Научная статья на тему 'SOME THERMODYNAMIC ASPECTS OF THE REDUCTION OF MAGNETITE IN THE PRESENCE OF CARBON'

SOME THERMODYNAMIC ASPECTS OF THE REDUCTION OF MAGNETITE IN THE PRESENCE OF CARBON Текст научной статьи по специальности «Химические науки»

CC BY
50
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MAGNETITE / REDUCTION / CARBON / CARBOTHERMY / WUSTITE / THERMODYNAMICS / ENTHALPY / ENTROPY / GIBBS ENERGY / EQUILIBRIUM CONSTANT / TEMPERATURE

Аннотация научной статьи по химическим наукам, автор научной работы — Khojiev Shokhrukh, Nuraliev Oybek, Berdiyarov Bakhriddin, Matkarimov Sokhib, Akramov O’Ral

The article presents a study of the thermodynamic parameters of the process of reduction of the mineral magnetite in the presence of carbon and their relationship. Accordingly, as the temperature rises, the likelihood of the magnetite reduction reaction increases. When the temperature reaches 928 K, the reaction system reaches absolute equilibrium, and from 929 K the reduction reaction shifts to the right according to the Le-Chatelier principle. When the temperature reaches 1273 K, the equilibrium constant of the chemical reaction reaches its maximum value.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SOME THERMODYNAMIC ASPECTS OF THE REDUCTION OF MAGNETITE IN THE PRESENCE OF CARBON»

UNIVERSUM:

№ 3 (84)_ДД ТЕХНИЧЕСКИЕ НАУКИ_март. 2021 г.

SOME THERMODYNAMIC ASPECTS OF THE REDUCTION OF MAGNETITE

IN THE PRESENCE OF CARBON

Shokhrukh Khojiev

Senior teacher of department Metallurgy, Tashkent State Technical University, Uzbekistan, Tashkent E-mail: hojiyevshohruh@yandex. ru

Oybek Nuraliev

Assistant of department Metallurgy, Tashkent State Technical University, Uzbekistan, Tashkent E-mail: oybeknuraliyev1993@gmail.com

Bakhriddin Berdiyarov

Head of department Metallurgy, PhD, Tashkent State Technical University, Uzbekistan, Tashkent E-mail: mr.berdiyarov@gmail.com

Sokhib Matkarimov

Assistant professor of department Metallurgy, PhD, Tashkent State Technical University, Uzbekistan, Tashkent E-mail: sokhibtm@gmail.com

O'ral Akramov

Graduate student of department Metallurgy, PhD, Tashkent State Technical University, Uzbekistan, Tashkent

НЕКОТОРЫЕ ТЕРМОДИНАМИЧЕСКИЕ АСПЕКТЫ ВОССТАНОВЛЕНИЯ МАГНЕТИТА

В ПРИСУТСТВИИ УГЛЕРОДА

Хожиев Шохрух Тошпулатович

ст. преподаватель кафедры Металлургия Ташкентского государственного технического университета,

Республика Узбекистан, г. Ташкент

Нуралиев Ойбек Улугбекович

ассистент

Ташкентского государственного технического университета,

Республика Узбекистан, г. Ташкент

Бердияров Бахриддин Тиловкабулович

заведующий кафедрой Металлургии, PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Маткаримов Сохиб Турдалиевич

доцент кафедры Металлургии, PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Акрамов Урал Акрамович

магистрант,

Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Bibliographic description: Some thermodynamic aspects of the reduction of magnetite in the presence of carbon // Universum: технические науки : электрон. научн. журн. Khojiev S.T. [и др.]. 2021. 3(84). URL: https://7universum.com/ru/tech/archive/item/11347 (дата обращения: 25.03.2021).

UNIVERSUM:

■ ТЕХНИЧЕСКИЕ НАУКИ

ABSTRACT

The article presents a study of the thermodynamic parameters of the process of reduction of the mineral magnetite in the presence of carbon and their relationship. Accordingly, as the temperature rises, the likelihood of the magnetite reduction reaction increases. When the temperature reaches 928 K, the reaction system reaches absolute equilibrium, and from 929 K the reduction reaction shifts to the right according to the Le-Chatelier principle. When the temperature reaches 1273 K, the equilibrium constant of the chemical reaction reaches its maximum value.

АННОТАЦИЯ

В статье представлено исследование термодинамических параметров процесса восстановления минерала магнетита в присутствии углерода и их взаимосвязи. Соответственно, с повышением температуры увеличивается вероятность реакции восстановления магнетита. Когда температура достигает 928 К, реакционная система достигает абсолютного равновесия, а от 929 К реакция восстановления смещается вправо по принципу Ле-Шателье. Когда температура достигает 1273 К, константа равновесия химической реакции достигает максимального значения.

