Научная статья на тему 'Слабая наблюдаемость гибридных дифференциально-разностных систем'

Слабая наблюдаемость гибридных дифференциально-разностных систем Текст научной статьи по специальности «Математика»

CC BY
44
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ГДР СИСТЕМЫ / МАЛЫЕ РЕШЕНИЯ / СЛАБАЯ НАБЛЮДАЕМОСТЬ DAD SYSTEMS / SMALL SOLUTIONS / WEAK OBSERVABILITY

Аннотация научной статьи по математике, автор научной работы — Зачкевич Збигниев, Марченко Владимир Матвеевич

Рассматривается проблема слабой наблюдаемости малых решений в линейных стационарных гибридных дифференциально-алгебраических системах. Для таких систем проклассифицированы основные типы наблюдаемости, приведены параметрические критерии наблюдаемости, исследована проблема спектральной наблюдаемости и ее связь с проблемой наблюдаемости малых решений.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ON THE WEAK OBSERVABILITY OF SMALL SOLUTIONS OF DIFFERENTIAL-ALGEBRAIC SYSTEMS WITH DELAYS

The paper considers the problem of observability of small solutions for hybrid time invariant differential-difference dynamic systems, i.e. linear stationary differential-algebraic systems with delays (DAD systems). Several types of observability of small solutions are defined and the corresponding parametric criteria are given. Spectral observability is considered and relation of the spectral observability to the observability of small solutions is discussed.

Текст научной работы на тему «Слабая наблюдаемость гибридных дифференциально-разностных систем»

YflK 517.977

V. M. Marchenko, professor; Z. Zaczkiewicz, magistr

ON THE WEAK OBSERVABILITY OF SMALL SOLUTIONS OF DIFFERENTIAL-ALGEBRAIC SYSTEMS WITH DELAYS1

The pa per c onsiders t he problem of ob servability of s mall s olutions f or hybrid time in variant differential-difference dynamic systems, i. e. linear stationary differential-algebraic systems with delays (DAD systems). Several types of observability of small solutions are defined and the corresponding parametric c riteria are gi ven. S pectral o bservability is c onsidered and relation of th e s pectral observability to the observability of small solutions is discussed.

Introduction. The behaviour of a number of real physics pr ocess c onsists of a c ombination of dynamic ( differential) a nd a lgebraic (functional) dependencies. These processes are described by differential-algebraic (DAE) systems. In that sense these s ystems a re hy brid s ystems. It s hould b e noted that the term «hybrid systems» has been widely used in the literature in various senses [1].

The paper deals with the weak obs ervability of small solutions of DAD systems; it is an extension of t he work [ 2]. T he s mall s olution is a s olution that goes to zero faster than any exponential function. Existence of such solutions for linear retarded systems was pr oved by H enry [3] a nd later b y Kappel [4] for linear neutral type systems. Lunel [5] gave explicit characterization of the smallest po ssi-ble time for which small solutions vanish. Observability of small solutions for the retarded time delay system c ase w as f irst studied by M anitius [ 6] and for general neutral system by Salomon [7].

1. Preliminaries. Let us consider DAD system in the form

x1(t) = A11x1(t) + A12x2(t), t > 0,

(1)

X2 (t) = A21X (t) + A22X2 (t - h), t > 0, (2)

with output

y(t) = B x(t) + B x2(t), (3)

Here x1(t) e R"1, x2 (t) e R"2, y(t) e R"

t > 0;

A11 e R "1 "",

A12 e R "1 ""2,

A22 e R"2""2,

B e Rr

B2 e Rrx« are constant matrices h is a constant delay, h >0. We regard an absolute continuous ^-vector functions Xj(-), an d a p iecewise co ntinuous x2 (•) «2-vector functions as the solutions of systems ( J)-(3), if t hey s atisfy t he equation (J) f or a lmost a ll t > 0 and (2) for all t > 0. System (I)-(3) should be completed with initial conditions in the form

Xj(0+) = Xj(0) = Xjo,

(4)

X2OO = v(t), Te[-h, 0),

where ye PC ([-h, 0), Rm ) and PC ([-h, 0), Rm ) is a s et of p iecewise c ontinuous m-vector f unctions i n [-h, 0].

Let E(g) denote t he exponential t ype of g : C ^ C, assuming g is an entire function of order 1. Then

E ( g ) = limsup

log I g (s)|

For g : C ^ Cq the e xponential type o f g is defined by

E ( g ) = max E ( g} ), where g = [ g ... g

1<j<q J L

J.

Let A(p) be the characteristic matrix function

A( p) =

PI"1 - A11

—Ati

A12

42 - A22e

- ph

The matrix function A(p) appears by applying the L aplace t ransform t o s ystem ( 1)-(3). L et detA(p) be the determinant of A(p). It follows from t he a bove t hat t he exponential t ype of det A(p) is less or equal n2h. Define s by

E(det A(p)) = n2h - s.

