Научная статья на тему 'Состояние и перспективы развития нанотехнологии в России'

Состояние и перспективы развития нанотехнологии в России Текст научной статьи по специальности «Нанотехнологии»

CC BY
1970
476
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Состояние и перспективы развития нанотехнологии в России»

Гастёнина Л.В., Лапшин Э.В. СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ НАНОТЕХНОЛОГИИ В РОССИИ

Новейшие нанотехнологии наряду с компьютерно-информационными технологиями и биотехнологиями являются фундаментом научно-технической революции в XXI веке. В России осознание ключевой роли, которую будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию на основе государственной поддержки.

Стратегическими национальными приоритетами Российской Федерации, изложенными в утвержденных 30 марта 2002 г. Президентом Российской Федерации "Основах политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу", являются: повышение

качества жизни населения, достижение экономического роста, развитие фундаментальной науки, образования и культуры, обеспечение обороны и безопасности страны.

Одним из реальных направлений достижения этих целей может стать ускоренное развитие нанотехнологий на основе накопленного научно-технического задела в этой области и внедрение их в технологический комплекс России.

В основе такого подхода лежат: использование особенностей свойств вещества (материалов) при

уменьшении его размеров до нанометрового масштаба; ряд выдающихся открытий последних лет в области физики низкоразмерных систем и структур (целочисленный и дробный квантовые эффекты Холла, квазичастицы с дробным зарядом и др.); разработка приборов и устройств на основе квантовых наноструктур (лазеры на квантовых точках, сверхбыстродействующие транзисторы, запоминающие устройства на основе эффекта гигантского магнитосопротивления); появление и развитие новых технологических приемов (приемы и методы, базирующиеся на принципах самосборки и самоорганизации; методы, основанные на зондовой микроскопии и технике сфокусированных ионных пучков; Ъ^Д-технологии как последовательность процессов литографии, гальваники и формовки) и диагностических методов (сканирующая зондовая микроскопия/спектроскопия; рентгеновские методы с использованием синхротронного излучения; электронная микроскопия высокого разрешения; фемтосекундные методы); создание новых материалов с необычными свойствами (фуллерены, нанотрубки, нанокерамика) и конструкционных наноматериалов с рекордными эксплуатационными характеристиками.

Развитие перечисленных и близких к ним направлений науки, техники и технологий, связанных с созданием, исследованиями и использованием объектов с наноразмерными элементами, уже в ближайшие годы приведет к кардинальным изменениям во многих сферах человеческой деятельности - в материаловедении, энергетике, электронике, информатике, машиностроении, медицине, сельском хозяйстве, экологии.

Новейшие нанотехнологии наряду с компьютерно-информационными технологиями и биотехнологиями являются фундаментом научно-технической революции в XXI веке, сравнимым и даже превосходящим по своим масштабам с преобразованиями в технике и обществе, вызванными крупнейшими научными открытиями XX века.

В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию на основе государственной поддержки.

В России работы по разработке нанотехнологий начаты еще 50 лет назад, но слабо финансируются и ведутся только в рамках отраслевых программ. К настоящему времени назрела необходимость формирования программы общефедерального масштаба с учетом признания важной роли нанотехнологий на самом высоком государственном уровне.

Широкомасштабное и скоординированное развертывание на базе существующего задела работ в области нанотехнологий позволит России восстановить и поддерживать паритет с ведущими государствами в науке и технике, ресурсо- и энергосбережении, в создании экологически адаптированных производств, в здравоохранении и производстве продуктов питания, уровне жизни населения, а также обеспечит необходимый уровень обороноспособности и безопасности государства.

Нанотехнологии могут стать мощным инструментом интеграции технологического комплекса России в международный рынок высоких технологий, надежного обеспечения конкурентоспособности отечественной продукции.

Разработка и успешное освоение новых технологических возможностей потребует координации деятельности на государственном уровне всех участников нанотехнологических проектов, их всестороннего обеспечения (правового, ресурсного, финансово-экономического, кадрового), активной государственной поддержки отечественной продукции на внутреннем и внешнем рынках.

Формирование и реализация активной государственной политики в области нанотехнологий позволит с высокой эффективностью использовать интеллектуальный и научно-технический потенциал страны в интересах развития науки, производства, здравоохранения, экологии, образования и обеспечения национальной безопасности России.

