Научная статья на тему 'Сопротивление горных пород разрушению при бурении скважин'

Сопротивление горных пород разрушению при бурении скважин Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
2715
242
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СКВАЖИНА / ДИФФЕРЕНЦИАЛЬНОЕ ДАВЛЕНИЕ / РАЗРУШАЮЩЕЕ НАПРЯЖЕНИЕ / БУРИМОСТЬ / БУРОВОЙ РАСТВОР

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Долгий И. Е., Николаев Н. И.

Приведены характеристики горных пород по степени их буримости. Рассмотрены вопросы влияния дифференциального давления на буримость горных пород, изменения прочности горных пород в зависимости от глубины их залегания и условий разрушения. Проанализированы вопросы взаимосвязи технологических процессов по разрушению горных пород на забое скважины и разрушающих напряжений. Дана оценка взаимосвязи между разрушающими напряжениями и деформациями горных пород с учетом их структурного изменения и скорости нагружения при разрушении. Оценена возможность и целесообразность полученных закономерностей между напряжениями, деформациями и дифференциальным давлением при решении практических задач по эффективному разрушению горных пород при бурении. Рассмотрены вопросы теоретического обоснования разрушения горных пород при работе породоразрушающего инструмента в забойных условиях. Показано, что эффект разрушения горной породы при бурении зависит не только от значения разрушающей нагрузки, но и от скорости ее приложения.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по энергетике и рациональному природопользованию , автор научной работы — Долгий И. Е., Николаев Н. И.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Сопротивление горных пород разрушению при бурении скважин»

ёИ.Е.Долгий, Н.И.Николаев

Сопротивление горных пород разрушению при бурении скважин

УДК 622.24.051

СОПРОТИВЛЕНИЕ ГОРНЫХ ПОРОД РАЗРУШЕНИЮ ПРИ БУРЕНИИ СКВАЖИН

И.Е.ДОЛГИЙ, Н.И.НИКОЛАЕВ

Санкт-Петербургский горный университет, Россия

Приведены характеристики горных пород по степени их буримости. Рассмотрены вопросы влияния дифференциального давления на буримость горных пород, изменения прочности горных пород в зависимости от глубины их залегания и условий разрушения. Проанализированы вопросы взаимосвязи технологических процессов по разрушению горных пород на забое скважины и разрушающих напряжений. Дана оценка взаимосвязи между разрушающими напряжениями и деформациями горных пород с учетом их структурного изменения и скорости нагружения при разрушении. Оценена возможность и целесообразность полученных закономерностей между напряжениями, деформациями и дифференциальным давлением при решении практических задач по эффективному разрушению горных пород при бурении. Рассмотрены вопросы теоретического обоснования разрушения горных пород при работе породоразрушающего инструмента в забойных условиях. Показано, что эффект разрушения горной породы при бурении зависит не только от значения разрушающей нагрузки, но и от скорости ее приложения.

Ключевые слова: скважина, дифференциальное давление, разрушающее напряжение, буримость, буровой раствор.

Как цитировать эту статью: Долгий И.Е. Сопротивление горных пород разрушению при бурении скважин / И.Е.Долгий, Н.И.Николаев // Записки Горного института. 2016. Т.221. С.655-660. DOI 10.18454/РЖ2016.5.655

Введение. Одними из основных факторов, определяющих производительность труда в процессе бурения скважин, являются буримость горных пород, разрушающие напряжения на забое скважины и состав бурового раствора. За последние годы различными научно-исследовательскими организациями выполнен большой объем исследований в области механики горных пород применительно к условиям бурения глубоких скважин в различных нефтегазоносных районах страны. Опыт многих предприятий показывает, что, если при комплектовании наборов породоразрушающего инструмента учитываются физико-механические и деформационные свойства пород в проходимых интервалах с учетом воздействия на забой скважины бурового раствора, показатели отработки долот повышаются на 20-25 % как по проходке, так и по механической скорости бурения.

