на 10 % на 150-й секунде. При снижении расхода теплоносителя первого контура расход пара падает, а расход воды увеличивается из-за снижения давления в ПГ. На рис. 8 приведены результаты расчета одного из возмущенных режимов работы парогенератора: при скачкообразном снижении расхода теплоносителя первого контура через ПГ-1 на 10 % на 150-й секунде. Из графиков видно, что снижение расхода пара (на 28 т/ч) и сопутствующее повышение расхода питательной воды (на 4 т/ч) отрабатывается регулятором. Положение клапана в рабочем диапазоне меняется на 6 %, уровень в ПГ поддерживается в зоне требуемой точности, понизившись при возмущении из-за влияния набухания примерно на 12 мм, увеличивается в соответствии с разбалансом расходов воды и пара и далее поддерживается в зоне требуемой точности (±50 мм).
В результате проведения динамических испытаний на разработанной модели питания парогенератора подтверждено, что ПТК САР ПГ обеспечивает поддержание параметров ПГ в пределах требований нормальной эксплуатации блока.
Таким образом, использование математической модели питания парогенератора с переменными параметрами, созданной на основе инструментария событийного моделирования, позволяет не только наглядно и просто описать поведение сложного объекта управления, но и в короткие сроки провести испытание системы регулирования в различных режимах работы. Кроме того, разработанная модель пригодна не только для использования при испытаниях систем регулирования питания парогенераторов энергоблоков АЭС, но и для применения при разработке и настройке систем регулирования уровня в барабанах котлов энергоблоков тепловых электростанций, имеющих аналогичный принцип построения.
Библиографический список
1. Иванов, В.А. Регулирование энергоблоков: / В.А. Иванов. — Л.: Машиностроение, Ленингр. отд-ние, 1982. — 311 с.
2. Трофимов, А.И. Принципы построения автоматических регуляторов теплоэнергетических процессов АЭС / А.И. Трофимов, Н.Д.Егупов, Я.В. Слекеничс.—М.: Энергоатомиздат, 1999. — 340с.
3. Дьяконов, В.П. ЫЛТЬДВ 6.5 БР1/7 + Бішиїтк 5/6 в математике и моделировании / В.П. Дьяконов.—М.: Солон-Пресс, 2005. - 576 с.
4. Демченко, В.А., Разработка математической модели участка питания парогенератора энергоблока с ВВЭР / В.А. Демченко, В.Ф. Ложечников // Тр. Одес. политехн. ун-та. — Одесса, 1999. — Вып. 2(8). — С. 111 — 115.
5. Изерман, Р. Цифровые системы управления / Р. Изерман. — М.: Мир, 1984. — 541 с.
ДЕНИСОВА Людмила Альбертовна, кандидат технических наук, доцент кафедры «Автоматизированные системы обработки информации и управления» Омского государственного технического университета, старший научный сотрудник ЗАО «Автоматика-Э». РАСКИН Евгений Михайлович, кандидат технических наук, директор ЗАО «Автоматика-Э», доцент кафедры «Автоматизированные системы обработки информации и управления» Омского государственного технического университета.
Адрес для переписки: 644050, г. Омск, пр. Мира, 11.
Статья поступила в редакцию 04.06.2010 г.
© Л. А. Денисова, Е. М. Раскин
УДК 6813 Е. М. РАСКИН
Л. А. ДЕНИСОВА Ж. В. ШИПИЛОВА
ЗАО «Автоматика-Э», г. Омск
Омский государственный технический университет
СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ В ГЛАВНОМ ПАРОВОМ КОЛЛЕКТОРЕ ЭНЕРГОБЛОКА АЭС
Представлена система автоматического регулирования давления пара в главном паровом коллекторе энергоблока АЭС, созданная на базе цифровых локальных регуляторов. Приведены результаты динамических испытаний и оптимизации настроек системы. Ключевые слова: быстродействующая редукционная установка, импульсная система регулирования, автоматизированное проектирование.
При эксплуатации энергоблоков АЭС возникают динамические режимы, сопровождающиеся повышением давления пара в главном паровом коллекторе (ГПК). Чрезмерный рост давления пара в ГПК, вызванный, как правило, недостаточным отводом тепла реактора при резком снижении потребления пара
турбогенератором (ТГ) приводит к срабатыванию быстродействующих редукционных установок сброса пара в конденсатор турбины (БРУ-К) [1].