Основные направления развития нанотехнологий в России

Наиболее значительные практические результаты могут быть достигнуты в следующих областях: в со-

здании твердотельных поверхностных и многослойных наноструктур с заданным электронным спектром и необходимыми электрическими, оптическими, магнитными и другими свойствами с помощью конструирования их на атомном уровне (например, средствами зонной инженерии и инженерии волновых функций) и использования современных высоких технологий (различные модификации молекулярно-пучковой и молекулярнохимической эпитаксии, самоорганизация, электронная литография, технологические методы туннельной микроскопии) с получением в результате принципиально новых объектов и приборов для исследований и различных приложений - сверхрешетки, квантовые ямы, точки и нити, квантовые контакты, атомные кластеры, фотонные кристаллы, спин-туннельные структуры; в экстремальной ультрафиолетовой (ЭУФ) литографии на основе использования длины волны, равной 13,5 нм, обеспечивающей помимо создания наноэлек-тронных суперпроизводительных вычислительных систем переход в мир атомных точностей, что неизбежно скажется на смежных областях знаний и производства; в микроэлектромеханике, в основе которой лежит объединение поверхностной микрообработки, использующейся в микроэлектронной технологии, с объемной обработкой и применением новых наноматериалов, физических эффектов и Ъ^Д-технологии на основе синхротронного излучения, обеспечивших прорыв в области создания микродвигателей, микророботов, микронасосов для микрофлюидики, микрооптики, сверхчувствительных сенсоров различных физических величин: давления, ускорения, температуры, а также создания сверхминиатюрных устройств, способных генерировать энергию, проводить мониторинг окружающей среды, передвигаться, накапливать и передавать информацию, осуществлять определенные воздействия по заложенной программе или команде ("умная пыль", микророботы); в конструировании молекулярных устройств (наномашин и нанодвигателей, устройств распознавания и хранения информации) и в создании наноструктур, в которых роль функциональных элементов выполняют отдельные молекулы. В перспективе это позволит использовать принципы приема и обработки информации, реализуемые в биологических объектах (молекулярная электроника); в разнообразном примене-

нии фуллереноподобных материалов и нанотрубок, обладающих рядом особых характеристик, включая химическую стойкость, высокие прочность и жесткость, ударную вязкость, электро- и теплопроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Углеродные нанотрубки используются также в качестве игольчатых щупов сканирующих зондовых микроскопов, в дисплеях с полевой эмиссией, высокопрочных композиционных материалах, электронных устройствах, в водородной энергетике в качестве контейнеров для хранения водорода; в создании новых классов наноматериалов и наноструктур, включая: фотонные кри-

сталлы, поведение света в которых сравнимо с поведением электронов в полупроводниках. На их основе возможно создание приборов с быстродействием более высоким, чем у полупроводниковых аналогов; разу-порядоченные нанокристаллические среды для лазерной генерации и получения лазерных дисплеев с более высокой яркостью (на 2-3 порядка выше, чем на обычных светодиодах) и большим углом обзора; функциональную керамику на основе литиевых соединений для твердотельных топливных элементов, перезаряжаемых твердотельных источников тока, сенсоров газовых и жидких сред для работы в жестких технологических условиях; квазикристаллические наноматериалы, обладающие уникальным сочетанием повышенной прочности, низкого коэффициента трения и термостабильности, что делает их перспективными для использования в машиностроении, альтернативной и водородной энергетике; конструкционные наноструктурные твердые и прочные сплавы для режущих инструментов с повышенной износостойкостью и ударной вязкостью, а также наноструктурные защитные термо- и коррозионностойкие покрытия; полимерные композиты с наполнителями из наночастиц и нанотрубок, обладающих повышенной прочностью и низкой воспламеняемостью; биосовме-стимые наноматериалы для создания искусственной кожи, принципиально новых типов перевязочных материалов с антимикробной, противовирусной и противовоспалительной активностью; наноразмерные порошки с повышенной поверхностной энергией, в том числе магнитные, для дисперсионного упрочнения сплавов, создания элементов памяти аудио- и видеосистем, добавок к удобрениям, кормам, магнитным жидкостям и краскам; органические наноматериалы, обладающие многими свойствами, недоступными неорганическим веществам. Органическая нанотехнология на базе самоорганизации позволяет создавать слоистые органические наноструктуры, являющиеся основой органической наноэлектроники и конструировать модели биомембран клеток живых организмов для фундаментальных исследований процессов их функционирования (молекулярная архитектура); полимерные нанокомпозитные и пленочные материалы для нелинейных оптических и магнитных систем, газовых сенсоров, биосенсоров, мультислойных композитных мембран; покровные полимеры для защитных пассивирующих, антифрикционных, селективных, просветляющих покрытий; полимерные наноструктуры для гибких экранов; двумерные сегнетоэлектрические пленки для энергонезависимых запоминающих устройств; жидкокристаллические наноматериалы для высокоинформативных и эргономичных типов дисплеев, новых типов жидкокристаллических дисплеев (электронная бумага).