Keywords: magnetite, reduction, carbon, carbothermy, wustite, thermodynamics, enthalpy, entropy, Gibbs energy, equilibrium constant, temperature.

Ключевые слова: магнетит, восстановление, углерод, карботермия, вюстит, термодинамика, энтальпия, энтропия, энергия Гиббса, константа равновесия, температура.

№ 3 (84)

When carbon is used as a reducing agent to recover metals from metal oxides, such reactions are called car-bothermic reactions in metallurgy. Carbothermic reactions can occur gradually depending on the amount of oxygen in the metal oxide [1]. For example, in the first stage of the recovery of high oxides of iron - hematite with the help of carbon, magnetite is formed, in the second stage - wustite, and finally in the third stage - metallic iron. Carbothermic reactions usually take place at temperatures of several hundred degrees Celsius [2]. These processes are used to separate the elemental (pure) forms of many metals. The carbothermic method cannot be used for oxides of some active metals, such as alkali and alkaline-earth metals [3]. This is because in order for carbothermic reactions to take place, the oxygen content of the oxide-containing metal must be less than that of the reducing carbon. For example, oxides of sodium, potassium, and calcium cannot be reduced with carbon. Because these metals are more susceptible to oxygen than carbon. Therefore, such chemical reactions do

not occur in practice. The ability of metals to participate in carbothermic reactions can be understood in more detail through Ellingham diagrams [4].

The second stage in the recovery of iron oxides is the recovery of the mineral Fe3O4 (magnetite) [5]. This reduction reaction is of practical importance, as it reduces the amount of magnetite in the converter slag. The magnetite mineral is reduced to the mineral FeO (wust-ite):

Fe3O4 + C = 3FeO + CO| (1)

The temperature-dependent formula for the change in Gibbs energy for chemical reaction 1 is written as follows [6]:

AGreac = 211,61 - 0,22801T (2)

Table 1 presents the thermodynamic values calculated from formula (2).

Table 1.

Results of thermodynamic analysis of carbothermic reduction reaction of magnetite

№ T A H A S A G lnKe Ke

1 373 211,61 0,22801 126,562 -40,8314 1,8E-18

2 423 211,61 0,22801 115,162 -32,7617 5,9E-15

3 473 211,61 0,22801 103,761 -26,3981 3,4E-12

4 523 211,61 0,22801 92,361 -21,2513 5,9E-10

5 573 211,61 0,22801 80,960 -17,0026 4,1E-08

6 623 211,61 0,22801 69,560 -13,4360 1,5E-06

7 673 211,61 0,22801 58,159 -10,3993 3E-05

8 723 211,61 0,22801 46,759 -7,7826 0,00042

9 773 211,61 0,22801 35,358 -5,5044 0,00407

10 823 211,61 0,22801 23,958 -3,5030 0,03011

11 873 211,61 0,22801 12,557 -1,7309 0,17712

12 923 211,61 0,22801 1,157 -0,1508 0,86001

13 973 211,61 0,22801 -10,244 1,2669 3,54985

14 1023 211,61 0,22801 -21,644 2,5460 12,7565

№ 3 (84)

AuiSli

л те;

UNIVERSUM:

технические науки

март, 2021 г.

№ T A H A S A G lnKe Ke

15 1073 211,61 0,22801 -33,045 3,7060 40,6893

16 1123 211,61 0,22801 -44,445 4,7626 117,05

17 1173 211,61 0,22801 -55,846 5,7292 307,711

18 1223 211,61 0,22801 -67,246 6,6167 747,463

19 1273 211,61 0,22801 -78,647 7,4345 1693,4

20 1323 211,61 0,22801 -90,047 8,1905 3606,46

21 1373 211,61 0,22801 -101,448 8,8914 7269,28

22 1423 211,61 0,22801 -112,848 9,5431 13947,9

23 1473 211,61 0,22801 -124,249 10,1505 25604,4

24 1523 211,61 0,22801 -135,649 10,7181 45164,4

25 1573 211,61 0,22801 -147,050 11,2495 76844

Of all the carbothermic reactions, the most energy-intensive is the reduction reaction of magnetite [7]. The reason why magnetite recovers more energy than hematite is that magnetite is a combination of two oxides (FeO • Fe2O3). Given the formation of wustite during the reduction of magnetite with carbon, it follows that wustite in magnetite does not participate in the carbothermic reaction, only the hematite part is involved in the reaction [8]. Then the question naturally arises: why the same energy is not used in the recovery of magnetite and

hematite? In response, we can say that the only reason for the absorption of a lot of energy in the recovery of magnetite is the formation of a chemical bond between the two oxides of iron [9]. It takes extra energy to break that bond. In general, large amounts of external energy are required to recover magnetite due to the energy required to break the chemical bonds in the hematite and to break the chemical bond between the hematite and the wurtzite [10]. The high liquefaction temperature of magnetite can also be explained by this situation [11,12].

