Научная статья на тему 'SOME CONSTRUCTIVE-ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE'

SOME CONSTRUCTIVE-ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE Текст научной статьи по специальности «Математика»

CC BY
5
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
p-adic numbers / p-adic Ising model / Cayley tree / Gibbs measure / phase transition / p-адические числа / p-адическая модель Изинга / дерево Кэли / мера Гиббса / фазовый переход

Аннотация научной статьи по математике, автор научной работы — Рахматуллаев Музаффар Мухаммаджанович, Тухтабаев Акбархужа Мамажонович

The paper is devoted to some non-periodic -adic generalized Gibbs measures for Ising model on a semi-Cayley tree of order . We construct uncountable non-periodic -adic generalized Gibbs measures for the Ising model on a semi-Cayley tree. We study the boundedness of the measures. Furthermore, we find conditions that guarantee existence of the phase transition.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

НЕКОТОРЫЕ КОНСТРУКТИВНО-АДИЧНЫЕ ОБОБЩЕННЫЕ МЕРЫ ГИББСА ДЛЯ МОДЕЛИ ИЗИНГА НА ДЕРЕВЕ КЭЛИ

Статья посвящена изучению некоторых непериодических -адических обобщенных мер Гиббса для модели Изинга на полудереве Кэли порядка . Построено несчетное количество непериодических -адических обобщенных мер Гиббса для модели Изинга на полудереве Кэли, а также изучена задача ограниченности этих мер. Кроме того, найдены условия, гарантирующие существование фазового перехода.

Текст научной работы на тему «SOME CONSTRUCTIVE-ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE»

ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МАТЕМАТИКА, ФИЗИКА, ТЕХНИКА. 2023, №2

МАТЕМАТИКА

UDC 517.98

https://doi.org/10.52754/16948645 2023 2 187

SOME CONSTRUCTIVE p -ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE

Rahmatullaev Muzaffar Muhammadjanovich, DSc., professor,

mrahmatullaev@rambler.ru

Namangan regional department, Institute of Mathematics named after V.I.Romanovsky,

Namangan, Uzbekistan,

Tukhtabaev Akbarkhuja Mamajonovich, PhD. student, Namangan state university, Namangan, Uzbekistan, akbarxoia.toxtaboyev@mail.ru

Abstract: The paper is devoted to some non-periodic p -adic generalized Gibbs measures for Ising model on a semi-Cayley tree of order к > 1 . We construct uncountable non-periodic p -adic generalized Gibbs measures

for the Ising model on a semi-Cayley tree. We study the boundedness of the measures. Furthermore, we find conditions that guarantee existence of the phase transition.

Keyworsds: p-adic numbers, p-adic Ising model, Cayley tree, Gibbs measure, phase transition.

НЕКОТОРЫЕ КОНСТРУКТИВНО Р-АДИЧЕСКИЕ ОБОБЩЕННЫЕ МЕРЫ ГИББСА ДЛЯ МОДЕЛИ ИЗИНГА НА

ДЕРЕВЕ КЭЛИ

Рахматуллаев Музаффар Мухаммаджанович, д.ф.-м.н., профессор,

mrahmatullaev@rambler. ru Наманганское областное отделение Института математики им. В.И.

Романовского, г. Наманган, Узбекистан, Тухтабаев Акбархужа Мамажонович, PhD.докторант, Наманганский государственный университет,

Наманган, Узбекистан, akbarxoia.toxtaboyev@mail.ru

Аннотация: Статья посвящена изучению некоторых непериодических p -адических обобщенных мер

Гиббса для модели Изинга на полудереве Кэли порядка к > 1. Построено несчетное количество непериодических p -адических обобщенных мер Гиббса для модели Изинга на полудереве Кэли, а также

изучена задача ограниченности этих мер. Кроме того, найдены условия, гарантирующие существование фазового перехода.

Ключевые слова: p-адические числа, p-адическая модель Изинга, дерево Кэли, мера Гиббса, фазовый переход.