Перспективы использования нанотехнологий

Использование возможностей нанотехнологий может уже в недалекой перспективе принести резкое увеличение стоимости валового внутреннего продукта и значительный экономический эффект в следующих базовых отраслях экономики.

В машиностроении - увеличение ресурса режущих и обрабатывающих инструментов с помощью специальных покрытий и эмульсий, широкое внедрение нанотехнологических разработок в модернизацию парка высокоточных и прецизионных станков. Созданные с использованием нанотехнологий методы измерений и позиционирования обеспечат адаптивное управление режущим инструментом на основе оптических измерений обрабатываемой поверхности детали и обрабатывающей поверхности инструмента непосредственно в ходе технологического процесса. Например, эти решения позволят снизить погрешность обработки с 40 мкм до сотен нанометров при стоимости такого отечественного станка около 12 тыс. долл. И затратах на модернизацию не более 3 тыс. долл. Равные по точности серийные зарубежные станки стоят не менее 300500 тыс. долл. При этом в модернизации нуждаются не менее 1 млн активно используемых металлорежущих станков из примерно 2,5 млн станков, находящихся на балансе российских предприятий.

В двигателестроении и автомобильной промышленности - за счет применения наноматериалов, более точной обработки и восстановления поверхностей можно добиться значительного (до 1,5-4 раз) увеличения ресурса работы автотранспорта, а также снижения втрое эксплуатационных затрат (в том числе расхода топлива), улучшения совокупности технических показателей (снижение шума, вредных выбросов), что позволяет успешнее конкурировать как на внутреннем, так и на внешнем рынках.

В электронике и оптоэлектронике - расширение возможностей радиолокационных систем за счет применения фазированных антенных решеток с малошумящими СВЧ-транзисторами на основе наноструктур и волоконно-оптических линий связи с повышенной пропускной способностью с использованием фотоприемников и инжекционных лазеров на структурах с квантовыми точками; совершенствование тепловизионных обзорноприцельных систем на основе использования матричных фотоприемных устройств, изготовленных на базе нанотехнологий и отличающихся высоким температурным разрешением; создание мощных экономичных инжек-ционных лазеров на основе наноструктур для накачки твердотельных лазеров, используемых в фемтосекундных системах.

В информатике - многократное повышение производительности систем передачи, обработки и хранения информации, а также создание новых архитектур высокопроизводительных устройств с приближением возможностей вычислительных систем к свойствам объектов живой природы с элементами интеллекта; адаптивное распределение управления функциональными системами, специализированные компоненты которых способны к самообучению и координированным действиям для достижения цели.

В энергетике (в том числе атомной) - наноматериалы используются для совершенствования технологии создания топливных и конструкционных элементов, повышения эффективности существующего оборудования и развития альтернативной энергетики (адсорбция и хранение водорода на основе углеродных наноструктур, увеличение в несколько раз эффективности солнечных батарей на основе процессов накопления и энергопереноса в неорганических и органических материалах с нанослоевой и кластерно-фрактальной структурой, разработка электродов с развитой поверхностью для водородной энергетики на основе трековых мембран). Кроме того, наноматериалы применяются в тепловыделяющих и нейтронопоглощающих элементах ядерных реакторов; с помощью нанодатчиков обеспечивается охрана окружающей среды при хранении и переработке отработавшего ядерного топлива и мониторинга всех технологических процедур для управления качеством сборки и эксплуатации ядерных систем; нанофильтры используются для разделения сред в производстве и переработке ядерного топлива.

