Научная статья на тему 'SORPTION OF COPPER (II) CATIONS FROM AQUEOUS SOLUTIONS BY THERMALLY REDUCED GRAPHENE OXIDE'

SORPTION OF COPPER (II) CATIONS FROM AQUEOUS SOLUTIONS BY THERMALLY REDUCED GRAPHENE OXIDE Текст научной статьи по специальности «Химические науки»

CC BY
36
23
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GRAPHENE OXIDE / THERMALLY REDUCED GRAPHENE OXIDE / OXIDIZED GRAPHITE / SORPTION / CATION

Аннотация научной статьи по химическим наукам, автор научной работы — Yakovleva Elena V., Brudnik Sergey V., Yakovlev Andrey V., Ryabukhova Tatiana O., Nevernaya Ol'Ga G.

Samples of multilayer graphene oxide in electrolytes based on H2SO4 have been synthesized by the electrochemical method. The results of differential scanning calorimetry and thermogravimetric analysis reveal an endothermic peak in the scanning interval up to 100 °C accompanied by the weight loss of about 7%, which may be caused by desorption and evaporation of a certain amount of retained water in the samples. Another endothermic peak appears at 252 °C on the DTA curve and the weight loss of 15% that can be explained by decomposition of labile hydroxyl, epoxy, and carboxyl oxygen-containing functional groups, including those between the layers of polygraphene planes. Thermal exfoliation of multilayer graphene oxide at 250 °C leads to removal of oxygen-containing functional groups, a significant increase in the particle size (KV = 1490 cm3 g-1), and formation of worm-like structures with a large number of V-shaped pores with a size of 1-10 μm and thickness of polygraphene planes up to 0.01 μm. A specific surface area of the heat-treated graphene oxide powder is 400-500 m2g-1. The distribution range of thermally reduced multilayer graphene oxide particles in water is 0.3-1400 μm, and the modal size is 211 μm. Under ultrasonic action on an aqueous dispersion, the particle size of the dispersed phase reduces significantly to 0.2-400 μm, with the modal size of 143 μm, which allows a more uniform distribution of carbon material particles in the volume of water. FTIR spectroscopy of thermally reduced graphene oxide reveals the presence of sp2-hybridization C = C in the structure of graphene (its peak at 1627 cm-1), epoxy groups -COC- (band between 1106 cm-1 and 1005 cm-1), and carboxyl groups -COOH- (the band at 1384 cm-1). The peak at 2300 cm-1 corresponds to the peak of absorbed CO2 molecules. After exposure of thermally reduced graphene oxide in the solutions containing copper cations, the absorption bands are observed in the FTIR range of 690 - 1130 cm-1, which can be considered as vibrations of groups formed on the surface as a result of interaction of copper cations with oxygen atoms in the composition of functional groups. The Cu2+ adsorption isotherms on a thermally reduced multilayer oxide graphene have the form typical for isotherms of H2 class, and are characterized by a straight steeply ascending initial segment, which indicates a high affinity of the adsorbate to the adsorbent with formation of chemical compounds. A likely explanation is that there is an interaction of Cu2+ ions with carboxyl functional groups, which is confirmed by a slight decrease in the pH of the solution. The isotherm is approximated by a straight line, which allows us to use it to describe the adsorption process of the Langmuir model. The maximum sorption capacity of thermally reduced multilayer graphene oxide to Cu2+ was 25 mg g-1, which is noticeably higher than the sorption capacity of activated carbon fibers.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SORPTION OF COPPER (II) CATIONS FROM AQUEOUS SOLUTIONS BY THERMALLY REDUCED GRAPHENE OXIDE»

DOI: 10.6060/ivkkt.20226505.6543

УДК: 544.6:546.26-162:542.06

СОРБЦИЯ КАТИОНОВ МЕДИ (II) ИЗ ВОДНЫХ РАСТВОРОВ ТЕРМОВОССТАНОВЛЕННЫМ ОКСИДОМ ГРАФЕНА

Е.В. Яковлева, С.В. Брудник, А.В. Яковлев, Т.О. Рябухова, О.Г. Неверная, А.С. Мостовой, Л.Н. Ольшанская

Елена Владимировна Яковлева (ORCID 0000-0002-8489-9804), Любовь Николаевна Ольшанская (ORCID 0000-0002-8449-9368)

Кафедра экологии и техносферной безопасности, Саратовский государственный технический университет им. Ю.А. Гагарина, ул. Политехническая, 77, Саратов, Российская Федерация, 410054 E-mail: elenayakovleva1977@list.ru, ecos123@mail.ru

Сергей Витальевич Брудник (ORCID 0000-0001-7093-6494), Андрей Васильевич Яковлев (ORCID 00000002-3542-1927)*

Кафедра химии и химической технологии материалов, Саратовский государственный технический университет им. Ю.А. Гагарина, ул. Политехническая, 77, Саратов, Российская Федерация, 410054 E-mail: sbrud@mail.ru, aw_71@mail.ru *

Татьяна Олеговна Рябухова (ORCID 0000-0001-9099-8158)

Кафедра общей, биоорганической и фармацевтической химии, Саратовский государственный медицинский университет имени В.И. Разумовского, ул. Большая Казачья, 112, Саратов, Российская Федерация, 410012 E-mail: eng34@list.ru