Сказанное свидетельствует о необходимости комплексных исследований, охватывающих широкий круг вопросов, связанных с изучением закономерностей забойных процессов при бурении глубоких скважин, направленных на эффективное разрушение горных пород на забое.

Анализ современного состояния вопроса. Метод подбора состава бурового раствора и фракционного состава кольматанта подробно описан в работах Г.Г.Ишбаева, М.Р.Дальмиева, С.Викерса и др. [2-4, 8, 9, 17, 20]. Из анализа этих работ следует, что основным методом расчета фракционного состава являлось правило Абрамса, согласно которому буровой раствор должен содержать тампонирующие материалы с диаметром частиц больших или равных одной трети среднего размера пор породы, с концентрацией минимум 5 % от общего содержания твердых частиц в буровом растворе. Только в этом случае будут иметь место разрушающие напряжения. Главным недостатком этого метода является то, что поддержание определенного размера частиц дисперсной фазы позволяет лишь начать кольматацию, но не обеспечивает полной упаковки пор пласта.

Для преодоления этого недостатка С.Викерсом [6, 20] был разработан метод, основанный на теории идеальной упаковки. Согласно этой теории идеальная упаковка возникает, когда зависимость совокупного содержания частиц в растворе в процентах от квадратного корня размера частиц представлена прямолинейной зависимостью. В этом случае буровой раствор будет образовывать фильтрационную корку с наименьшей проницаемостью. Теория идеальной упаковки, хотя и является одной из основных, применяемых в нефтяной индустрии, имеет свои недостатки, основным из которых является то, что она в целом основана на оценке среднего размера пор, которая определяется извлечением квадратного корня из величины проницаемости. Точность метода могла бы быть обеспечена, если бы распределение размера пор в породе подчинялось прямолинейной зависимости. На практике линейной зависимости не существует и наиболее часто встречающийся в пласте размер пор не будет равен среднему размеру. Полученные результаты исследований не дают ответа на вопрос эффективности разрушения горных пород на забое бурящейся скважины.

Использование бурового раствора, снижающего проникновение скважинного флюида и фронта давления в призабойную зону пласта, не принесет желаемого результата по эффективности разрушения породы на забое без применения оптимальных технико-технологических параметров, обеспечи-

ёИ.Е.Долгий, Н.И.Николаев

Сопротивление горных пород разрушению при бурении скважин

вающих необходимое воздействие на породу. При обсуждении проблем, связанных со стабильностью ствола скважины и эффективностью разрушения пород на забое, основное внимание обычно уделяется взаимодействию горных пород и бурового раствора, хотя многие исследователи соглашаются с тем, что параметры режимов бурения имеют значительное влияние на стабильность бурильной колонны и приводят к значительному увеличению механической скорости проходки [14-16].

Процесс бурения скважины заключается в ее углублении путем передачи крутящего момента к долоту с помощью бурильной колонны либо забойного двигателя, при этом энергия, передаваемая с поверхности, затрачивается на разрушение горной породы. Для определения количества энергии, требуемой для разрушения породы на забое скважины, Р.Теале [19] было введено понятие удельной механической энергии. Удельная механическая энергия описывается как усилие, необходимое для удаления определенного объема породы, и является функцией от параметров бурения, характеристик выбуренной породы и динамического воздействия долота на породу.

В лабораторных условиях энергия, требуемая для разрушения породы, остается величиной относительно постоянной и равной пределу прочности породы на одноосное сжатие [19]. В полевых же условиях при использовании буровой установки присутствует коэффициент полезного действия. Анализ бурения показывает, что 30-40 % энергии является эффективной, а 70-60 % - не эффективной [5, 10, 13, 18]. Главными причинами потери эффективности являются вибрации при бурении (продольные, крутильные, изгибные) и литология, а также конструкция низа бурильной колонны (КНБК), геометрия скважины, траектория скважины, коэффициент трения и др. Так, при превышении значений удельной механической энергии проявляются повышенные вибрации, ведущие к повышенному контакту бурового инструмента и стенок скважины, нерациональному расходу энергии, дестабилизирующие вмещающую породу и фильтрационную корку.