Let adj A(p) be the matrix function of cofac-tors of A(p). Since t he c ofactors C j are (n + n2 -1)(nj + n2 -1) subdeterminants of A(p), the exponential type of the cofactors is less or equal n2 h. Define a by

max E(C„) = n2h - a.

1<i, j <nj +n2 1

We have [2].

Proposition 1. For x1(-), x2(-) being solutions of system (1)-(3) the following implications hold:

i) if V£ e Z x1 (t)ekt ^ 0 as t ^ +œ, then x1 (t) = 0 for all t > e - c;

ii) if Vk e Z x2 (t)ekt ^ 0 as t ^ +œ,

(5)

then x2 (t) = 0 for all t > s - c. (6)

Definition 1. We say that a solution Xj(-), x2(-) is small, if there exists T > 0 such that xx(t) = 0, x2(t) = 0 for t > T. A small solution is trivial, if it is zero for t > 0.

s

s

1 The work is written in the framework of the cooperation with Bialystok Technical University.

Definition 2. We say that system ( 1)-(3) has a nontrivial small solutions, if there exists a solution x1(-), x2() such that conditions (5), (6) hold and at least x1(-) or x2()is not trivial.

Definition 3. We say that system ( 1)-(3) has a nontrivial s mall s olution with r espect to x1, if there exists a solution x1(-), x2() such that condition (5) holds and x1 (•) is not trivial.

Definition 4. We say that system ( 1)-(3) has a nontrivial small solution with respect to x2, if there exists a solution x1(^), x2() such that condition (6) holds and x2() is not trivial.

2. Observability.

2.1. Observability of small solutions.

Definition 5. We say that nontrivial small solutions of s ystem ( 1)-(3) a re o bservable, i f every nontrivial s mall s olution has nonzero output f or some t > 0. This means that

x1(t ) = 0Vt > T 3T > 0 x2(t) = 0Vt > T y(t) = 0Vt > 0

x,(t ) = 0, x2(t ) = 0, Vt > 0.

Theorem 1. Nontrivial small solutions of system ( 1)—(3) are observable, if and only if the following conditions hold:

i) max rank

AEC

A11 -AI, A12 0

A21 - A22

0 A22 0

B1 B2 0

= n + n2 + rankA-

"22 '

(7)

ii) rank

B2 ^22

B2 (42 )2

B2 (^ )n

. (A22 )"

= rank

B2 A-22 B2 ( A22 )2

B2 ( A22 )"

( A22 )"

A

(8)

Proof. The proof is similar to theorem 2 and it can be omitted.

2.2. Spectral observability.

Definition 6. System ( 1)-(3) is i nfinite-time observable, if for all initial data for which y(t) = 0 for t e[0, <x>) there exists t1 such that x1(t) = 0 and x2 (t) = 0 for t e [tj, Do

Definition 7. System (1)-(3) is finite-time observable at t2, if for a ll initial data, f or w hich y(t) = 0 for 2 e [0, d), x^t) = 0 and x2(t) = 0 for

t e [t2, D)o

Definition 8. System (1)-(3) is spectrally observable, i f all its e igenvalues are o bservable. A n eigenvalue X is o bservable if t he c orresponding eigensolution of the f orm Xj (t) = exp(Xt)Xj (0),

x2(t) = exp(Xt)x2(0), xj(0) ^ 0, x2(0) ^ 0, obtains y(t) = 0 for t e [0, £0 . We have [2].

Proposition 2. System (1)-(3) is spectrally observable if and only if

rank

iX- A11

- A21 B

A12 ^ - A22^ B

= "1 + n2, (9)

for all complex X.

Proposition 3. System (1)-(3) is spectrally observable if and only if system (1)-(3) is infinite-time observable.

Corollary 1. System (1)-(3) is spectrally observable if and only if system (1)-(3) is finite-time observable at s - c.

Proof. By proposition 1 and proposition 3.

3. Relative observability of small solutions.

Definition 9. Nontrivial s mall s olutions with respect to x2 of system (1)-(3) are weakly observable, if every nontrivial small solution with r e-spect to x2 has nonzero output for t > 0 and x1 is a zero solution, i. e.

x1(t ) = 0 Vt > 0 3T > 0 x2(t) = 0 Vt > T y (t ) = 0 Vt > 0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

• x2(t) = 0, Vt > 0

Theorem 2. Nontrivial small solutions with respect to x2 of system (1)-(3) are observable if and only if the following condition holds:

rank

B2 A-22 B2CA22)2

B2( A^)"2

= rank

B2 A22

B^f

B2 ( A22 )" A

(10)

Proof. The necessary condition. We assume

Î0, xe (-h, 0),

that x1(t) = 0, t > 0, 9(1) = <| Then

[9 T = -h.

equation ( 1) is satisfied for almost all t > 0 and weak observability with respect to x2 of system (1)—(3) means t hat conditions B2A2290 = 0, ..., B2(A21)k 90 = 0 for k = 1,2,... implies A2290 = 0 that by the Cayley - Hamilton theorem is equivalent to condition (10).