Ольга Геннадьевна Неверная (ORCID 0000-0001-7644-7747), Антон Станиславович Мостовой (ORCID 0000-0003-2828-9988)

Кафедра естественных и математических наук, Энгельсский технологический институт (филиал) Саратовского государственного технического университета им. Ю.А. Гагарина, пл. Свободы, 17, Энгельс, Российская Федерация, 413100 E-mail: olga19081969@yandex.ru, mostovoy19@rambler.ru

Электрохимическим методом синтезированы образцы многослойного оксида гра-фена в электролитах на основе H2SO4. Результаты дифференциальной сканирующей калориметрии и термогравиметрического анализа полученных образцов выявляют эндотермический пик в интервале сканирования до 100 °С, сопровождающийся потерей массы порядка 7%. Этот эффект может быть обусловлен десорбцией и испарением некоторого количества удерживаемой воды в образцах. Другой эндотермический пик появляется при 252 °С на кривой ДТА и потерю массы 15%, можно объяснить разложением лабильных гидроксильных, эпоксидных и карбоксильных кислородсодержащих функциональных групп. Термическая эксфолиация при 250 °Смногослойного оксида графена приводит куда-лению кислородсодержащих функциональных групп, значительному увеличению размера частиц (Kv = 1490 см3^г'1) и формированию червеобразных структур с большим количеством V-образных пор с размером 1-10 мкм и толщиной полиграфеновых плоскостей до 0,01 мкм. Удельная поверхность порошка термовосстановленного оксида графена составляет 400-500 м2г-1, диапазон распределения частиц в воде составляет 0,3-1400 мкм, модальный размер 211 мкм. При ультразвуковом воздействии на водную дисперсию оксида графена размер частиц дисперсной фазы значительно уменьшается до 0,2-400 мкм, с модальным размером 143 мкм. По ИК спектрам термовосстановленного оксида графена установлено наличие 8р2-гибридизации C=C в структуре графена (пик при 1627 см1), эпок-сигрупп -C-O-C- (полоса между 1106 см'1 и 1005 см1), карбоксильных групп -СООН- (полоса при 1384 см-1). Пик при 2300 см'1 соответствует пику поглощенных молекул СО2. После экспонирования термовосстановленного оксида графена в растворах, содержащих катионы меди, на ИК спектрах в области 690 - 1130 см'1 наблюдаются полосы поглощения,

которые можно рассматривать как колебания группировок, образовавшихся на поверхности в результате взаимодействия катионов меди с атомами кислорода в составе функциональных групп. Изотермы адсорбции Си2+ на термовосстановленном оксиде многослойного графена имеют вид характерный для изотерм класса Н2 и характеризуются прямолинейным крутовосходящим начальным участком, что свидетельствует о большом сродстве адсорбата к адсорбенту и образовании химичсеких соединений. Вероятно, происходит взаимодействие ионов Си2+ с карбоксильными функциональными группами, что подтверждается незначительным понижением рНраствора. Изотерма аппроксимирована прямой линией, что позволяет использовать для описания процесса адсорбции модель Ленгмюра. Максимальная сорбционная способность термовосстановленного оксида многослойного графена к Си2+ составила ~ 25 мг г'1, что заметно выше, чем сорбционная способность активированных углеродных волокон.

Ключевые слова: оксид графена, термовосстановленный оксид графена, окисленный графит, сорбция, катион

SORPTION OF COPPER (II) CATIONS FROM AQUEOUS SOLUTIONS BY THERMALLY REDUCED GRAPHENE OXIDE

E.V. Yakovleva, S.V. Brudnik, A.V. Yakovlev, T.O. Ryabukhova, O.G. Nevernaya, A.S. Mostovoy, L.N. Olshanskaya

Elena V. Yakovleva (ORCID 0000-0002-8489-9804), Lyubov N. Olshanskaya (ORCID 0000-0002-8449-9368)

Department of Ecology and Technogenic Safety, Saratov State Technical University named after Yu.A. Gagarin, Polytekhnicheskaya st., 77, Saratov, 410054, Russia E-mail: elenayakovleva1977@list.ru, ecos123@mail.ru

Sergey V. Brudnik (ORCID 0000-0001-7093-6494), Andrey V. Yakovlev (ORCID 0000-0002-3542-1927)*

Department of ^emistry and ttemical Engineering of Materials, Saratov State Technical University named after Yu.A. Gagarin, Polytekhnicheskaya st., 77, Saratov, 410054, Russia E-mail: sbrud@mail.ru, aw_71@mail.ru *

Tatiana O. Ryabukhova (ORCID 0000-0001-9099-8158)

Department of General, Bioorganic and Pharmaceutical Chemistry, Saratov State Medical University named after V.I. Razumovsky, Bolshaya Kazachya st., 112, Saratov, 410012, Russia E-mail: eng34@list.ru

Ol'ga G. Nevernaya (ORCID 0000-0001-7644-7747), Anton S. Mostovoy (ORCID 0000-0003-2828-9988)

Department of Natural and Mathematical Sciences, Engels Technolodical Institute (Branch) Yuri Gagarin State Technical University, Svobody sq., 17, Engels, 413100, Russia E-mail: olga19081969@yandex.ru, mostovoy19@rambler.ru