Воздействие вибрации бурильной колонны на стабильность ствола скважины и эффективность разрушения породы достаточно полно описано в литературе. В частности, В.А.Дунаевский [12] и М.В.Дукстра [11] утверждают, что бурильная колонна подвергается значительному воздействию вибраций, причем основными источниками вибраций являются взаимодействия между долотом и породой, бурильной колонной и стенкой скважины. Авторы указывают, что вибрации в основном приводят к усталостному разрушению бурильных труб и, в частности, к разрушению горных пород на забое.

Из изложенного очевидно, что эффективность разрушения горных пород на забое скважины, их буримость, является функцией многих переменных и зависит от природных, технологических и технических факторов. В связи с этим проблема буримости горных пород применительно к условиям бурения глубоких скважин до сих пор окончательно не решена.

В качестве показателя буримости, как правило, принимают либо величину проходки, либо скорость, полученные при бурении в тех или иных породах при определенных условиях, без учета разрушающих напряжений, зависящих, в частности, от параметров скважины и качества бурового раствора.

Результаты выполненных исследований позволяют более полно решать задачи по эффективному выбору технических и технологических решений при бурении скважин.

Параметры эффективности разрушения горных пород при бурении. В процессе бурения скважин, как и при всяком другом технологическом процессе, на разрушение единицы объема горной породы затрачивается определенное количество энергии. В свою очередь, энергия, затраченная на разрушение, определяется не одной какой-либо механической характеристикой, а всей совокупностью физико-механических свойств горных пород.

В этом случае удельная объемная работа разрушения будет наиболее объективным показателем для классификации горных пород по буримости. При этом следует учитывать, что механические характеристики горных пород, определяющие общую работу разрушения, должны быть получены в условиях, учитывающих влияние горного и гидростатического давлений.

К настоящему времени установлена четкая связь между физико-механическими характеристиками горных пород и категориями по буримости [6], что позволяет выбирать породоразрушающий инструмент и режимные параметры бурения для конкретных геологических разрезов.

С увеличением глубины залегания пород возрастает их сопротивление разрушению. Это происходит в результате как роста горного давления, так и уплотнения пород. Поэтому с увеличением глубины скважины резко возрастают затраты энергии на разрушение, т.е. ухудшается буримость горных пород. Анализ влияния глубины залегания горных пород на энергоемкость их разрушения показал, что, чем выше гидростатическое давление на забой скважины, тем быстрее с глубиной растет энергоемкость разрушения пород.

ёИ.Е.Долгий, Н.И.Николаев

Сопротивление горных пород разрушению при бурении скважин

8п, мм/об

0,3 -

0,2

0,1 -

гл i

500

1000

1500

2000

H, м

Рис. 1. Зависимость интенсивности разрушения пород от глубины скважины

а

P

Pc

i * 1 < \ < ' \ \

w V/ V/ У, ///

Рис.2.Схема к механизму влияния давления в скважине на разрушение пород

0

О влиянии глубины залегания пород на интенсивность их разрушения можно судить по результатам промысловых наблюдений, проведенных авторами работы при бурении скважин на Усинской и Возейской площадях (рис.1). Из рис.1 видно, что по мере увеличения глубины скважины буримость пород резко уменьшается. Изучение механических свойств разбуриваемых пород показало, что изменение их твердости и пластичности с глубиной невелико и не может обусловить столь существенного снижения буримости пород.

Увеличение гидростатического давления вследствие роста глубины залегания составляет около 1,0 кПа на каждые 1000 м. При твердости рассматриваемых пород около 25 кПа это значение также не может обусловить многократного изменения буримости пород.