Figure 1. The change in Gibbs energy during the carbothermic reduction of magnetite

As can be seen from Figure 1, no chemical reaction takes place at a temperature of928 K, and the Gibbs energy of the system has a positive value. When the temperature reaches 928 K, the system reaches absolute equilibrium (AGreac = 0), i.e. the rate of forward and reverse reactions is equal (Ke = 1). At a temperature of 929 K, a chemical reaction begins at the contact boundaries of the magnetite and carbon systems [13,14,15].

At 930 K, the chemical equilibrium constant in the reduction reaction of magnetite is greater than 1, but the reaction is very slow [16]. This is because one of the most important conditions for a chemical reaction to take place is the separation of the products of the

reaction from the reaction surface. In hydrometallurgical processes, various mixing methods are used to overcome this problem [17]. For example, mechanical (blade) mixing, pneumatic (air) mixing, and so on. However, in pyrometallurgical processing, it is more difficult to mix the reaction system, especially when it is almost impossible to mechanically mix high-temperature liquid converter slag. Because metal flakes melt in liquid slag at high temperatures [18,19]. Therefore, gas bubbling method is used in the processing of high temperature liquid slag. This means that in the method we are considering, carbon reacts with all the iron and copper oxides to form CO2 gas and begins to rise [20].

№ 3 (84)

AuiSli

л те;

UNIVERSUM:

технические науки

март, 2021 г.

Figure 2. Temperature-dependent changes in the equilibrium constant of magnetite during carbothermic reduction

The CO2 gases released from several reaction surfaces combine to form larger bubbles, which pneumatically stir the liquid bath as they rise. In this case, the FeO formed after the recovery of the magnetite leaves the reaction surface due to the bubbling of the liquid bath, opening the surface of the next layer of magnetite and the continuation of the recovery reaction.

According to the production practice, the reduction of magnetite with solid carbon occurs in the temperature range of 820 - 1000 oC (1093 - 1273 K) (Fig. 2). In this temperature range, the equilibrium constant of the recovery process ranged from 100 to 1693.

References:

1. Ellingham H.J.T. (1944), J. Soc. Chem. Ind. (London) T. 63: 125.

2. Khojiev Sh.T. Pyrometallurgical Processing of Copper Slags into the Metallurgical Ladle // International Journal of Advanced Research in Science, Engineering and Technology. Vol. 6, Issue 2, February 2019. pp. 8094 - 8099.

3. Khojiev Sh.T., Tolibova X.G'., Abdikarimova F.O'., Rakhmataliev Sh.A. Solubility of copper and cobalt in iron -silicate slags // Современные технологии: Актуальные вопросы, достижения и инновации: сборник статей XXVII Международной научно-практической конференции. - Пенза: МЦНС "Наука и Просвещение". - 2019. С. 65 - 67..

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4. Абдикаримова Ф.У., Хожиев Ш.Т. Способ переработки медных шлаков // "Fan va Texnika taraqqiyotida intellektual yoshlarning o'rni" nomli Respublika ilmiy-texnikaviy anjumanining ma'ruzalar to'plami / Toshkent: ToshDTU, aprel, 2019. 535 - 357 b.

5. Сафаров А.Х., Хожиев ШТ. Разработка безотходной технологии производства золота // Международный научный журнал "Молодой Учёный", № 17 (255), часть I. -Казань: издательства «Молодой ученый», 2019. С. 47 - 49.

6. Khojiev Sh.T., Safarov A.X., Mashokirov A.A., Imomberdiyev S.F., Khusanov S.U., Umarov B.O. New method for recycling of copper melting slags// Международный научный журнал "Молодой Учёный", № 18 (256), часть II. -Казань: издательства «Молодой ученый», 2019. С. 133 - 135.

7. Abjalova H.T., Hojiyev Sh.T. Metallning shlak bilan isrofi va uni kamaytirish yo'llari // akademik T.M. Mirkomilovning 80 yilligiga bag'ishlangan universitet miqyosidagi talaba va yosh olimlarning ilmiy tadqiqot ishlarida "Innovatsion g'oyalar va texnologiyalar" mavzusidagi ilmiy-amaliy anjumanining ma'ruzalar to'plami / Toshkent: ToshDTU, 17-18- may, 2019. 95 - 97 b.