Introduction. Let Q be the field of rational numbers. For a fixed prime number p, every

m

rational number x * 0 can be represented in the form x = pr — where,

n

r, m, n e Z, n > 0 and m, n are relatively prime with p . The p -adic norm of x e Q is given by

_Jp-, x * 0, |X|p=|0, x = 0.

This norm is non-Archimedean, i.e., it satisfies the strong triangle inequality \x + y max(lx \P>\ y lP} for all x,jeQ.

The completion of Q with respect to the p -adic norm defines the p -adic field Q p.

Any p -adic number x * 0 can be uniquely represented in the canonical form

x = pr( x) (x0 + XP + X2P2 + •••), where eZ,io^0, x. e {0,1,...,/7-1}, j = 1,2,... .

In this case | x | = p~y{x). For a e Qp and r > 0 we denote

B(a, r) = {xeQp: \ x-a \p</*}. p -adic exponential is defined by

" xn

exp p (x)=Z n,

n=0 n!

f _J_\

which converges for x e B 0, p p-1

v

We set

Ep=\xeQp:\x-\\p<p

This set is the range of the p -adic exponential function (see e.g. [2]). Let (X, B) be a measurable space, where B is an algebra of subsets X. A function p : B —» Qp is said to be a p -adic measure if for any Al,A,,...,Ai eS such that A n A = 0, i * j, the following holds:

HIM =5>(4)-

7=1

A p -adic measure j is called bounded if sup{| j(A) \p. A e B} <<x>. It is said that p -adic measure is probabilistic if j(X) = 1.

Let r+k = (V,L), be a semi-infinite Cayley tree [1] of order k > 1 with the root

x° eV (whose each vertex has exactly k +1 edges, except for the root x°, which has k edges). Here V is the set of vertices and L is the set of edges. The vertices x and y are called nearest neighbors and they are denoted by l = (x, y) if there exists an edge l connecting them. A collection of the pairs (x, x1), (x, x2),..., (xd-1, y) is called a path

from the point x to the point y . The distance d (x, y), x, y eV, on the semi-Cayley tree, is the number of edges of the shortest path from x to y . We set

W = {xeV|d(x,x0) = n}, V ={xeV|d(x,x°)<n}, Ln = {l =< x, y >e L | x,y e Vn}. The set of direct successors of x e W is defined by

5 (x) = { y e Wn+1: d (x, y) = 1}. We recall a coordinate structure in T+k: every vertex x (except for x°) of T+k has

coordinates (i,i2,...,in), here im e {1,2,...,k}, m = 1,n, and for the vertex x° we put (0) . Namely, the symbol (0) constitutes level 0, and the sites (i,i2,...,in) form level n (i.e. d(x°, x) = n) of the lattice. Let us define on r+A binary operation o ; XT^ —> as follows: for any two elements x = (i ,i2,..., in) and y = (j, j2,..., jm ) put

Xoy = (i1,i2,...,in)o(j1J2,...Jm) = (i1J2,...JnJ1J2,...Jm)

By means of the defined operation T+k becomes a noncommutative semigroup with a unit. Let us denote this group by (Gk, °). Using this semigroup structure one defines translations rg:Gk^Gk,geGk by rg(x) = g°x.

Let G c Gk be a sub-semigroup of Gk and h : Gk ^ Y be a Y-valued function defined on Gk. We say that h is G -periodic if h(zg (x)) = h(x) for all g e G and x e Gk. Any Gk -periodic function is called translation-invariant. Now for each m > 2 we put G = {x e Gk: d(x, x0) = 0 (mod m)}. One can check that Gm is a sub-semigroup of x e Gk

We consider p -adic Ising model on the semi-infinite Cayley tree r+A . Let Q be a field of p -adic numbers and 0 = {-1,1} . A configuration 7 on A c V is defined as a function x e A ^ ((x) e O. The set of all configurations on A is denoted by Q^ = OA. For given configurations 7n l e Q and <p(n) eQw we define a configuration in Q as follows

\7„-1( x) if x eV„- ^ L-<p("\x), i/XGWn.