В сельском хозяйстве - применение нанопрепаратов стероидного ряда, совмещенных с бактериородопси-ном, показало существенное (в среднем 1,5-2 раза) увеличение урожайности практически всех продовольственных (картофель, зерновые, овощные, плодово-ягодные) и технических (хлопок, лен) культур, повышение их устойчивости к неблагоприятным погодным условиям. Например, в опытах на различных видах

животных показано резкое повышение их сопротивляемости стрессам и инфекциям (падеж снижается в 2 раза относительно контрольных групп животных) и повышение продуктивности по всем показателям в 1,5-3 раза.

В здравоохранении - нанотехнологий обеспечивают ускорение разработки новых лекарств, создание высокоэффективных нанопрепаративных форм и способов доставки лекарственных средств к очагу заболевания. Широкая перспектива открывается и в области медицинской техники (разработка средств диагностики, проведение нетравматических операций, создание искусственных органов). Общепризнано, что рынок здравоохранения является одним из самых значительных в мире, в то же время он слабо структурирован и

в принципе "не насыщаем", а решаемые задачи носят гуманитарный характер.

В экологии - перспективными направлениями являются использование фильтров и мембран на основе наноматериалов для очистки воды и воздуха, опреснения морской воды, а также использование различных сенсоров для быстрого биохимического определения химического и биологического воздействий, синтез новых экологически чистых материалов, биосовместимых и биодеградируемых полимеров, создание новых методов утилизации и переработки отходов. Кроме того, существенное значение имеет перспектива применения нанопрепаративных форм на основе бактериородопсина. Исследования, проведенные с натуральными образцами почв, пораженных радиационно и химически (в том числе и чернобыльскими), показали возможность восстановления их с помощью разработанных препаратов до естественного состояния микрофлоры и плодоносности за 2,5-3 месяца при радиационных поражениях и за 5-6 месяцев при химических.

Ключевые проблемы развития нанотехнологий в России

Анализ мирового опыта формирования национальных и региональных программ по новым научнотехническим направлениям свидетельствует о необходимости выявления некоторых ключевых проблем в области разработки наноматериалов и нанотехнологий.

Первая проблема - формирование круга наиболее перспективных их потребителей, которые могут обеспечить максимальную эффективность применения современных достижений. Необходимо выявить, а затем и сформировать потребности общества в развитии нанотехнологий и наноматериалов, способных существенно повлиять на экономику, технику, производство, здравоохранение, экологию, образование, оборону и безопасность государства.

Вторая проблема - повышение эффективности применения наноматериалов и нанотехнологий. На начальном этапе стоимость наноматериалов будет выше, чем обычных материалов, но более высокая эффективность их применения будет давать прибыль. Поэтому необходимо среднесрочное и долгосрочное финансирование НИОКР по наноматериалам и нанотехнологиям с выбором способов реализации программы, включая масштабы и источники финансирования. Государство заинтересовано в быстрейшем развитии перспективного направления, поэтому оно должно взять на себя основные расходы на проведение фундаментальных и прикладных исследований, формирование инноваций.

Третья проблема - собственно разработка новых промышленных технологий получения наноматериалов, которые позволят России сохранить некоторые приоритеты в науке и производстве.

Четвертая проблема - обеспечение перехода от микротехнологий к нанотехнологиям и доведение разработок нанотехнологий до промышленного производства, особенно в области электроники и информатики.

Пятая проблема - широкомасштабное развитие фундаментальных исследований во всех областях науки и техники, связанных с развитием нанотехнологий.

Шестая проблема - создание исследовательской инфраструктуры, включая: организацию центров коллективного пользования уникальным технологическим и диагностическим оборудованием; современное приборное оснащение научных и производственных организаций инструментами и приборами для проведения работ в области нанотехнологий; обеспечение доступа научно-технического персонала к синхротронным и нейтронным источникам (как российским, так и зарубежным), к сверхпроизводительным вычислительным комплексам; разработку специальной метрологии и государственных стандартов в области нанотехнологий; развитие физических и аппаратурно-методических основ адекватной диагностики наноматериалов на базе электронной микроскопии высокого разрешения, сканирующей электронной и туннельной микроскопии, поверхностно-чувствительных рентгеновских методик с использованием синхротронного излучения, электронной микроскопии для химического анализа, электронной спектроскопии, фотоэлектронной спектроскопии.

Седьмая проблема - создание финансово-экономического механизма формирования оборотных средств у институтов и предприятий-разработчиков наноматериалов и нанотехнологий, а также развитие инфраструктуры, обеспечивающей поддержку инновационной деятельности в этой сфере на всех ее стадиях - от выполнения научно-технических разработок до реализации высокотехнологической продукции.