Анализ литературных источников [1, 6] и обобщение промысловых исследований по рассматриваемым площадям позволили установить, что решающее влияние на снижение буримости оказывают коэффициент уплотнения горной породы X и разность давлений в скважине Рс и в разбуриваемом пласте Рп, называемая дифференциальным давлением:

Р = Р - Р

1 д 1 c 1 и-

С учетом данных, приведенных в работе [7], и анализа промысловых материалов влияние дифференциального давления на буримость горных пород можно объяснить, рассматривая закономерности вдавливания индентора в горную породу (рис.2). Под действием давления на индентор в горной породе формируется ядро разрушения, которое создает давление на окружающую среду. Составляющая давления, направленная вверх на отрыв окружающей индентор породы, составляет порядка 4-7 % от давления на индентор. При образовании трещины отрыва (I-I на рис.2) в плотной горной породе образуется полость, давление в которой равно нулю. Раскрытию трещины препятствует давление Рс, которое создает противодействующую нагрузку на отрываемую часть горной породы. Тогда

Рп = жРс( r2- а2). (1)

Из выражения (1) следует, что чем больше значение давления в скважине, тем больше его влияние на заключительную стадию разрушения породы при вдавливании индентора.

Если пласт пористый и давление поровой жидкости равно Рп, можно принять, что и давление в трещине также равно Рп. В этом случае выражение (1) примет вид

Рп = п(Рс - Рп)( r2- а2),

т.е. на заключительную стадию разрушения будет оказывать влияние перепад давления между скважиной и пластом.

Пористые пласты, как правило, проницаемы. Фильтрация жидкости из области высокого давления в область низкого давления приводит к образованию переходной зоны, в которой давление постепенно меняется от Рс до Р (рис.2).

Очевидно, в плотных породах мощность переходной зоны равна нулю и действующий на глубине разрушения перепад давления 5р будет равен давлению в скважине (рис.3, а).

Если пласт пористый, а мощность переходной зоны меньше 8р, то действующий перепад равен дифференциальному давлению (рис.3, б). И лишь в случае, когда мощность переходной зоны больше 8р, действующий перепад меньше дифференциального давления (рис.3, в).

ёИ.Е.Долгий, Н.И.Николаев

Сопротивление горных пород разрушению при бурении скважин

Рс

Рж

Рс

Рж

Рп

Рс

Рж

Рп

Рис.3. Изменение действующего дифференциального давления при разрушении горной породы на глубину 5р: а - плотная порода; б - малопроницаемая порода; в - высокопроницаемая порода; г - порода, в которой Рп > Рс

ст ст,-

Рис.4. Изменение зависимости ст от 8 при различных значениях структурного коэффициента 0

б

а

в

г

ст

с

0

0

0

0

5

р

г

2

г

г

Уменьшение действующего перепада давления тем значительней, чем больше проницаемость пород и время фильтрации и чем выше способность жидкости фильтроваться. Время фильтрации тем больше, чем меньше скорость вращения породоразрушающего инструмента.

Если давление в пласте больше, чем давление в скважине, то будет иметь место перепад давления обратного знака (рис.3, г), способствующий эффективному отрыву частиц породы от забоя. На эффективность разрушения горной породы на забое скважины кроме перепада давления существенное влияние оказывает разрушающее напряжение. В процессе бурения скважин с промывкой разрушающее напряжение в горных породах увеличивается вследствие действия на забой скважины гидростатического давления бурового раствора.

Коэффициент уплотнения горной породы X, в связи с увеличением глубины бурения при наличии бурового раствора в скважине, выражается зависимостью

X = 1 + Ур#0 / 105р,

где ур - плотность промывочной жидкости; Н0 - глубина скважины; 5р - предел прочности горной породы при сжатии.

Заметное увеличение разрушающего напряжения горной породы на глубине наблюдается при малом 5р, тогда как в случае бурения крепкой породы X увеличивается незначительно. Так, например, для Усинского месторождения при Н0 = 1000 м, плотности бурового раствора ур = 1,3 г/см3 и 5р = 0,1 МПа коэффициент X = 2,3, а при 5р = 1,0 МПа коэффициент X = 1,1.

