: Physics Reports, 2020, vol. 843, pp. 1-81. DOI: 10.1016/j.physrep.2019.12.001.

4. Joseph A., Radhakrishnan Nair P., Mathew S. Investigation of Iron Oxide-Based on Nanofluids and Ionic Liquids by Ultrasonic Sound Velocity Method. In: International Journal of Thermophysics, 2020, vol. 41, iss. 12, article id. 168. DOI: 10.1007/s10765-020-02748-y.

5. Hardon1a S., Kudelcik J., Rajnak M., Kubovcikova M. Study of structural changes in biocompatible fluid by the acoustic spectroscopy. In: Romanian Reports in Physics, 2021, vol. 73, article no. 603.

6. Minakov A. V., Pryazhnikov M. I., Damdinov B. B., Nemtsev I. V. Acoustic Spectroscopy Study of the Bulk Viscosity of Nanosuspensions. In: Acoustical Physics, 2022, vol. 68, no. 2, pp. 155-161. DOI: 10.1134/S1063771022020051.

7. Kharat P. B., More S. D., Somvanshi S. B., Jadhav K. M. Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method. In: Journal of Materials Science: Materials in Electronics, 2019, vol. 30, pp. 6564-6574. DOI: 10.1007/s10854-019-00963-4.

8. Pryazhnikov M. I., Minakov A. V, Rudyak V. Ya., Platonov D. V. Viscosity and acoustic parameters of suspension based on ethylene glycol with aluminum nanoparticles. In: Journal of Physics: Conference Series, 2020, vol. 1565: All-Russian scientific conference with international participation "Thermophysics and Power Engineering in Academic Centers" (TPEAC-2019, 21-23 October 2019, St. Petersburg, Russian Federation), no. 1, pp. 012095. DOI: 10.1088/1742-6596/1565/1/012095.

9. Jameel B., Hornowski T., Bielas R., Jozefczak A. Ultrasound Study of Magnetic and NonMagnetic Nanoparticle Agglomeration in High Viscous Media. In: Materials, 2022, vol. 15, no. 10, pp. 3450. DOI: 10.3390/ma15103450.

10. Wei Q., Yang Q., Gao W., Luo Z. Influences of media on dispersion behaviors and electro-kinetic properties of nanoceria particles in concentrated slurries. In: Journal of Nanoparticle Research, 2020, vol. 22, iss. 7, article id. 182. DOI: 10.1007/s11051-020-04922-7.

11. Singh S. P., Verma A. K., Jaiswal A. K., Singh D., Yadav R. R. Study of Ultrasonic and Thermal Properties for Heat Transfer Enhancement in Fe2O3 Nanoparticles-Ethylene Glycol Nanofluids. In: International Journal of Thermophysics, 2021, vol. 42, article number: 60. DOI: 10.1007/s10765-021-02809-w.

12. Luo Z., Wei Q., Yang Q., Gao W. Study on the dispersion behaviors of binary micro/nano-particles in concentrated suspensions by ultrasonic attenuation technology. In: Journal of Nanoparticle Research, 2022, vol. 24, iss. 9, article id. 182. DOI: 10.1007/s11051-022-05567-4.

13. Dukhin A. S. Acoustic spectroscopy for particle size measurement of concentrated nano-dispersions. In: Hodoroaba V.-D., Unger W. E. S., Shard A. G., eds. Characterization of Na-noparticles. Measurement Processes for Nanoparticles. Amsterdam, Elsevier, 2020, pp. 197211. DOI: 10.1016/B978-0-12-814182-3.00013-4.

14. Isakovich M. A. L. I. Mandel'shtam and the propagation of sound in microscopically inho-mogeneous media. In: Soviet Physics Uspekhi, 1979, vol. 22, iss. 11, pp. 928-933. DOI: 1070/PU1979v022n11ABEH005649.

15. Rytov S. M., Vladimirskii V. V., Galanin M. D. Sound propagation in dispersed systems. In: Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics], 1938, vol. 8, no. 5, pp. 614-626.

16. Allegra J. R., Hawley S. A. Attenuation of sound in suspensions and emulsions: Theory and experiments. In: The Journal of the Acoustical Society of America, 1972, vol. 51, iss. 5B, pp. 1545-1564. DOI: 10.1121/1.1912999.