Восьмая проблема - привлечение, подготовка и закрепление квалифицированных научных, инженерных и рабочих кадров для обновленного технологического комплекса Российской Федерации.

Для выработки и практической реализации необходимых и достаточных мер в области создания и развития нанотехнологий должна быть сформирована государственная политика, которая, в свою очередь, должна рассматриваться как часть государственной научно-технической политики, определяющей цели, задачи, направления, механизмы и формы деятельности органов государственной власти Российской Федерации по поддержке научно-технических разработок и использованию их результатов.

К таким мерам, прежде всего, необходимо отнести: разработку и реализацию материально-технического обеспечения работ в области нанотехнологий с максимальным учетом возможностей кооперации в использовании уникального сверхдорогостоящего научного и экспериментально-исследовательского оборудования; подготовку, повышение квалификации, привлечение и закрепление кадров (прежде всего молодых специалистов) в области нанотехнологий для их использования в научной и промышленной сферах; изучение рынка наукоемкой продукции в части нанотехнологий с использованием методов прогнозирования и техникоэкономической оценки; анализ современного состояния научно-исследовательских работ фундаментального и прикладного профиля в соответствии с общими отечественными и мировыми тенденциями в развитии данного направления, а также результативности законченных исследовании и их дальнейшей перспективности; определение приоритетных ориентированных направлений в области нанотехнологий, результаты которых могут быть использованы в ближайшее время, среднесрочной и дальней перспективе, а также в фундаментальных и поисковых исследованиях; разработку и использование системы координации и кооперации проводимых исследований в области нанотехнологий; создание и использование экспертных систем и баз данных как информационного возобновляемого ресурса в области последних достижений, связанных с разработкой и применением нанотехнологий в стране и за рубежом; отработку систем взаимодействия государства с предпринимательским сектором экономики в целях формирования рынка нанотехнологий, привлечения внебюджетных средств для проведения исследований и организации соответствующих производств; разработку мер по активизации участия бюджетных и внебюджетных фондов и частных инвесторов на всех стадиях разработки и освоения нанотехнологий; разработку системы мер по организации эффективного взаимовыгодного международного сотрудничества в области исследований и практического использования нанотехнологий.

Предлагаемый порядок организации и исполнения работ обусловлен тем, что на сегодняшний день развитие нанотехнологий как научно-технического направления во многом еще находится на стадии поиска и даже осознания возможных путей его реализации как в чисто научном плане, так и в достижении потенциально значимых практических результатов и поэтому требует активного участия государства с использованием всех возможных форм и методов государственного управления и поддержки.

Встраивание России в нано-технологическую эру должно быть системным. Золотовалютный резерв страны растет и на начало февраля 2008 года превышает 4 8 0 миллиардов $ (3-е место в мире после Китая и Япо-

нии) . Это позволяет развивать отечественные нанотехнологии без ущерба для отечественных промышленности, сельского хозяйства и других отраслей, не прибегая, как США, к выпуску необеспеченных денежных знаков.

Итогом реализации национальной программы должно стать перевооружение ведущих отраслей промышленности на основе широкого внедрения нанотехнологий.

ЛИТЕРАТУРА

1. Деспотули А.Л., Андреева А.В. Перспективы развития в России глубоко субвольтовой наноэлектроники и связанных с ней технологий // «Интеграл» №1, №2, 2008.

2. Birringer R.,Gleiter H., Klein H.-P., Marquard P. Phys. Lett. B, 1984, v. 102, p. 365-369; Z. Metallkunde, 1984, Bd. 75, S. 263-267.

3. Scripta Mater. Spec. Issue, 2001, v. 44, №8-9.

4. Костюков В.Е., Седаков А.Ю., Синегубко Л.А., Скупов В.Д. // Материаловедческие проблемы создания специальной полупроводниковой элементной базы и возможные пути их решения. Экономика и производство. 2002. № 10.

5. Андриевский Р.А. Наноатериалы: концепция и современные проблемы. ara@icp.ac.ru, 2008.

6. Асеев А.Л. Наноматериалы и нанотехнологии для современной полупроводниковой электроники.

WWW.NANORF.RU, 2008.

i Надоели баннеры? Вы всегда можете отключить рекламу.