Научная статья на тему 'SOME NEW CONGRUENCE IDENTITIES OF GENERAL PARTITION FOR PR(N)'

SOME NEW CONGRUENCE IDENTITIES OF GENERAL PARTITION FOR PR(N) Текст научной статьи по специальности «Математика»

CC BY
12
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Q-IDENTITY / PARTITION CONGRUENCE / RAMANUJAN’S GENERAL PARTITION FUNCTION CONGRUENCES

Аннотация научной статьи по математике, автор научной работы — Kumar B.R., Shruthi Shruthi, Gowtham Halgar J.

In the present work, we deduce some new congruences modulo 3 and 5 for pr (n), wherer ∈ {-(3λ + 3), -(5λ + 3) | λ is any non-negative integer}. Our emphasis throughout this paper is toexhibit the use of q-identities to generate the congruences for pr (n).

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SOME NEW CONGRUENCE IDENTITIES OF GENERAL PARTITION FOR PR(N)»

DOI: 10.17516/1997-1397-2022-15-1-75-79 УДК 515

Some New Congruence Identities of General Partition for pr(n)

B.R.Srivatsa Kumar* Shruthi Shruthi^ Halgar J. Gowtham*

Manipal Institute of Technology Manipal Academy of Higher Education Manipal - 576 104, India

Received 07.01.2020., received in revised form 10.08.2021, accepted 20.09.2021 Abstract. In the present work, we deduce some new congruences modulo 3 and 5 for pr(n), where r £ { — (3A + 3), — (5A + 3) | Л is any non-negative integer}. Our emphasis throughout this paper is to exhibit the use of q-identities to generate the congruences for pr (n).

Keywords: q-identity, partition congruence, Ramanujan's general partition function congruences. Citation: B.R. Srivatsa Kumar, S. Shruthi, H.J. Gowtham, Some New Congruence Identities of General Partition for pr(n), J. Sib. Fed. Univ. Math. Phys., 2022, 15(1), 75-79. DOI: 10.17516/1997-1397-2022-15-1-75-79.

1. Introduction

For \ab\ < 1, Ramanujan's general theta function f (a, b) is given by

Ek(k + 1) k(k-1) a 2 b 2 .

By Jacobi's triple product identity [5, p. 35], we have

f (a, b) = (-a; ab)x(-b; ab)x(ab; ab)x, where here and throughout the paper, we utilize the following ^-shifted factorial:

(a; q= П(! " aqk)' q < 1'

k=0

One of the special case of f (a, b) as defined by S. Ramanujan [5, p. 36] is as follows

о X-^ n(3n—1)

f(-q)= f(-q, -q2)= E (-i)nq^^ = (q; qU-

n= — co

*sri_vatsabr<8yahoo.com https://orcid.org/0000-0002-5684-9834 [email protected] https://orcid.org/0000-0002-3305-0085

[email protected] https://orcid.org/0000-0001-5276-2363 Corresponding author © Siberian Federal University. All rights reserved

For convenience, we write f (-qn) = fn. Due to Euler, we have

1

f '

J2p(n)qn = f ,

n=0

where p(n) is the number of partitions of n. S. Ramanujan initiated the general partition function

pr (n) as

Y^Pr (n)qn = -, (1)

n=0 fl

for non-zero integer r. For partition function p(n), Ramanujan's so called "most beautiful identity" is given by

to f 5

]Tp(5n + 4) qn = 5 f6,

n=0 f1

which readily implies

p(5n + 4) = 0 (mod 5).

Further he also recorded two more congruences as follows:

p(7n + 5) = 0 (mod 7), p(11n + 6) = 0 (mod 11).

