Научная статья на тему 'Solution of the Carleman system using group analysis'

Solution of the Carleman system using group analysis Текст научной статьи по специальности «Математика»

CC BY
7
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Carleman system / group analysis / invariant solution

Аннотация научной статьи по математике, автор научной работы — Sergei Anatolievich Dukhnovsky

In this paper, we consider the discrete kinetic Carleman system. The Carleman system is the Boltzmann kinetic equation, and for this model momentum and energy are not conserved. Using group analysis methods, we obtain a solution representing the density of gas particles in a certain area. This limitation is due to the non-negativity of solution. Similarly, it is possible to find exact solutions for other kinetic models.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Solution of the Carleman system using group analysis»

DIFFERENTIAL EQUATIONS AND

CONTROL PROCESSES N. 2, 2024 Electronic Journal, reg. N &C77-39410 at 15.04.2010 ISSN 1817-2172

http://diffjournalspbu.ru/ e-mail: [email protected]

Nonlinear partial differential equations Group analysis of differential equations

Solution of the Carleman system using group analysis

Dukhnovsky S. A. Moscow State University of Civil Engineering [email protected]

Abstract. In this paper, we consider the discrete kinetic Carleman system. The Carleman system is the Boltzmann kinetic equation, and for this model momentum and energy are not conserved. Using group analysis methods, we obtain a solution representing the density of gas particles in a certain area. This limitation is due to the non-negativity of solution. Similarly, it is possible to find exact solutions for other kinetic models.

Keywords: Carleman system, group analysis, invariant solution 1 Introduction

We consider the one-dimensional Carleman system [9, 15]:

dtu + dxu = -(v2 — u2), x e R, t> 0,

£ 1 (1)

dtv — dx v = — (v2 — u2).

£

Here u = u(x, t),v = v(x, t) are the densities of two groups of particles with velocities c = 1, — 1, £ is the Knudsen parameter from the kinetic theory of gases. This system describes a monatomic rarefied gas consisting of two groups of particles. The Carleman system is a non-integrable system, i.e. the Painleve

test is not applicable. The interaction is as follows. The Carleman system describes particles of two groups, namely, the first group of particles moves at a unit speed along the axis Ox, and the second group moves at a unit speed in the opposite direction. It is worth noting that only particles within one group interact, that is, only with themselves, changing the direction of motion.

The method of group analysis is a well-known method for finding solutions, in particular invariant solutions of equations of mathematical physics. This method is described in detail in [1, 2, 3, 5]. A general description of the Boltzmann equation is described in the article [4]. In this works [6, 7], Ilyin O. V. obtained an optimal system of one-dimensional subalgebras and classes of invariant solutions for the stationary kinetic Broadwell model and the one-dimensional Boltzmann integro-differential equation for Maxwellian particles with inelastic collisions. In [8] the results of group analysis of the multidimensional Boltzmann and Vlasov equations are presented. Also, solutions of kinetic systems using Painleve series were found in [9, 10, 11, 15, 16]. Asymptotic stability for Boltzmann models as well as the numerical study are presented in [14, 17, 18, 19]. The analysis described in this paper provides solutions of the Carleman system that have not yet been found in the literature.

2 Method of group analysis

We consider a system of two second order partial differential equations

F1(u,ut,ux,utt,uxt,uxx,...) = 0, (2)

Vt ,Vx,Vtt, Vxt,Vxx,...) = 0, (3)

where u = u(x,t),v = v(x,t) are unknown functions. According to the group analysis methods, we will look for the prolonged operator in the form

^ d d , d 3,3,3 d d

X = + n^r + Z^- + x^- + — + (2^- + + X2-

1 dx dt du dv dux dut dvx dvt' where £ = £(x,t,u,v), n = £(x,t,u,v), Z = Z(x,t,u,v), x = x(x,t,u,v). Here

d d d d £ dx + n dt + Z du + x dv ( )

is called the infinitesimal operator of the group. A universal invariant of the group and the operator (4) is a function I(x,t,u,v)

xi = + n + Z + x = 0. (5)

dx dt du dv

The coordinates of the first prolongation are given by

Ci = Dx(Z) - uxDx(€) - UfDx(n). C2 = Dt(() - uxDt(0 - UtDt(n)

and

Xi = Dx(x) - VxDx(£) - VtDx(n), X2 = Dt(x) - VxDt(C) - VtDt(n),

where Dx, Dt are the operators of total differentiation with respect to x and t:

d

+ Vxt+----,

x dvt

d d d d d d

dx + ux^~ du + Vx^~ dv 1 uxx r\ dux + uxt 0 dut + VxxTT

d d d d d d

= dt + ut— du + Vt — dv + uxt 0 dux + utt— dut + Vxt 0 dvx

d

t = — + Ut— + Vt~ + uxt---h Utt---h Vxt---h Vit---1----.