ЛИТЕРАТУРА

1. Dukhin A. S., Goetz P. J. Acoustic spectroscopy for concentrated polydisperse colloids with high density contrast // Langmuir. 1996. Vol. 12. Iss. 21. P. 4987-4997. DOI: 10.1021/la951085y.

2. Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves / Sazan H., Piperno S., Layani M., Magdassi Sh., Shpaisman H. // Journal of Colloid and Interface Science. 2019. Vol. 536. P. 701-709. DOI: 10.1016/j .j cis. 2018.10.100.

3. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids / Qiu L., Zhu N., Feng Y., Michaelides E. E., Zyla G., Jing D., Zhang X., Norris P. A., Markides Ch. N., Mahian O. // Physics Reports. 2020. Vol. 843. P. 1-81. DOI: 10.1016/j.physrep.2019.12.001.

4. Joseph A., Radhakrishnan Nair P., Mathew S. Investigation of Iron Oxide-Based Ionanofluids and Ionic Liquids by Ultrasonic Sound Velocity Method // International Journal of Thermophysics. 2020. Vol. 41. Iss. 12. Article id. 168. DOI: 10.1007/s10765-020-02748-y.

5. Study of structural changes in biocompatible fluid by the acoustic spectroscopy / Har-don1a S., Kudelcik J., Rajnak M., Kubovcikova M. // Romanian Reports in Physics. 2021. Vol. 73. Article no. 603.

6. Acoustic Spectroscopy Study of the Bulk Viscosity of Nanosuspensions / Minakov A. V., Pryazhnikov M. I., Damdinov B. B., Nemtsev I. V. // Acoustical Physics. 2022. Vol. 68. No. 2. P. 155-161. DOI: 10.1134/S1063771022020051.

7. Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method / Kharat P. B., More S. D., Somvanshi S. B., Jadhav K. M. // Journal of Materials Science: Materials in Electronics. 2019. Vol. 30. P. 6564-6574. DOI: 10.1007/s10854-019-00963-4.

8. Viscosity and acoustic parameters of suspension based on ethylene glycol with aluminum nanoparticles / Pryazhnikov M. I., Minakov A. V, Rudyak V. Ya., Platonov D. V. // Journal of Physics: Conference Series. 2020. Vol. 1565: All-Russian scientific conference with

international participation "Thermophysics and Power Engineering in Academic Centers" (TPEAC-2019, 21-23 October 2019, St. Petersburg, Russian Federation). No. 1. P. 012095. DOI: 10.1088/1742-6596/1565/1/012095.

9. Ultrasound Study of Magnetic and Non-Magnetic Nanoparticle Agglomeration in High Viscous Media / Jameel B., Hornowski T., Bielas R., Jozefczak A. // Materials. 2022. Vol. 15. No. 10. P. 3450. DOI: 10.3390/ma15103450.

10. Influences of media on dispersion behaviors and electrokinetic properties of nanoceria particles in concentrated slurries / Wei Q., Yang Q., Gao W., Luo Z. // Journal of Nanoparticle Research. 2020. Vol. 22. Iss. 7. Article id. 182. DOI: 10.1007/s11051-020-04922-7.

11. Study of Ultrasonic and Thermal Properties for Heat Transfer Enhancement in Fe2O3 Na-noparticles-Ethylene Glycol Nanofluids / Singh S. P., Verma A. K., Jaiswal A. K., Singh D., Yadav R. R. // International Journal of Thermophysics. 2021. Vol. 42. Article number: 60. DOI: 10.1007/s10765-021-02809-w.

12. Study on the dispersion behaviors of binary micro/nanoparticles in concentrated suspensions by ultrasonic attenuation technology / Luo Z., Wei Q., Yang Q., Gao W. // Journal of Nanoparticle Research. 2022. Vol. 24. Iss. 9. Article id. 182. DOI: 10.1007/s11051-022-05567-4.

13. Dukhin A. S. Acoustic spectroscopy for particle size measurement of concentrated nano-dispersions // Characterization of Nanoparticles. Measurement Processes for Nanoparti-cles / eds. Hodoroaba V.-D., Unger W. E. S., Shard A. G. Amsterdam: Elsevier, 2020. P. 197-211. DOI: 10.1016/B978-0-12-814182-3.00013-4.

14. Isakovich M. A. L. .I Mandel'shtam and the propagation of sound in microscopically in-homogeneous media // Soviet Physics Uspekhi. 1979. Vol. 22. Iss. 11. P. 928-933. DOI: 1070/PU1979v022n11ABEH005649.