The generalization of the congruences modulo powers of 5 and 7 for all pr (n) was proved by K. G. Ramanathan [16]. Later A. O.L. Atkin [2] found that Ramanathan's proof is not correct. M. Newmann [13-15], studied the function pr(n) and obtained several interesting congruences and identities involving pr (n). The functions pr (n) have been studied by many mathematicians. For the wonderful work one can see [1-4,6,8-10,12,17-22]. For r = -2, R.Hammond and R. Lewis [11] proved that

p-2(5n + I) = 0 (mod 5),

where I e {2,3,4}. Also in [7], W. Y. C. Chen et. al. proved

p-2(25n + 23) = 0 (mod 25)

by using modular forms. More recently D. Tang [24] for pr (n) proved some new congruences for pr(n), where r e {-2, -6, -7}. For example,

p-2 (52S-1n + 7 X 521'21 + 1) = 0 (mod 55), p-6 (525n + 3 X ^ + ^ = 0 (mod 55)

and

p-7 [52S-1n + 13 X ^ 1 + ^ = 0 (mod 55).

24

Motivated by the above work in this paper, we deduce some new congruences modulo 3 and 5 for pr(n), where r e {-(3A + 3), -(5A + 3) | A is any non-negative integer}. By using the binomial theorem, one can easily deduce the below mentioned congruence, and it will be used again and again in our proof without mentioning precisely. For a prime p, we have

fp = fp (mod p).

Now we state our results which we are proving in this paper. The following congruences holds good for any non-negative integer A:

Theorem 1.1. We have

Theorem 1.2. We have

P—(3A+3)(3n +1) = 0 (mod 3), (2)

P—(3A+3)(3n + 2) = 0 (mod 3). (3)

P-(5A+3)(5n + 2) = 0 (mod 5), (4)

P-(5A+3)(5n + 3) = 0 (mod 5), (5)

P-(5A+3)(5n + 4) = 0 (mod 5). (6)

2. Congruences of modulo 3 and 5

Proof of Theorem 1.1. Set r = — (3A + 3) in (1), we observe that

EP-(3A+3) (n)qn = f3A+3 = ff (7)

n=0

From [5, p. 345 Chapter 20, Entry 1], we have

f3 = f3 f- — 3q + 4qV), (8)

where

(U — 3q + 4q3«2)

f3f38

u =

f6f9

Substituting (8) in (7), we have

E P—(3A+3) (n)qn = fi3Af93 (- — 3q + 4q3uA n=0 Vu /

= fAf27^U — 3q + 4q3u^ (mod 3).

On extracting the powers of q3n+1 and q3n+2 in the above congruence, we deduce (2) and (3). □ Proof of Theorem 1.2. From [20], we have

fi = f25(Rq^ — q — q2R(q5)), (9)

where

w (1 q5n—4)(i q5n —1)

R(q) = TT (1 — q )(1 — q )

R(q) 11 (1 — q5n—3)(1 — q5n—2).

n=1 V ' V '

Set r = —(5A + 3) in (1), we see that

TO

Ep—(5A+3)(n)qn = f5A+3 = fi5Afi3 (10)

n=0

= fAf3 (mod 5).

From (9), we observe that

fi=^ - wm+5q3 - 3q5R2 (q5) -q6R3{q5)) • (n)

Utilizing (11) in (12), one can easily see that

£P-(5X+3) (n)qn = f£+6(^qy + R22qr) + 2q5R2(q5) + 4q6R3(q5^ (mod 5) (12)

On extracting the powers of q5n+2, q5n+3 and q5n+4 in the above congruence, we obtain (4), (5)

and (6). The above result is also due to B.R. Srivatsa Kumar et al. [23]. □

References

[1] G.E.Andrews, in: G.-C.Rota(Ed.), The Theory of Partitions, in: Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley, Reading, 1976 (Reprinted: Cambridge Univ. Press, London and New York, 1984).

[2] A.O.L.Atkin, Ramanujan congruences for pk(n), Canad. J. Math., 20(1968), 67-78.

[3] N.D.Baruah, K.K.Ojah, Some congruences deducible from Ramanujan's cubic continued fraction, Int. J. Number Theory, 7(2011), 1331-134.