Samples of multilayer graphene oxide in electrolytes based on H2SO4 have been synthesized by the electrochemical method. The results of differential scanning calorimetry and thermogravi-metric analysis reveal an endothermicpeak in the scanning interval up to 100 °C accompanied by the weight loss of about 7%, which may be caused by desorption and evaporation of a certain amount of retained water in the samples. Another endothermic peak appears at 252 °C on the DTA curve and the weight loss of 15% that can be explained by decomposition of labile hydroxyl, epoxy, and carboxyl oxygen-containing functional groups, including those between the layers ofpolygra-phene planes. Thermal exfoliation of multilayer graphene oxide at 250 °C leads to removal of oxygen-containing functional groups, a significant increase in the particle size (Kv = 1490 cm3 g-1), and formation of worm-like structures with a large number of V-shaped pores with a size of 1-10 pm and thickness of polygraphene planes up to 0.01 pm. A specific surface area of the heat-treated

graphene oxide powder is 400-500 m2g-1. The distribution range of thermally reduced multilayer graphene oxide particles in water is 0.3-1400 цт, and the modal size is 211 цт. Under ultrasonic action on an aqueous dispersion, the particle size of the dispersed phase reduces significantly to 0.2-400 цт, with the modal size of 143 цт, which allows a more uniform distribution of carbon material particles in the volume of water. FTIR spectroscopy of thermally reduced graphene oxide reveals the presence of sp2-hybridization C = C in the structure of graphene (its peak at 1627cm1), epoxy groups -COC- (band between 1106 cm1 and 1005 cm1), and carboxylgroups -COOH- (the band at 1384 cm-1). The peak at 2300 cm1 corresponds to the peak of absorbed CO2 molecules. After exposure of thermally reduced graphene oxide in the solutions containing copper cations, the absorption bands are observed in the FTIR range of690 - 1130 cm1, which can be considered as vibrations of groups formed on the surface as a result of interaction of copper cations with oxygen atoms in the composition of functional groups. The Cu2+ adsorption isotherms on a thermally reduced multilayer oxide graphene have the form typical for isotherms of H2 class, and are characterized by a straight steeply ascending initial segment, which indicates a high affinity of the adsorbate to the adsorbent with formation of chemical compounds. A likely explanation is that there is an interaction of Cu2+ ions with carboxyl functional groups, which is confirmed by a slight decrease in the pH of the solution. The isotherm is approximated by a straight line, which allows us to use it to describe the adsorption process of the Langmuir model. The maximum sorption capacity of thermally reduced multilayer graphene oxide to Cu2+ was 25 mg g-1, which is noticeably higher than the sorption capacity of activated carbon fibers.

Key words: graphene oxide, thermally reduced graphene oxide, oxidized graphite, sorption, cation

Для цитирования:

Яковлева Е.В., Брудник С.В., Яковлев А.В., Рябухова Т.О., Неверная О.Г., Мостовой А.С., Ольшанская Л.Н. Сорбция катионов меди (II) из водных растворов термовосстановленным оксидом графена. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 5. С. 35-42 For citation:

Yakovleva E.V., Brudnik S.V., Yakovlev A.V., Ryabukhova T.O., Nevernaya O.G., Mostovoy A.S., Olshanskaya L.N. Sorption of copper (II) cations from aqueous solutions by thermally reduced graphene oxide. ChemChemTech [lzv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 5. P. 35-42

INTRODUCTION

Heavy metals are a common waste contaminant and their recovery is an important environmental and technological challenge. [1]. The following methods are used to remove heavy metal ions, including adsorption, coagulation, ion exchange, etc. Among these methods, adsorption is considered the most practical method and is widely used in various industries. Traditionally, carbon materials are used as sorbents in water purification. Emergence of new forms of carbon nano-materials, such as graphene, graphene oxide (GO) and its precursors, initiated the study of sorbents based on them [2], including removal of metal cations and various petroleum products [3]. Compared to other carbon-containing sorbents, graphene oxide is considered the most promising material for adsorption of various heavy metal ions [4] based on its large specific surface area, hydrophilicity, and negative charge density [5]. The ability of graphene oxide to adsorb various particles is determined by its structure, nature, and concentration of surface reactive groups. GO can effectively

adsorb on the surface such heavy metal cations as: Pt (IV) [6], Pb (II) [7,8], Cu (II) [9,10], Zn (II) [11,12], Cd (II) [13], Co (II) [14]. The adsorptive affinity of exhaust gas for many metal ions is high and varies with the type of heavy metal cation. Here we observe the following dependency: the higher the electronegativity of heavy metal cations, the stronger the attraction of ions to the negatively charged surface of GO. One of the possible options for adsorption is the process of complexation of heavy metals with the surface oxygen-containing functional groups (for example, -OH and -COOH). It should be noted that GO is a bifunctional material, i.e. it can sorb both cations and anions [15]. By obtaining graphene oxides modified by organic molecules, it is possible to achieve an increase in the sorption properties and selectivity for certain types of ions. [16, 17]. Graphene oxide is able to form stable dispersions in water and polar organic solvents, due to various oxygen-containing functional groups (car-boxyl, hydroxyl, phenolic, epoxy, etc.) saturating free bonds of carbon atoms that make up the structure of graphene [18-20]. Carboxyl and hydroxyl groups

found both on the edges and on the basal plane of the GO oxide, lead to a negatively charged surface in a certain pH range, which can be explained by deprotoniza-tion in the solution [21]. These groups are formed during graphene oxidation in a strongly acidic medium; therefore, in aqueous solutions they can participate in ion exchange processes. In our previous works, we showed a possibility for obtaining a multilayer gra-phene oxide by electrochemical oxidation of graphite in the sulfuric acid [22,23] and nitric acid [24] electrolytes. This method is less environmentally hazardous compared to the traditional Hammers method [25].