A formal p -adic Hamiltonian H : Q —> Q of the Ising model is defined by

(an_! van)(x)= , b)

H(a) = J £ v(x)a(y) , (1)

< x, y><=L

C i N

where J E B

0, p

i-p

J

for any < x,y >e L .

We are aiming to study some non-periodic p -adic generalized Gibbs measures for the

Ising model on a Cayley tree. Our approach is based on properties Markov random fields on the Cayley tree.

Let h: x e V \ {x0} —» hx e be a function. We define p -adic probability generalized Gibbs distribution jJn) on Q by

Mln)(°n) = iexpp {Hn(an)}nK(x\ n = 1,2,..., (2)

Zn xeW„

where Zn(h) is corresponding normalizing constant:

znh) = Z exp {Hn (an )}n h. (3)

creQv xeW

Vn n

The compatibility conditions for jJn)(&„), n > 1 are given by the equality

Z J\&n-i v^(n)) = jhn-1)(^n-i). (4)

<P( n }^wn

In this case, by the p -adic analogue of Kolmogorov theorem ([3]) there exists a unique measure j on the set Q such that j ({a |V = an}) = jh"-1 (an-1), for all n and

A limiting p -adic distribution generated by (2) is called p -adic generalized Gibbs measure [4].

If there are two different measures J, j and they are bounded, then one says that there is a quasi-phase transition. If there are at least two distinct p -adic generalized Gibbs measures J and V such that J is bounded and V is unbounded, then one says that a phase transition occurs. Moreover, if there is a sequence of sets An such that A eQ with I j( A) \P ^ 0 and | v( A) lp ^^ as n ^ <», then there occurs a strong phase transition [4].

Theorem 1. [4] The sequence of p -adic distributions {jJn)(&n)} determined by

formula (2) is consistent if and only if for any x eV \ {x0}, the following equation holds

, „ h+1

hx2 = n (5)

yeS(x) hy + °

where 6 = exp{2 J}, 6 ^ 1.

Main results. On the semi-Cayley tree of order two, we denote by hf) (i = 0,1, 2) and h(p) (j = 1, 2) the translation-invariant and G2 -periodic solutions of the equation (5), respectively. It is known [4] that if p = 1 (mod 4) then

hs-=1, c=6z1^Em+iL, ^=1 -6U(6-1)2 -462 (6)

2 26

Let k > 3, k0 = 2. For x e V, by S^ (x) we denote an arbitrary set of k0 vertices of the set S(x), and remaining k - k0 vertices is denoted by (x). Let k - k0 = a + b + c, where a and b are even, c is even or odd. We define the set of quantities h = {hx, x e V} (where h e {1,hf),fcf),h(p),h(p)}) as follows:

if at vertex x we have hx = hf) (i = 1,2) (hx = h(p) or hx = 1), then the function h ,

which gives p -adic values to each vertex y e S(x) is defined by the following rule (7) (resp. (8) or (9)).

on a /2 + 2 vertices of S(x),

hy =

hf) (t)

on a / 2

h( p) on b /2

hp 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

on b /2 on c

vertices of S(x), vertices of S(x), vertices of S(x), vertices of S(x).

(7)

h =

hf) (t)

h =

vertices of S(x), vertices of S(x), vertices of S(x), on b /2 + 2 vertices of S(x), on c vertices of S(x).

ht) on a /2 h(% on a /2 Kp) on b /2

on a / 2

^ on a /2

hp) on b/2

h(p) 1

(8)

h3( p on b /2

vertices of S(x), vertices of S(x), vertices of S(x), vertices of S(x), vertices of S(x).

(9)

on c + 2

Lemma 1. Let p = 1 (mod 4). Then any set of quantities according to the rules (7), (8) and (9) on the Cayley tree F k+ satisfy the functional equation (5).