8. Юсупходжаев А.А., Хожиев Ш.Т., Хайруллаев П.Х., Муталибханов М.С. Исследование влияния температуры и содержания меди на плотность медеплавильных шлаков // Monografia Pokonferencyjna "Science, Research, Development": Technics and technology. - Warszawa: "Diamond trading tour". - 2019. С. 6 - 9.

9. А.А. Юсупходжаев, Ш.Т. Хожиев. Пирометаллургия: конспект лекций для магистров. -Ташкент: ТашГТУ, 2019 г. - 62 с.

10. А.А. Юсупходжаев, Ш.Т. Хожиев. Пирометаллургия: методическое руководства к практическим занятиям для магистров. -Ташкент: ТашГТУ, 2019 г. - 46 с.

№ 3 (84)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

март, 2021 г.

11. A.A. Yusupkhodjaev, Sh.T. Khojiev, B.T. Berdiyarov, D.O. Yavkochiva, J.B. Ismailov. Technology of Processing Slags of Copper Production using Local Secondary Technogenic Formations// International Journal of Innovative Technology and Exploring Engineering, Volume-9, Issue-1, November 2019. P. 5461 - 5472.

12. Хожиев Ш.Т., Нусратуллаев Х.К., Акрамов У.А., Ирсалиева Д.Б., Мирсаотов С.У. Минералогический анализ шлаков медеплавильного завода Алмалыкского горно-металлургического комбината // "Студенческий вестник": научный журнал, № 43(93). Часть 5. Москва, Изд. «Интернаука», Ноябрь 2019. С. 62 - 64.

13. Хожиев Ш.Т., Зайниддинов Н.Ш., Мирсаотов С.У., Ирсалиева Д.Б., Мамараимов С.С., Муносибов Ш. Термогравитационное обеднение шлаков медного производства // "Студенческий вестник": научный журнал, № 43(93). Часть 5. Москва, Изд. «Интернаука», Ноябрь 2019. С. 65 - 68.

14. Хожиев Ш.Т., Эркинов А.А., Абжалова Х.Т., Мирсаотов С.У., Мамараимов С.С. Использование металлургических техногенных отходов в качестве сырье // "Студенческий вестник": научный журнал, № 43(93). Часть 5. Москва, Изд. «Интернаука», Ноябрь 2019. С. 69 - 71.

15. Sh.T. Khojiev, A.A. Yusupkhodjaev, D.Y. Aribjonova, G.B. Beknazarova, D.N. Abdullaev. Depletion of Slag from Almalyk Copper Plant with Aluminum Containing Waste // International Journal of Innovative Technology and Exploring Engineering, Volume-9, Issue-2, December 2019. P. 2831 - 2837. DOI: 10.35940/ijitee.B7200.129219.

16. Hojiyev Sh.T., Norqobilov Y.F., Raxmataliyev Sh.A., Suyunova M.N. Yosh metallurg [Matn]: savol-javoblar, qiziqarli ma'lumotlar va metallar ishlab chiqarish texnologik jarayonlari. - Toshkent: "Tafakkur" nashriyoti, 2019 . -140 b. ISBN 978-9943-24-273-9

17. Yusupxodjayev A.A., Mirzajonova S.B., Hojiyev Sh.T. Pirometallurgiya jarayonlari nazariyasi [Matn]: darslik. -Toshkent: "Tafakkur" nashriyoti, 2020. - 300 b. ISBN 978-9943-24-295-1

18. Хожиев Ш.Т., Исмаилов Ж.Б., Очилдиев К.Т., Шукуров М.С., Махмудова О.О. Анализ возможных химических реакций при обеднении медных шлаков // "Студенческий вестник": научный журнал, № 6(104). Часть 4. Москва, Изд. «Интернаука», Февраль 2020 г. С. 38 - 41.

19. Khojiev Sh.T., Abjalova H.T., Erkinov A.A., Nurmatov M.N. Study of methods for preventing copper loss with slags // "Студенческий вестник": научный журнал, № 6(104). Часть 4. Москва, Изд. «Интернаука», Февраль 2020 г.

20. Khojiev Shokhrukh, Berdiyarov Bakhriddin, Mirsaotov Suxrob. Reduction of Copper and Iron Oxide Mixture with Local Reducing Gases. Acta of Turin Polytechnic University in Tashkent, 2020, Vol.10, Iss.4. P. 7-17.

С. 71 - 74.

i Надоели баннеры? Вы всегда можете отключить рекламу.