The aim of this work is to study the process of thermal reduction of the multilayer graphene oxide, its structure and composition of surface compounds, as well as to assess the sorption properties of the obtained material by the Cu2+ cations from aqueous solutions.

MATERIALS AND METHODS

The work used a fraction of 160-200 ^m of natural graphite powder (GB/T 3518-95 Sunshine Resources Holdings Limited Beijing, China). For the electrolyte, we used the 83% H2SO4 obtained by successive dilution of the concentrated H2SO4 with bidistilled water (high purity grade, AO «EKOS-1»). A double-distilled water was obtained using the BE-2 double distiller (PF Livam).

Electrochemical measurements were carried out using the IPC Pro MF potentiostat (NTF "Volta") with a mercury sulfate reference electrode. Electro-chemically oxidized graphite with a reported amount of electricity of 700 mAhhg-1 in the galvanostatic mode was washed in bidistilled water (t = 15-18 °С) for 15 min to remove the residual sulfuric acid compounds. An aqueous dispersion of oxidized graphite was filtered through a polypropylene filter cloth (art: 56306, SINTEKS). Thermal reduction and exfoliation of oxidized graphite was carried out under static conditions for 5-10 s at the temperature of 250 °C (muffle furnace SNOL-1,6.2,5.1/9-I4). The exfoliation coefficient of thermally reduced graphite oxide Kv (см3г-1) was determined by the formula: KV = V/m,

where Vis the volume of thermally expanded graphite, cm3; and m is the weight of a sample of oxidized graphite, g.

The particle size distribution in aqueous suspensions was studied using the Analysette-22 Nano-Tech (Fritsch GmbH) laser particle size analyzer with the measurement range of 0.01-2100 ^m. Investigation of the surface and structure of nanostructured graphite particles was carried out using a scanning electron microscope with a built-in energy dispersive analysis EX-

plorer (Aspex Corporation). Simultaneous thermal analysis (Thermogravimetry and DSC) was carried out on the STA 449 F3 Jupiter, NETZSCH with the heating rate of 10 deg min-1. FTIR spectroscopy of nanostruc-tured graphite particles was performed on the IRTracer-100 (Shimadzu).

To prepare Cu2+ solutions, bidistilled water and state standard samples of Cu2+ were used (OOO TsSOVV 3K-1 MED'GSO 7998-93, lot 27/3K-1-TsSO. 06.2020/07.2023). For accurate measurement of GSO aliquots, pipet-dispensers were used, such as Ekohim OP-500-5000 ц1 (ID470142), Ecohim OP-100-1000 ц1 (IH461801), and a "termo scientific" pipette, single-channel, Light DPOP-1-5-50 (TU 9443007-33189998-2007). To determine the sorption capacity of thermally reduced graphene oxide, a sample of sorbent 0.0065 g was exposed in 10 ml of Cu2+ solution of various concentrations for 3 h until a constant value of Cu2+ concentration was reached.

Upon completion of the sorption process, the solutions were filtered through an ashless filter for the analysis "White Ribbon" d = 11.0 cm (TU 2642-00168085491-2011, LLC "MELIOR XXI"). Concentration of Cu2+ in aqueous solutions was determined by the stripping voltammetry on the TA-Lab voltammet-ric analyzer (NPP Tom'analit). The equilibrium adsorption capacity for copper ions was calculated by the formula:

qe = (С0 - Ce) V/m, where C0 is the initial concentration of Cu2+, mg l-1; Ce is the equilibrium concentration of Cu2+, mg l-1; V is the volume of the solution, 1; and m is the sorbent weight, g.

RESULTS AND DISCUSSION

The route of electrochemical synthesis of a multilayer graphene oxide, including certain physical and chemical properties are described in detail in [23]. The results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) (Fig. 1) reveal an endothermic peak in the scanning range up to 100 °C, accompanied by the weight loss of about 7%, and may be due to desorption and evaporation of a certain amount of retained water in the samples. The obtained results are consistent with the TG data of oxidized graphite obtained by the Hammers method [6] and differ by 2% in the weight loss. Another endothermic peak appears at 252 °C on the DTA curve and the weight loss of 15% can be explained by decomposition of labile hydroxyl, epoxy and carboxyl oxygen-containing functional groups, including those between the layers of polygraphene planes. The subsequent weight loss of graphite oxide is probably due to pyrolysis of