The sufficient condition. If condition (10) is satisfied then there exists a matrix D e Rn2xrn2 such

that A22 = D

B2 A-22

B2(A,2)2

B2( A22)"

For a ny i nitial

function ф(х),те [-h, 0] for which B2(A22) ф(х) = 0, те [-h, 0], k = 1,..., n2 condition А22ф(т) = 0, те [-h, 0] is also satisfied that is equivalent to the weak obs ervability of nontrivial s mall s olutions of system (1)—(3) with respect to x2.

Definition 10. We s ay t hat x1(t), t > 0, x2(t), t > 0 is a strong solution of system ( 1)-(3), if equations (1)-(3) are satisfied for all t, t > 0 (the derivative in (1) we means right-hand derivative at t = 0).

Theorem 3. Nontrivial strong s mall solutions with respect to x2 for system ( 1)-(3), are o bservable if and only if the following condition holds:

rank

A A

12 22

A An2

12 22

B2 A22

, B2 A22

= rank

A A

12 22

A An2

12 22

B2 A22

B2 A22

22

(11)

Proof. Definition 10 is equivalent to

A12 x1(t) = 0, t > 0 x2 (t) = A22x2 (t - h), 0 J ^ x2 (t) = 0, t0> У(t) = B2 x2(t), t > 0

«

«

A,2( AJ ф(т) = 0j B2( A22)] ф(т) = 0 J

^ A22ф(т) = 0,

where

Те -h, 0), i = 1,..., П2; j = 1,..., П2]

«

« {фТ (т)[( AÏ2Ï42,( A22 ) ]B:

T

i = 1,..., П2; , =

П2]:

фТ (Т) A2T2 =0}.

It is equivalent to (11).

Corollary 2. If nontrivial strong small solutions with respect to x2 of system ( 1)-(3) are observable t hen nontrivial s mall s olutions w ith r e-spect to x2 of the system are also observable.

Definition 9. Nontrivial s mall s olutions with respect to x1 of system (1)-(3) are weakly observable i f e very non trivial small solution w ith respect to x1 has nonzero output for t > 0 and for x2 being zero solution, i. e.

x2(t) = 0 Vt > 0 3T > 0 x1(t) = 0 Vt > T y(t) = 0 Vt > 0

x1(t) = 0, Vt > 0

Theorem 4. Nontrivial small solutions with respect to x of system (1)-(3) are always observable.

Proof. Condition x2(t) = 0 for t > 0 implies x1 (t) = A11 x1 (t), and the system has solutions of the form x1 (t) = eAlltx1 (0), it proves that all small solutions with respect to x1 are trivial.

Conclusion. In this paper we investigated the problem of r elative weak obs ervability of nontrivial s mall s olutions of the hybrid differential-difference (HDR) systems. Weak observability of nontrivial small solution with respect to x2 and x1 are considered. Strong small solutions are defined and weak obs ervability of nontrivial s trong s mall solutions with respect to x2 is established. Other types of observability and relations between these types of observability are discussed.

References

1. Марченко, В. М. Некоторые нерешенные задачи в теории управляемых динамических ГДР систем / В. М. Марчгнко // Труды БГТУ. Сер. VI, Физ.-мат. науки и информ. - 2006. -Вып. XIV. - С. 3-6.

2. M archenko, V . M . O bservability of s mall solutions of l inear di fferential-algebraic s ystems with delays / V. M. Marchenko, Z. Zaczkiewicz // Control and Cybernetics. - 2006. - Vol. 35, № 4. -P.997-1013.

3. Henry, D. Small Solutions of Linear Autonomous F unctional D ifferential Equations / D. Henry // J. Differential Equations. - 1970. - Vol. 8. - P. 494-501.

4. Kappel, F . Laplace transform methods and linear autonomous functional differential equations / F. Kappel // Math. Institur, Univ. Graz, Bericht. -1976. - № 64.

5. Verduyn Lunel, S . M. A Sharp Version of Henry's Theorem on Small Solutions / S. M. Ver-duyn Lunel // J. Differential Equations. - 1986. -Vol. 62, № 2. - P. 266-274.

6. Manitius, A. F-controlability and observability of linear retarded systems / A. Manitius // Appl. Math. Optim. - 1982. - Vol. 9. - P. 73-95.

7. Salamon, D. On controllability and observability of time delay systems / D .Salamon // IEEE Trans. Aut omat. C ontr. - 1984. - Vol. 29. -P. 432-439.

i Надоели баннеры? Вы всегда можете отключить рекламу.