15. Рытов С. М., Владимирский В. В., Галанин М. Д. Распространение звука в дисперсных системах // Журнал экспериментальной и теоретической физики. 1938. Т. 8. № 5. С. 614-626.

16. Allegra J. R., Hawley S. A. Attenuation of sound in suspensions and emulsions: Theory and experiments // The Journal of the Acoustical Society of America. 1972. Vol. 51. Iss. 5B. P. 1545-1564. DOI: 10.1121/1.1912999.

INFORMATION ABOUT THE AUTHORS

Nikita S. Paraschuk - Master's Degree Student, Institute of Laser and Plasma Technologies, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Research Assistant, Educational and Scientific Laboratory of Theoretical and Applied Nanotech-nology, State University of Education; Engineer, Prokhorov General Physics Institute of the Russian Academy of Sciences; e-mail: parashchuk.ns@mail.ru;

Alexander D. Kurilov - Laboratory Head, Educational and Scientific Laboratory of Theoretical and Applied Nanotechnology, State University of Education; Acting Research Assistant, Prokhorov General Physics Institute of the Russian Academy of Sciences; e-mail: ad.kurilov@gmail.com;

Georgii T. Chanturiya - Master's Degree Student, Faculty of Information Technology, Senior Lecturer, Department of Digital Economy, Moscow University for Industry and Finance "Synergy"; e-mail: chnt.grg@gmail.com;

Denis N. Chausov - Dr. Sci. (Phys.-Math.), Assoc. Prof., Leading Researcher, Educational and Scientific Laboratory of Theoretical and Applied Nanotechnology, State University of Education; Acting Laboratory Head, Laboratory of Photonics and Organic Electronics, Prokhorov General Physics Institute of the Russian Academy of Sciences; email: d.chausov@yandex.ru , dn.chausov@mgou.ru.

ИНФОРМАЦИЯ ОБ АВТОРАХ

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Паращук Никита Сергеевич - студент магистратуры Института лазерных и плазменных технологий Национального исследовательского ядерного университета «МИФИ»; младший научный сотрудник учебно-научной лаборатории теоретической и прикладной нанотехнологии Государственного университета просвещения; инженер Института общей физики имени А. М. Прохорова Российской академии наук; e-mail: parashchuk.ns@mail.ru;

Курилов Александр Дмитриевич - заведующий учебно-научной лабораторией теоретической и прикладной нанотехнологии Государственного университета просвещения; и. о. младшего научного сотрудника Института общей физики имени А. М. Прохорова Российской академии наук; e-mail: ad.kurilov@gmail.com;

Чантурия Георгий Темурович - студент магистратуры факультета информационных технологий, старший преподаватель кафедры цифровой экономики Московского финансово-промышленного университета «Синергия»; e-mail: chnt.grg@gmail.com;

Чаусов Денис Николаевич - доктор физико-математических наук, доцент, главный научный сотрудник учебно-научной лаборатории теоретической и прикладной нанотехнологии Государственного университета просвещения; и. о. заведующего лабораторией фотоники и органической электроники Института общей физики имени А. М. Прохорова Российской академии наук;

e-mail: d.chausov@yandex.ru, dn.chausov@mgou.ru.

FOR CITATION

Parashchuk N. S., Kurilov A. D., Chanturiya G. T., Chausov D. N. Sound propagation in magnetic fluids based on mineral oils near the glass transition temperature of the dispersion medium. In; Bulletin of the Moscow Region State University. Series: Physics and Mathematics, 2023, no. 1, pp. 34-44.

DOI: 10.18384/2310-7251-2023-1-34-44.

ПРАВИЛЬНАЯ ССЫЛКА НА СТАТЬЮ

Паращук Н. С., Курилов А. Д., Чантурия Г. Т., Чаусов Д. Н. Sound propagation in magnetic fluids based on mineral oils near the glass transition temperature of the dispersion medium (Распространение звука в магнитных жидкостях на основе минеральных масел вблизи температуры стеклования дисперсионной среды) // Вестник Московского государственного областного университета. Серия: Физика-математика. 2023. № 1. С. 3444.

DOI: 10.18384/2310-7251-2023-1-34-44.

i Надоели баннеры? Вы всегда можете отключить рекламу.