residual oxygen-containing groups and carbon atoms of polygraphene planes. It should be noted that compared to the results presented in [26], the weight loss of the oxidized graphite in the temperature range under study is less by 10% (200 °C) and 25% (400 °C), which may indicate a lower concentration of oxygen-containing functional groups in the electrochemically oxidized graphite. Thermal exfoliation at 250 °C of multilayer graphene oxide leads to the removal of oxygen-containing functional groups [26, 27], a significant increase in the particle size (KV = 1490 cm3 g-1) and formation of worm-like structures with a large number of V-shaped pores (Fig. 2) with 1-10 ^m in size and thickness of poly graphene planes up to 0.01 ^m. The specific surface area of the heat-treated graphene oxide powder is 400-500 m2g-1. The particle distribution range of a thermally reduced multilayer graphene oxide in the water is 0.3-1400 ^m, modal size is 211 ^m (Fig. 3a). Under ultrasonic treatment of the water dispersion, the particle size of the dispersed phase significantly decreases to 0.2-400 ^m, with the modal size of 143 ^m (Fig. 3b), which allows a more uniform distribution of carbon material particles in the volume of water. The

particle distribution range of the thermally reduced multilayer graphene oxide in the water is 0.3-1400 ^m, the modal size is 211 ^m (Fig. 3a). Under ultrasonic influence on the water dispersion, the particle size of the dispersed phase decreases significantly to 0.2-400 ^m, with the modal size of 143 ^m (Fig. 3b), which allows a more uniform distribution of the carbon material particles in the volume of water.

loa 200 MC 4CD 500

Temperature, DC

Fig. 1. TG-DTA of electrochemically oxidized graphite: 1 - differential thermal curve, 2 - thermogravimetric curve Рис. 1. ТГ-ДТА электрохимически окисленного графита: 1- кривая дифферинциально-термическая, 2- кривая термогравиметрическая

a b c

Fig. 2. Scanning electron microscopy of thermally reduced graphene oxide a) x500, b) x5000, с) x25000 Рис. 2. Сканирующая электронная микроскопия термовосстановленного оксида графена a) *500, b) х5000, с) *25000

a b

Fig. 3. Distribution of particles of thermally reduced graphene oxide by size in an aqueous suspension (a) with ultrasonic action (b) Рис. 3. Распределение частиц термовосстановленного оксида графена по размерам в водной суспензии (а) с ультразвуковым

воздействием (b)

The qualitative composition of surface functional groups practically does not change during the

thermal reduction (Fig. 4). There is a noticeable decrease in the peak intensity at 3417 cm-1 and the band

between 2800 cm-1 and 3100 cm-1 compared to the initial multilayer graphene oxide [22]. We also found the presence of sp2 hybridization of C=C in the graphene structure (peak at 1627 cm-1), epoxy groups -COC-(band between 1106 cm-1 and 1005 cm-1), and carboxyl groups -COOH- (band at 1384 cm-1). The peak at 2300 cm-1 corresponds to the peak of absorbed CO2 molecules.

_1_._1_1_1_1_1_

1000 2000 3000 4000

Wavenumbers, см"1

Fig. 4. FTIR spectroscopy of thermally reduced graphene oxide 1- original; 2- modified with Cu2+ Рис. 4. ИК-Фурье спектроскопия термовосстановленного оксида графена. 1- исходный; 2- модифицированный Cu2+

The developed porous structure, a large specific surface area, and the presence of acidic functional groups create the prerequisites for the use of thermally reduced oxide of a multilayer graphene for the sorption of metal cations from aqueous solutions.

According to the obtained results, the adsorption isotherms of Cu2+ on a thermally reduced multilayer graphene oxide (Fig. 5) have the form typical for the isotherms of H2 class, and are characterized by a straight steep rising initial segment, which indicates a high affinity of adsorbate to adsorbent with the formation of chemical compounds. Therefore, the interaction of Cu2+ ions with carboxyl functional groups is likely to occur, which is confirmed by a slight decrease in the pH of the solution. The isotherm is approximated by a straight line, which makes it possible to use it to describe the adsorption process of the Langmuir model. The maximum sorption capacity of a thermally reduced multilayer graphene oxide for Cu2+ was «25 mg g-1, which is noticeably higher than the sorption capacity of activated carbon fibers [8].

After exposure of thermally reduced graphene oxide in the solutions containing copper cations, the absorption bands are observed in the FTIR spectroscopy (Fig. 4) in the region of 690-1130 cm-1, which can be considered as vibrations of groups formed on the surface as a result of interaction of copper cations with

oxygen atoms as part of functional groups. Carbon material modified with copper cations can be used to obtain composite electrochemical coatings according to the methods described in [28, 29].

qe, мг/г

0 50 100 150 200 250 Ce,№/n

a

l/qe 0.041

0.04

0.039

0 0.005 0.01 i/Cc

b

Fig. 5. Isotherms of Cu2+ adsorption by thermally reduced oxide

of multilayer graphene. a - experimental, b - Langmuir Рис. 5. Изотермы адсорбции Cu 2+ термовосстановленным оксидом многослойного графена. а - экспериментальная, b - Ленгмюра

CONCLUSIONS

The electrochemical method is used to synthesize the samples of a multilayer graphene oxide, which under thermal reduction at the temperature of 250 °C leads to formation of foam-like worm-like structures with V-shaped pores and a specific surface area of 400500 m2g-1. The sorption capacity of a thermally reduced multilayer graphene oxide to Cu2+ was «25 mg g-1.

The presented investigation was funded by RFBR according to the research project № 18-29-19048.

The authors declare the absence a conflict of interest warranting disclosure in this article.