С учетом структурного изменения горной породы при ее нагружении зависимость между напряжением ст и деформацией в может быть представлена зависимостью

ст = 2Ев / (1 + 0),

где Е - модуль естественной упругости, при котором отсутствует остаточная деформация; 0 - структурный коэффициент, изменяющийся при нагружении твердого тела от единицы (упругое состояние) до нуля (пластичное состояние).

Структурный коэффициент можно определить из зависимости

0 = 1 - х / г, (2)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где х - период релаксации; t - время деформации.

На рис.4 показано изменение зависимости ст от в, иллюстрирующее, что при 0 = 1 горная порода проявляет только упругие свойства, т.е. стс = Ев, а при 0 = 0 проявляется пластичность горной породы, т.е. х = t.

Для определения зависимости разрушающего напряжения горной породы от скорости приложения нагрузки определим отношение напряжении ст, при 0 < 1 и стс при 0 = 1 из зависимости

ст, / стс = 2в, / (1 + 0)вс.

Поскольку

(1 + 0) = 2 - х / t = 2[^ - 0,5х) /

Ж И.Е.Долгий, Н.И.Николаев 00110.18454/РМ1.2016.5.655

Сопротивление горных пород разрушению при бурении скважин

получим

Ъ / Сс = ы / (г - 0,5х)8о = У / У,

где У и Ус - скорости приложения нагрузки.

Вследствие пористости горной породы значение деформации до разрушения породы увеличивается на Л8 и поэтому напряжение о, уменьшается на значение коэффициента пористости Кп, следовательно,

о = ос(1 - Кп)У / Ус.

Таким образом, с увеличением скорости деформации сопротивление разрушению горной породы увеличивается. При увеличении пористости или трещиноватости влияние скорости на величину разрушающего напряжения уменьшается.

В связи с тем, что напряжение для пластичного или вязкого состояния твердого тела при постоянной скорости нагружения определяется из зависимости о, = цУ, где ц - коэффициент вязкости, сравнение этой зависимости с уравнением (2) позволяет получить выражение

цс = (1 - Кд)ос / Ус,

где цс - коэффициент начальной или естественной вязкости горной породы.

Удельная работа разрушения, или разрушающее напряжение 5р горных пород, - физическая величина и согласно решению группы прочности Международного бюро по механике горных пород при определении 5р скорость нагружения Ун должна быть в пределах от 50 до 100, тогда

5р = Ун(о = (5-10)0*0,

где *0 - время деформации образца породы до ее разрушения.

Заключение. На эффективность разрушения пород на забое бурящейся скважины решающее влияние оказывает дифференциальное давление, значение которого зависит от физико-механических свойств горных пород, плотности бурового раствора, его вязкости и разрушающего напряжения на забое скважины.

Следовательно, при проектировании технико-технологических параметров разрушения горных пород при бурении необходимо учитывать не только их физико-механические и деформационные характеристики, но и характер технико-технологических взаимодействий породоразрушающего инструмента с горной породой.

ЛИТЕРАТУРА

1. Бидрин Д.И. Промысловые исследования влияния дифференциального давления на механическую скорость проходки / Д.И.Бидрин, Е.И.Бенит // Бурение.1969. № 7. С.41-52.

2. ГрейД.Р. Состав и свойства буровых агентов (промывочных жидкостей): Пер. с англ. / Д.Р.Грей, С.Г.Дарли. М.: Недра, 1985. 509 с.

3. Ишбаев Г.Г. Теория подбора фракционного состава кольматанта / Г.Г.Ишбаев, М.Р.Дальмиев // Бурение и нефть. 2011. № 5. С.34-39.

4. Мурфи Д. Факторы, влияющие на скорость бурения // Бурение. 1969. № 12. С.18-35.