Для модернизации системы автоматического регулирования (САР) БРУ-К энергоблоков № 3, 4 Кольской АЭС и замены морально устаревшей,
ОМСКИЙ НАУЧНЫЙ ВЕСТНИК №3 (93) 2010 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ОМСКИЙ НАУЧНЫЙ ВЕСТНИК №3 (93) 2010
отработавшей свой ресурс локальной аппаратуры авторегулирования «Каскад 1», применяемой до настоящего времени для регулирования давления в ГПК, в ЗАО «Автоматика-Э» разработан программнотехнический комплекс (ПТК) на базе цифровых локальных регуляторов ВЛР-2.1.
ПТК САР БРУ-К разработан в соответствии с требованиями нормативно-технической документации к управляющим системам важным для безопасности [2] в части предотвращения нарушения пределов безопасной эксплуатации при реализации автоматизированного управления.
Выносной локальный регулятор ВЛР-2.1, является микроконтроллером, способным реализовать кроме функций собственно регулирования также и автоматические защиты и блокировки технологического оборудования. Для сохранения существующих кабельных трасс и минимизации затрат номенклатура и характеристики входных и выходных сигналов, а также габаритные и установочные размеры цифровых регуляторов ВЛР-2.1 соответствуют аналогичным параметрам устройств типа «Каскад».
ПТК САР БРУ-К, предназначенный для регулирования давления пара в главном паровом коллекторе, находится в состоянии ждущего режима и автоматически включается в работу при повышении давления в ГПК до 50 кгс/см2 и при сбросе нагрузки на турбогенераторе более 20 % от максимального значения.
Для обеспечения надежной и безопасной эксплуатации энергетического блока при аварийных сбросах нагрузки или отключениях турбин САР БРУ К работает в различных эксплуатационных режимах (I, II, III) по сигналам от внешнего переключателя режимов. При действии аварийной защиты (АЗ-!) САР БРУ-К переходит из режима I или II (если были установлены эти режимы) в режим III.
САР БРУ-К формирует управляющие воздействия на электроприводы исполнительных механизмов (ИМ) регулирующих клапанов (РК) БРУ-К с учетом необходимых для безопасной работы механизмов блокировок, ограничений и защит. Регулирование осуществляется в III режиме по одноимпульсной схеме (регулируемый параметр — давление пара в ГПК). В I и II режимах схема регулирования трехимпуль-сная [3]. При этом регулируемый параметр — давление пара в ГПК, а корректирующие параметры при формировании задания регулятору — величина сброшенной нагрузки, положение клапанов БРУ-К или значение уровня в конденсаторе.
Импульсный регулятор ВЛР-2.1 управляет одновременно двумя клапанами, реализуя пропорционально-интегральный (ПИ-) закон регулирования во всех режимах работы и поддерживая во всем диапазоне нагрузок постоянное давление в ГПК — 47 кгс/см2. Для предотвращения повышения уровня в конденсаторе турбины выше допустимого в схему регулятора введен сигнал по уровню в конденсаторе, используемый для коррекции задания по давлению в ГПК: изменяющий задание САР БРУ-К в пределах (47 — 50) кгс/см2 при изменении уровня в конденсаторе турбины от 1200 мм (номинальный уровень) до 1400 мм (максимальный уровень).
В I режиме работы САР БРУ-К производится запоминание сигнала величины сброшенной нагрузки ТГ. При этом сигнал по величине сброшенной нагрузки компенсируется суммой сигналов по положению клапанов БРУ-К и сигналом по уровню в конденсаторе. Так как давление в ГПК в переходном режиме возрастает и величина сигнала по давлению
в ГПК изменяется, САР работает как регулятор соотношения: «величина сброшенной нагрузки ТГ — положение клапанов БРУ-К» с коррекцией по давлению в ГПК.
Во II режиме после окончания переходного процесса, клапаны БРУ-К устанавливаются в положение, соответствующее величине сброшенной нагрузки ТГ. При уменьшении сигнала величины сброшенной нагрузки регулятор, отслеживая этот сигнал, прикрывает клапаны БРУ-К.