Представленное исследование выполнено при финансовой поддержке РФФИ по проекту № 18-29-19048.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ЛИТЕРАТУРА

1. Vardhan K.H., Kumar P.S., Panda R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Molec. Liq. 2019. V. 290. P. 111-197. DOI: 10.1016/j.molliq.2019.111197.

2. Zhao J., Ren W., Cheng H.-M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 2012. V. 22. P. 20197-20202. DOI: 10.1039/C2JM34128J.

3. Кучерова А.Е., Буракова И.В., Бураков А.Е., Брянкин К.В. Изотермы адсорбции ионов свинца (II) графено-выми нанокомпозитами. Вестн. ТГТУ. 2017. Т. 23. № 4. С. 698-706. DOI: 10.17277/vestnik.2017.04.pp.698-706.

4. Peng W., Li H., Liu Y., Song S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Molec. Liq. 2017. V. 230. P. 496-504. DOI: 10.1016/j.molliq.2017.01.064.

5. Gu D., Fein J.B. Adsorption of metals onto graphene oxide: Surface complexation modeling and linear free energy relationships. Colloids and Surf. A: Physicochem. and Eng. Asp. 2015. V. 481. P. 319-327. DOI: 10.1016/j.colsurfa.2015.05.026.

6. Liu L., Liu S., Zhang Q., Li C., Bao C., Liu X., Xiao P. Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide. J. Chem. Eng. 2013. V. 58. P. 209-216. DOI: 10.1021/je300551c.

7. Jun B.-M., Kim S., Kim Y., Her N., Heo J., Han J., Jang M., Park C. M., Yoon Y. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemo-sphere. 2019. V. 231. P. 82-92. DOI: 10.1016/j.chemo-sphere.2019.05.076.

8. Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013. V. 42. P. 5682-5689. DOI: 10.1039/C3DT33097D.

9. Бабкин А.В., Нескоромная Е.А., Бураков А.Е., Буракова И.В. Кинетика сорбции ионов меди (II) из водных растворов оксидом графена. Вестн. ТГТУ. 2018. Т. 24. С. 79-86. DOI: 10.17277/vestnik.2018.01.pp.079-086.

10. White R.L., White C.M., Turgut H., Massoud A., Ryan Tian Z. Comparative studies on copper adsorption by gra-phene oxide and functionalized graphene oxide nanoparti-cles. J. Taiwan. Inst. Chem. Eng. 2018. V. 85. P. 18-28. DOI: 10.1016/j.jtice.2018.01.036.

11. Wang H., Yuan X., Wu Y., Huang H., Zeng G., Liu Y., Wang X., Lin N., Qi Y. Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl. Surf. Sci. 2013. V. 279. P. 432-440. DOI: 10.1016/j.apsusc.2013.04.133.

12. Guerrero-Fajardo C.A., Giraldo L., Moreno-Piraján J. C. Preparation and Characterization of Graphene Oxide for Pb(II) and Zn(II) Ions Adsorption from Aqueous Solution: Experimental, Thermodynamic and Kinetic Study. Nanomaterials. 2020. V. 10. P. 1022. DOI: 10.3390/nano10061022.

13. Bian Y., Bian Z.-Y., Zhang J.-X., Ding A.-Z., Liu S.-L., Wang H. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl. Surf. Sci. 2015. V. 329. P. 269-275. DOI: 10.1016/j.apsusc.2014.12.090.

14. Lingamdinne L.P., Koduru J.R., Roh H Adsorption removal of Co(II) from waste-water using graphene oxide. Hy-drometallurgy. 2016. V. 165. P. 90-96. DOI: 10.1016/j.hy-dromet.2015.10.021.

15. Li Y., Ju W., Yang L., Zhang L., Sun Y. Adsorption behaviors and mechanism of graphene oxide for silver complex anion removal. Appl. Surf. Sci. 2020. V. 529. P. 147112. DOI: 10.1016/j.apsusc.2020.147112.

REFERENCES

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Vardhan K.H., Kumar P.S., Panda R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Molec. Liq. 2019. V. 290. P. 111-197. DOI: 10.1016/j.molliq.2019.111197.

2. Zhao J., Ren W., Cheng H.-M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 2012. V. 22. P. 20197-20202. DOI: 10.1039/C2JM34128J.

3. Kucherova A.E., Burakova I.V., Burakov A.E., Bryankin K.V. Isotherms of adsorption of lead (II) ions by graphene nanocomposites. Vestn. TGTU. 2017. V. 23. N 4. P. 698-706 (in Russian). DOI: 10.17277/vestnik.2017.04.pp.698-706.

4. Peng W., Li H., Liu Y., Song S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Molec. Liq. 2017. V. 230. P. 496-504. DOI: 10.1016/j.molliq.2017.01.064.

5. Gu D., Fein J.B. Adsorption of metals onto graphene oxide: Surface complexation modeling and linear free energy relationships. Colloids Surf. A: Physicochem. and Eng. Asp. 2015. V. 481. P. 319-327. DOI: 10.1016/j.colsurfa.2015.05.026.

6. Liu L., Liu S., Zhang Q., Li C., Bao C., Liu X., Xiao P. Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide. J. Chem. Eng. 2013. V. 58. P. 209-216. DOI: 10.1021/je300551c.