5. Ружников А.Г. Удельная механическая энергия как критерий подбора оптимальных параметров режимов бурения // Электр. научный журнал «Нефтегазовое дело». 2014. № 5. С.1-13.

6. Солодухин М.А. Справочник техника-геолога по инженерно-геологическим и гидро-геологическим работам / М.А.Солодухин, И.В.Архангельский. М.: Недра, 1981. 282 с.

7. Эйгелес Р.М. Разрушение горных пород при бурении. М.: Недра, 1971. 163 с.

8. Abrams A. Mud Design to Minimize Rock Impairment Due to Particle Invasion // Journal of petroleum technology. 1977. N 5713. P.7-12.

9. ANSI/API 131/ISO 10416 Recommended Practice for Laboratory Testing of Drilling Fluids / American petroleum institute. 2004. 137 p.

10. Celada B. The use of the special drilling energy for rock mass characterization and TBM drilling during tunnel construction / B.M.Celada, J.M.Gakda, C.Vunoz // ITA - AITES World Tunnel Congress. Budapest. Hungary. 2009. P.9-12.

11. DukstraM.W. Drillstring Component Mass Imbalance: A. Major Source of Downhole Vibration / M.W.Dukstra, D.S-K.Chen, T.M.Warren // Journal of petroleum technology. 1995. N 29350. P.2-8.

12. Dunayevskye V.A. Dynamic Stability of Drillstring / V.A.Dunayevskye, F.Abbassian, A.Judzis // Journal of petroleum technology SPE Drilling and Completion. 1993. N 14329. P.5-9.

13. FredE.B. Maximizing ROP With Real - Time Analysis of Digital Data and MSE / E.B.Fred, J.W.Witt, S.M.Remmert // International Petroleum Technology Conference. 2005. N 10607. P.8-14.

14. Helio S. Consequences and Relevance of Drillstring Vibration on Wellbore Stability / S.Helio, R.Plasido, C.Wolter // Journal of petroleum technology. 1999. N 52820. P.3-7.

ёИ.Е.Долгий, Н.И.Николаев

Сопротивление горных пород разрушению при бурении скважин

15. IbrahimA.A. Drilling mechanics: Consequences and relevance of drill string vibration on wellbore stability / A.A.Ibrachim, T.A.Musa, A.M.Fadoul // Journal of applied sciences. 2004. N 4 (1). P.106-109.

16. Joao C.R. Drillstring Vibration and Wellbore Instability / C.R.Joao, R.H.Santos, Y.D.Galeano // Journal of Energy Resources. 2002. N 124 (4). P.217-222.

17. Nikolas D. New Permeability Plugging apparatus Procedure Addresses Safety and Technology / D.Nikolas, P.Mihalik, P.R.Lundie // Journal of petroleum technology. 1999. N 52815. P.14-16.

18. PessierR.S. Quantifying Common Drilling Problems with Mechanical Specific Energy and Bit - Specific Coefficient of Sliding Friction / R.S.Pessier, M.J.Fear // Journal of petroleum technology. 1992. N 245884. P.14-16.

19. Teale R. The Concept of Special Energy in Rock Drilling // Intl. J. Rock Mech. Mining Ser. 1965. N 1. P.57-73.

20. Viskers S. New Methodology that Surpasses Current Bridging Theories to Efficiently Seal as Varied Pore Throat Distribution as Found in Natural Reservoir Formations / S.Viskers, M.Cowie, T.Jones // Wiertniktwo Nafta gas. 2006. Vol.23/1/. P.501-515.

Авторы: И.Е.Долгий, д-р техн. наук, профессор, dol@mail. ru (Санкт-Петербургский горный университет, Россия), Н.И.Николаев, д-р техн. наук, профессор, nikinik@mail.ru (Санкт-Петербургский горный университет, Россия).

Статья принята к публикации 15.04.2016.

i Надоели баннеры? Вы всегда можете отключить рекламу.