[4] N.D.Baruah, B.K.Sarmah, Identities and congruences for the general partition and Ramanujan t functions, Indian J. of pure and Appl. Math., 44(2013), no. 5, 643-671.

DOI: 10.1007/s13226-013-0034-7

[5] B.C.Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991.

[6] M.Boylan, Exceptional congruences for powers of the partition functions, Acta Arith, 111(2004), 187-203. DOI: 10.4064/aa111-2-7

[7] W.Y.C.Chen, D.K.Du, Q.H.Hou, L.H.Sun, Congruences of multi-partition functions modulo powers of primes, Ramanujan J., 35(2014), 1-19.

[8] H.M.Farkas, I.Kra, Ramanujan's partition identities, Contemporary Math., 240(1999), 111130.

[9] J.M.Gandhi, Congruences for pk(n) and Ramanujan's t function, Amer. Math. Mon, 70(1963), 265-274.

[10] B.Gordon, Ramanujan congruences forpk (mod llr), Glasgow Math. J., 24(1983), 107-123.

[11] P.Hammond, R.Lewis, Congruences in ordered pairs of partitions, Int. J. Math. Math. Sci., 45-48(2004), 2509-2512.

[12] I.Kiming, J.B.Olsson, Congruences like Ramanujan's for powers of the partition function, Arch. Math., (Basel), 59(1992), no. 4, 348-360.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[13] M.Newmann, An identity for the coefficients of certain modular forms, J. Lond. Math. Soc, 30(1955), 488-493.

[14] M.Newmann, Congruence for the coefficients of modular forms and some new congruences for the partition function, Canad. J. Math., 9(1957), 549-552.

15] M.Newmann, Some theorems about pk(n), Canad. J. Math., 9(1957), 68-70.

16] K.G.Ramanathan, Identities and congruences of the Ramanujan type, Canad. J. Math., 2(1950), 168-178.

17] S.Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Phillos. Soc., 19(1919), 207-210.

18] S.Ramanujan, Congruence properties of partitions, Proc. Lond. Math. Soc., 18(1920), Records of 13 March 1919.

19] S.Ramanujan, Congruence properties of partitions, Math. Z, (1921), 147-153.

20] S.Ramanujan, Collected Papers. Cambridge University Press, Cambridge, 1927; reprinted by Chelsea, New York, 1962; reprinted by Narosa, New Delhi, 1987; reprinted by the American Mathematical Society, Providence, 2000.

21] N.Saikia, J.Chetry, Infinite families of congruences modulo 7 for Ramanujan's general partition function, Ann. Math. Quebec., 42(2018), no. 1, 127-132.

22] Shruthi, B.R.Srivatsa Kumar, Arithmetic identities of Ramanujan's general partition function for Modulo 17, Proceedings of the Jangjeon Mathematical Society, 22(2019), no. 4, 625—630. DOI: 10.17777/pjms2019.22.4.625

23] B.R.Srivatsa Kumar, Shruthi, D.Ranganatha , Some new Congruences Modulo 5 for General Partition Function, Russian Mathematics, 64(2020), 73-78. DOI: 10.26907/0021-3446-2020-7-83-88

24] D.Tang, Congruences modulo powers of 5 for fc-colored partitions, J. Number Theory, 187(2018), 198-214, .

Некоторые новые конгруэнтные тождества общего разбиения для рг (п)

Б. Р. Шриватса Кумар Шрути Шрути Халгар Дж. Гаутам

Технологический институт Манипала Академия высшего образования Манипала Манипал - 576104, Индия

Аннотация. В настоящей работе мы выводим некоторые новые сравнения по модулю 3 и 5 для рг(п), где г £ { — (ЗА + 3), —(5А + 3) | А любое неотрицательное целое число}. В этой статье мы делаем упор на демонстрацию использования д-тождеств для генерации сравнений для рг (п).

Ключевые слова: д-идентичность, конгруэнтность разбиений, общие конгруэнции статистической суммы Рамануджана.

i Надоели баннеры? Вы всегда можете отключить рекламу.