7. Jun B.-M., Kim S., Kim Y., Her N., Heo J., Han J., Jang M., Park C. M., Yoon Y. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere. 2019. V. 231. P. 82-92. DOI: 10.1016/j.chemosphere.2019.05.076.

8. Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013. V. 42. P. 5682-5689. DOI: 10.1039/C3DT33097D.

9. Babkin A.V., Neskoromnaya E.A., Burakov A.YE., Burakova I.V. Kinetics of sorption of copper (II) ions from aqueous solutions with graphene oxide. Vestn. TGTU. 2018. V. 24. P. 79-86 (in Russian). DOI: 10.17277/vestnik.2018.01.pp.079-086.

10. White R.L., White C.M., Turgut H., Massoud A., Ryan Tian Z. Comparative studies on copper adsorption by gra-phene oxide and functionalized graphene oxide nanoparti-cles. J. Taiwan. Inst. Chem. Eng. 2018. V. 85. P. 18-28. DOI: 10.1016/j.jtice.2018.01.036.

11. Wang H., Yuan X., Wu Y., Huang H., Zeng G., Liu Y., Wang X., Lin N., Qi Y. Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl. Surf. Sci. 2013. V. 279. P. 432-440. DOI: 10.1016/j.apsusc.2013.04.133.

12. Guerrero-Fajardo C.A., Giraldo L., Moreno-Piraján J. C. Preparation and Characterization of Graphene Oxide for Pb(II) and Zn(II) Ions Adsorption from Aqueous Solution: Experimental, Thermodynamic and Kinetic Study. Nanomaterials. 2020. V. 10. P. 1022. DOI: 10.3390/nano10061022.

13. Bian Y., Bian Z.-Y., Zhang J.-X., Ding A.-Z., Liu S.-L., Wang H. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl. Surf. Sci. 2015. V. 329. P. 269-275. DOI: 10.1016/j.ap-susc.2014.12.090.

14. Lingamdinne L.P., Koduru J.R., Roh H. Adsorption removal of Co(II) from waste-water using graphene oxide. Hy-drometallurgy. 2016. V. 165. P. 90-96. DOI: 10.1016/j.hy-dromet.2015.10.021.

16. Jiang T., Liu W., Mao Y., Zhang L., Cheng J., Gong M., Zhao H., Dai L., Zhang S., Zhao Q. Adsorption behavior of copper ions from aqueous solution onto graphene oxide-CdS composite. Chem. Eng. J. 2015. V. 259. P. 603-610. DOI: 10.1016/j.cej.2014.08.022.

17. Li X., Wang S., Liu Y., Jiang L., Song B., Li M., Zeng G., Tan X., Cai X., Ding Y. Adsorption of Cu(II), Pb(II), and Cd(II) Ions from Acidic Aqueous Solutions by Diethylene-triaminepentaacetic Acid-Modified Magnetic Graphene Oxide. J. Chem. Eng. Data. 2017. V. 62. P. 407-416. DOI: 10.1021/acs.jced.6b00746.

18. Yan J.-A, Chou M.Y. Oxidation functional groups on graphene: Structural and electronic properties. Phys. rev. B. 2010. V. 82. N 12. P. 12-15. DOI: 10.1103/PhysRevB.82.125403.

19. Song J., Wang X., Chang C.-T. Preparation and Characterization of Graphene Oxide. J. Nanomater. 2014. V. 2. P. 1-6. DOI: 10.1155/2014/276143.

20. Solov'ev M.E., Raukhvarber A.B., Savinskii N.G., Irzhak V.I. Simulation and synthesis of graphene oxide from expanded graphite. RUGC. 2017. V. 87. P. 805-811. DOI: 10.1134/S1070363217040223.

21. Sur U.K., Saha A., Datta A., Ankamwar B., Surti F., Dutta Roy S., Roy D. Synthesis and characterization of stable aqueous dispersions of graphene. Bull. Mater. Sci. 2016. V. 39. P. 159-165. DOI: 10.1007/s12034-015-0893-0.

22. Yakovlev A.V., Yakovleva E.V., Tseluikin V.N., Krasnov V.V., Mostovoy AS., Rakhmetulina L.A., Frolov IN. Electrochemical Synthesis of Multilayer Graphene Oxide by Anodic Oxidation of Disperse Graphite. Russ. J. Electrochem. 2019. V. 55. N 12. P. 1196-1202. DOI: 10.1134/S102319351912019X.

23. Yakovlev A.V., Yakovleva E.V., Tseluikin V.N., Kras-nov V.V., Mostovoy A.S., Vikulova M.A., Frolov I.H., Rakhmetulina L.A. Synthesis of Multilayer Graphene Oxide in Electrochemical Graphite Dispersion in H2SO4. Russ. J. Appl. Chem. 2020. V. 93. N 2. P. 219-224. DOI: 10.1134/S 1070427220020093.

24. Яковлева Е.В., Яковлев А.В., Мостовой А.С., Це-луйкин В.Н., Фролов И.Н. Электрохимическое диспергирование графита в 58% азотнойкислоте для получения многослойного оксида графена. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 3. С. 59-65. DOI: 10.6060/ivkkt.20216403.6324.

25. Hammers W.S., Offman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958. V. 80. N 6. P. 1339-1339. DOI: 10.1021/ja01539a017.