dv dux dut dvx dvt After calculations, we have

Ci = Zx + (uUx + Cvv x ux (Cx + CuUx + Cv Vx) - ut (nx + Vuux + nvVx), (6)

Z2 = Zt + Zuut + ZvVt - ux(Ct + Cuut + CvVt) - ut (nx + nuut + nvVt) (7)

and

Xi = Xx + uxXu + V xXv Vx(C,x + uxCu + VxCv ) - Vt (nx + uxnu + Vxnv ) , (8)

X2 = Ct + Cuut + Cv Vt - Vx(Ct + Cuut + Cv Vt) - Vt(nt + nuut + nv Vt). (9) We require that

X =o = 0,X f2|f1=F2=o = 0. (10)

Relations (10) is called the invariance conditions.

We illustrate the above procedure for the Carleman system.

3 Application of the method

Let us insert 1

Fi = ut + ux--(v2 - u2),

£

F2 = Vt - vx + -(v2 - u2),

£

into the invariance conditions (10)

XF1\Fi=0f2=0 = (C2 + Ci - -2vx + -2uZ)|f1=g,f2=0, (11)

1 £ £

Xf2\fi=0,f2=0 = (X2 - Xi + ~2vX - -2uC)|fi=g,f2=g- (12)

1 £ £

Now, replacing ut,vt by -ux + i(v2 — u2),vx — i(v2 — u2) and taking into account the expressions (6)-(7) and (8)-(9) for the coordinates of the first prolongation from the first equation (11), we have:

Ux : -it - 1(v2 - u2)^u + iv 1(v2 - u2) + nt + nu 1(v2 - u2)-

£ £ £

-1 nv(v2 - u2) - ix + nx = 0,

£

ux : iu - nu - iu + nu = 0,

vx : Zv - 1(v2 - u2)nv + Zv - 1(v2 - u2)nv = 0,

££

uxvx : Cv + nv Cv + nv 0,

1 : it + Zu 1(v2 - u2) - Zv 1(v2 - u2) - V - u2)nt-

£ £ £

--(v2 - u2)nu 1(v2 - u2) + -(v2 - u2)nv1 (v2 - u2) + Zx-

£ £ £ £

1 . 2 2 s 2 2

— (v - u )nx--xv + -uZ = 0.

£ £ £

From the second equation (12):

1/ 2 2 \ 1 / 2 2 \

ux : Xu - -(v - u )nu - Xu--(v - u )nu = 0,

££

uxvx : iu + nu + iu + n - u = 0,

vx : Xv - it - 1(v2 - u2)iu + iv 1(v2 - u2) - nt-

££

-nu 1(v2 - u2) + nv 1(v2 - u2) + -(v2 - u2)nv - Xv + ix+

£ £ £

1 2 2 +nx--(v - u )nv = 0,

£

vX : -Zv - nv + Zv + nv = 0,

1 : Xt + Xu-(v2 - u2) - Xv-(v2 - u2) + -(v2 - u2)nt+

£ £ £

- 2 2 - 2 2 - 2 2 - 2 2 +-(v - u )nu-(v - u ) --(v - u )nv-(v - u ) - Xx-

£ £ £ £

1/2 2 \ 2 2 — (v - u )nx + -Xv--Zu = 0.

£ £ £

Rewrite the system in a more compact form

nv Zv 5

-

2-(v - u )nu - Zt + nt - nx - Zx = 0,

£

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Zv - -(v2 - u2)nv = 0,

£

-(v2 - u2)(Zu - Zv - nt - nu-(v2 - u2) + nv-(v2 - u2) - nx) +

£ £ £

22

+Zx + Zt — xv + - uZ = 0

££

and

nu Zu5

xu + -(v2 - u2)nu = 0,

£

1

2-(v - u )nv - nt - £t + nx + £x = 0,

£

-(v2 - u2)(xu - xv + nt + -(v2 - u2)nu - -(v2 - u2)nv - nx) +

£ £ £

22

+xt - xx + -xv - "Zu = 0.

££

Integrating the system, we get

n(t) = at + 3, £(x) = ax + y, Z(u) = -au, x(v) = -av,

where a,3,Y are arbitrary constants. The corresponding characteristic system of ordinary differential equations for (5)

dt dx du dv

n £ Z x

or

dt dx du dv

at + ß ax + y -au - av

We obtain

ax + y

U = -7T ,

at + p

where a,Y,p is an integration constants. Invariant solution are sought in the form

$(u) W(u)

a(at + p)' a(at + /3)' where W unknown functions of similarity variable that must be defined.