Remark 1. 1) If a = b = c = 0 in (7) and (9) then p -adic generalized Gibbs measures corresponding to set of quantities h are translation-invariant, the figure for case (8), we get p -adic generalized G2(2) -periodic Gibbs measures (see [4]);

2) If a = b = 0, c ^ 0 in (9) and (7), (8) then p -adic generalized Gibbs measures corresponding to set of quantities h are translation-invariant (see [4]) and ART Gibbs measures, respectively (see [6]);

3) If b = c = 0, a ^ 0 in (7) then p -adic generalized Gibbs measures corresponding to set of quantities h are (k0) -translation-invariant (see [7]);

4) If a = c = 0, b ^ 0 in (8) then p -adic generalized Gibbs measures corresponding to set of quantities h are (k ) -periodic (see [7]);

5) In other cases, we get new measures except to previous known ones.

In real case Bleher-Ganikhodjaev construction was studied in [8]. We are going to investigate this construction in p-adic case. Consider an infinite path n = x0 = x0 < xx <... on

the semi-Cayley tree Fk+ (the notation x < y meaning that paths from the root to y go through

x). We assign the set of p -adic numbers hn = {h, x eV} satisfying the equation (5) to the path

n . For n = 1, 2,..., x e W , the set hn is unambiguously defined by the conditions

hi =

—, if x < x„ , x e W„,

K n * (10)

K, if xn <X, X<EWn, where x -< Xn (resp. Xn -< x) means that x is on the left (resp. right) from the path n and h is translation-invariant solution of the equation (5).

Lemma 2. For any infinite path n, there exists a unique set of numbers hn = {hn, x e V} satisfying (5) and (10).

Remark 2. The measure which is defined in Lemma 2, depends on the path n. The cardinality of the measures is uncountable (see [8]).

Theorem 2. Let p = 1 (mod 4). Then for the measures correspond to the set of

quantities according to the rules (7), (8) and (9) the followings hold

1) If a2 + b2 ^ 0, then the measures are unbounded;

2) If a = b = 0, then the measures are bounded.

Theorem 3. Let p > 3, hi be the set of quantities defined by (10). Then the measures

correspond to the set of quantities h are bounded if and only if h = 1.

Theorem 4. Let p>3, Q)p be a field of p -adic numbers in which there exist

translation-invariant solutions of the functional equation (5). Then there exists a phase transition in the field Q .

REFERENCES

1. U.A.Rozikov, Gibbs Measures on Cayley Trees, World Scientific Publisher, Singapore, 2013.

2. V.S.Vladimirov, I.V.Volovich and E.V.Zelenov, p -Adic Analysis and Mathematical Physics, World Scientific Publisher, Singapore, 1994.

3. N.N.Ganikhodjayev, F.M.Mukhamedov, U.A.Rozikov, Existence of phase transition for the Potts p -adic model on the set Z. Theor. Math. Phys. 130(2002), No.3, 425-431.

4. O.N.Khakimov, On a generalized p -adic Gibbs measure for Ising model on trees, p -Adic Numbers Ultrametric Anal. Appl., 6(3), 207-217, 2014.

5. F.M.Mukhamedov, On p -adic quasi Gibbs measures for q + 1 -state Potts model on the Cayley tree, p -Adic Numbers, Ultrametric Anal. Appl., (2010), 241-251.

6. H.Akin, U.A.Rozikov, S.Temir, A new set of limiting Gibbs measures for the Ising model on a Cayley tree, J.Stat. Phys., 142, 314-321, 2011.

7. M.M.Rahmatullaev and A.M.Tukhtabaev, Non periodic p -adic generalized Gibbs measure for the Ising model, p -Adic Numbers Ultrametric Anal. Appl., 11, 319-327, 2019.

8. P.M.Bleher and N.N.Ganikhodjaev, On pure phases of the Ising model on the Bethe lattice, Theor. Probab. Appl., 35, 216-227, 1990.

i Надоели баннеры? Вы всегда можете отключить рекламу.