26. Hou D., Liu Q., Wang X., Quan Y., Qiao Z., Yu L., Ding S. Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. J. Materiomics. 2018. V. 4. Р. 256-265. DOI: 10.1016/j.jmat.2018.01.002.

27. Johnson D.W., Dobson B.P., Coleman K.S. A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 2015. V. 20. P. 367-382.

28. Tseluikin V.N., Solov'ova N.D., Gun'kin I.F. Elecdtro-deposition of nickel-fullerene C60 composition coatings. Protect. Metals. 2007. V. 43. N 4. P. 388 - 390. DOI: 10.1134/S003317320704012.

29. Tseluikin V.N., Chubenko IS., Gun'kin IF., Pankst'yanov A.Yu. Colloidal dispersion of fullerene C60 free of organic solvents. Russ. J. Appl. Chem. 2006. V. 79. N 2. P. 325 - 326. DOI: 10.1134/S1070427206020315.

15. Li Y., Ju W., Yang L., Zhang L., Sun Y. Adsorption behaviors and mechanism of graphene oxide for silver complex anion removal. Appl. Surf. Sci. 2020. V. 529. P. 147112. DOI: 10.1016/j.apsusc.2020.147112.

16. Jiang T., Liu W., Mao Y., Zhang L., Cheng J., Gong M., Zhao H., Dai L., Zhang S., Zhao Q. Adsorption behavior of copper ions from aqueous solution onto graphene oxide-CdS composite. Chem. Eng. J. 2015. V. 259. P. 603-610. DOI: 10.1016/j.cej.2014.08.022.

17. Li X., Wang S., Liu Y., Jiang L., Song B., Li M., Zeng G., Tan X., Cai X., Ding Y. Adsorption of Cu(II), Pb(II), and Cd(II) Ions from Acidic Aqueous Solutions by Diethylene-triaminepentaacetic Acid-Modified Magnetic Graphene Oxide. J. Chem. Eng. Data. 2017. V. 62. P. 407-416. DOI: 10.1021/acs.jced.6b00746.

18. Yan J.-A., Chou M.Y. Oxidation functional groups on graphene: Structural and electronic properties. Phys. rev. B. 2010. V. 82. N 12. P. 12-15. DOI: 10.1103/PhysRevB.82.125403.

19. Song J., Wang X., Chang C.-T. Preparation and Characteriza-tionof Graphene Oxide. J. Nanomater.. 2014. V. 2. P. 1-6. DOI: 10.1155/2014/276143.

20. Solov'ev M.E., Raukhvarber A.B., Savinskii N.G., Irzhak V.I. Simulation and synthesis of graphene oxide from expanded graphite. RUGC. 2017. V. 87. P. 805-811. DOI: 10.1134/S 1070363217040223.

21. Sur U.K., Saha A., Datta A., Ankamwar B., Surti F., Dutta Roy S., Roy D. Synthesis and characterization of stable aqueous dispersions of graphene. Bull. Mater. Sci. 2016. V. 39. P. 159-165. DOI: 10.1007/s12034-015-0893-0.

22. Yakovlev A.V., Yakovleva E.V., Tseluikin V.N., Krasnov V.V., Mostovoy AS., Rakhmetulina L.A., Frolov IN. Electrochemical Synthesis of Multilayer Graphene Oxide by Anodic Oxidation of Disperse Graphite. Russ. J. Electrochem. 2019. V. 55. N 12. P. 1196-1202. DOI: 10.1134/S102319351912019X.

23. Yakovlev A.V., Yakovleva E.V., Tseluikin V.N., Krasnov V.V., Mostovoy A.S., Vikulova M.A., Frolov I.H., Rakhmetulina L.A. Synthesis of Multilayer Graphene Oxide in Electrochemical Graphite Dispersion in H2SO4. Russ. J. Appl. Chem. 2020. V. 93. N 2. P. 219-224. DOI: 10.1134/S 1070427220020093.

24. Yakovleva E.V., Yakovlev A.V., Mostovoy AS., Tseluikin V.N., Frolov IN. Electrochemical dispersion of graphite in 58% nitric acid to produce multilayer graphene oxide. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 3. P. 59-65. DOI: 10.6060/ivkkt.20216403.6324.

25. Hammers W.S., Offman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958. V. 80 N 6. P. 1339-1339. DOI: 10.1021/ja01539a017.

26. Hou D., Liu Q., Wang X., Quan Y., Qiao Z., Yu L., Ding S. Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. J. Materiomics. 2018. V. 4. Р. 256-265. DOI: 10.1016/j.jmat.2018.01.002.

27. Johnson D.W., Dobson B.P., Coleman K.S. A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 2015. V. 20. P. 367-382.

28. Tseluikin V.N., Solov'ova N.D., Gun'kin I.F. Elecdtro-deposition of nickel-fullerene C60 composition coatings. Protect. Metals. 2007. V. 43. N 4. P. 388 - 390. DOI: 10.1134/S003317320704012.

29. Tseluikin V.N., Chubenko IS., Gun'kin IF., Pankst'yanov A.Yu. Colloidal dispersion of fullerene C60 free of organic solvents. Russ. J. Appl. Chem. 2006. V. 79. N 2. P. 325 - 326. DOI: 10.1134/S 1070427206020315.

Поступила в редакцию (Received) 09.11.2021 Принята к опубликованию (Accepted) 24.02.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.