-(at + p)$ + (at - ax + p - y)$' W2 - $2

(at + 3 )3 a2 (at + 3 )V

-(at + p)W - (at + ax + p + y)W'_ $2 - W2

(at + p )3 = a2 (at + p )2e

(13)

(14)

or we rewrite

a2e($(1 - u))' = -$2 + W2,

a2e(W(1 + u))' = -$2 + W2. (15)

$(u) = W(u) + (1 - u)C, 1 — u

where C is an arbitrary constant of integration.

For finding function W, we have the Riccati equation

—■4u t2 (—¿c—ea + 2(ea — c )u — ea u \

w =-w2 + ----- W —

ea2(1 - u)2(1 + u) V ea2(1 - u)2(1 + u) j

C2

ea2(1 - u)2(1 + u)' We can write the particular solution at C = 0

-ea(ea(t + x) + p + y )

u=

-¿(eat + p)2 + Ci((eat + p)2 - (eat + y)2)'

=_-ea(ea(t - x) + p - y)__(16)

V = -¿(eat + p)2 + Ci((eat + p)2 - (eat + y)2)' ( )

where Ci is an arbitrary constant of integration. The non-negativity of the solution can be chosen by choosing a constant Ci in the region of the plane x, t.

4 Conclusion

In this article, the solution was found using group analysis methods. We determined three different infinitesimal groups of transformations leaving the invariant condition. A well-known and very important special class of invariant solutions was represented by self similar solution which was constructed on the basis of invariants of extension groups. Future work will present solutions to the remaining kinetic systems.

References

[1] Polyanin A. D., Zaitsev V. F., and Zhurov A. I. Methods of Solution of Nonlinear Equations of Mathematical Physics and Mechanics [in Russian], Fizmatlit, Moscow (2005).

[2] Ovsiannikov L. V. Group Analysis of Differential Equations, Academic Press, New York, 1982.

[3] Olver P. Applications of Lie Groups to Differential Equations, Springer, New York, 1993.

[4] Godunov S. K., Sultangazin U. M. On discrete models of the kinetic Boltzmann equation. Russian Mathematical Surveys, 1971; 26(3): 1-56.

[5] Ibragimov N. Kh. Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie). Russian Math. Surveys, 1992; 47(4): 89-156.

[6] Ilyin O. V. Symmetries and invariant solutions of the one-dimensional Boltzmann equation for inelastic collisions. Theoret. and Math. Phys., 2016; 186(2): 183-191.

[7] Ilyin O. V. Symmetries, the current function, and exact solutions for Broad-well's two-dimensional stationary kinetic model. Theoret. and Math, 2014; 179(3): 679-688.

[8] Platonova K. S., Borovskikh A. V. Group analysis of the Boltzmann and Vlasov equations. Theoret. and Math. Phys., 2020; 203(3): 794-823.

[9] Euler N., Steeb W.-H. Painleve test and discrete Boltzmann equations. Australian Journal of Physics, 1989; (42): 1-10.

10

11

12

13

14

15

16

17

18

19

Dukhnovskii S. A. Solutions of the Carleman system via the Painleve expansion. Vladikavkaz Math. J., 2020; 22(4): 58-67. (In Russ.)

Dukhnovsky S. On solutions of the kinetic McKean system. Bul. Acad. §tiinte Repub. Mold. Mat., 2020; 3(94): 3-11.

Vedenyapin V., Sinitsyn A., Dulov E. Kinetic Boltzmann, Vlasov and related equations. Amsterdam, Elsevier, 2011, xiii+304 pp.

Aristov V.V., Ilyin O.V. Description of the rapid invasion processes by means of the kinetic model. Computer Research and Modeling, 2014; 6(5): 829-838.(In Russ.)

Vasil'eva O. A. Computer research of building materials. E3S Web of Conferences, ¿019; (197), 02011: 1-6.

Dukhnovskii S. A. Painleve test and a self-similar solution of the kinetic model. Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., ¿020; (176): 91-94. (In Russ.)

Lindblom O., Euler N. Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations. Theoretical and Mathematical Physics, ¿00¿; 131^): 595-608.

Radkevich E. V. On the large-time behavior of solutions to the Cauchy problem for a ¿-dimensional discrete kinetic equation. Journal of Mathematical Sciences, ¿014; ¿0¿(5): 735-768.

Dukhnovkii S. A. On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data. J. Samara State Tech. Univ., Ser. Phys. Math. Sci., ¿017; ¿1(1): 7-41. (In Russ.)

Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V. On the nature of local equilibrium in the Carleman and Godunov-Sultangazin equations. Journal of Mathematical Sciences, ¿018; ¿35(4): 39¿-454.

i Надоели баннеры? Вы всегда можете отключить рекламу.