В III режиме работы САР БРУ-К (используемый основной режим) сигналы по величине сброшенной нагрузки ТГ и по положению регулирующих клапанов отключены от регулятора, сигнал по уровню в конденсаторе турбины обеспечивает автоматическую коррекцию задания по давлению в ГПК.
Кроме того, ПТК САР БРУ-К выполняет информационные функции: сбор, обработку и передачу информации о параметрах процесса регулирования и значениях технологических величин для предоставления оперативному персоналу. Сервисные функции, реализуемые ПТК САР БРУ-К, следующие: контроль работоспособности технических и программных средств комплекса; конфигурирование и настройка контуров регулирования.
Программно-алгоритмическая реализация функций контроля и управления ПТК САР БРУ-К выполнена на базе описаний технологических режимов и состава оборудования, представленных в исходных материалах Кольской АЭС, в соответствии с требованиями к функционированию системы и рекомендациями эксплуатирующего персонала.
Представленная на рис. 1 обобщенная схема программно-алгоритмической реализации канала регулирования БРУ-К на средствах ВЛР-2.1 содержит, кроме того, структуру организации информационного обмена ВЛР-2.1 с источниками и потребителями сигналов: датчиками технологических параметров, инженерной станцией (ИС), схемами управления регулирующими клапанами.
Для обеспечения унификации и независимости отладки при разработке ПО выполнена декомпозиция алгоритма работы САР БРУ-К разбиением на функциональные специализированные алгоблоки.
Алгоблок ЛЬС_ОБЯ реализует алгоритм обработки входных сигналов, которые подвергаются диагностическому контролю дополнительно к контролю, осуществляемому в регуляторе аппаратными средствами. Контролируются диапазон изменения технологических параметров (сравнением с заданными граничными значениями) и скорость их изменения с формированием соответствующих признаков недостоверности информации. Входные сигналы от аналоговых датчиков демпфируются и масштабируются с учетом диапазонов изменения.
Алгоблок ЛЬС_ЯЕТ формирует задание САР по давлению в ГПК на основе хранимого в памяти ВЛР-2.1 базового значения с возможностью его плавной перестройки по командам оператора с инженерной станции. Кроме того алгоблок ЛЬС_ЯЕТ поизводит коррекцию задания по сигналам величины сброшенной нагрузки ТГ, уровня в конденсаторе турбины и положения регулирующих клапанов.
Алгоблок ЛЬС_ЯЕС осуществляет импульсное регулирование по ПИ-закону. В состав алгоблока ЛЬС_ЯЕС входит импульсный пропорциональнодифференциальный (ПД-) преобразователь, формирующий последовательность импульсов на открытие или закрытие РК в зависимости от величины поступающего на его вход отклонения давления в ГПК
Контроль и управление
2*\
Инженерная станция
ТУ
Сервисное
обслуживание
ВЛР-2.1
Р8-485
Р8-232
Микроконтроллер РТУ 188-МХ
ДЬО РІДСШ
Диагностика I4
самохода РК
ДЬО_й!ДОМ2
Диагностика отсутствия перемещения РК
Блок ввода аналоговых сигналов
а а
ДЬО_й!ДОМ3
Диагностика
неисправности
регулятора
БРУ-К
Блок ввода дискретных сигналов
Блок формирования дискретных сигналов
ДЬО_й!ДОМ4
Диагностика
технологических
нарушений
Модули ^аншлогового вывода
Плата
коммутации
Плата ГР
1Г 1Г
Схема Схема
управления РК1 управления РК2
н уге
1ПГ
К внешним потребителям
Рис. 1. Структурная схема программно-алгоритмической реализации канала регулирования на средствах ВЛР-2.1
от заданного значения, обеспечивая закон ПИ-регулирования совместно с исполнительным механизмом постоянной скорости.
Алгоблок ЛЬС_КЛ7Я формирует команду включения в работу БРУ-К при повышении давления в ГПК до 50 кгс/см2 и одновременном сбросе нагрузки на ТГ более 20% от максимального значения.
Алгоблок ALG_NA.GR вычисляет величину сброшенной нагрузки.
Алгоблоки диагностики ALG_DIAGN1 —ЛЬС_ формируют сигналы неисправности регулятора при недостоверных значениях входных сигналов ВЛР-2.1 и при технологических нарушениях в системе.
Программная реализация алгоритмов регулирования выполнена в автоматизированном режиме с помощью разработанного в ЗАО «Автоматика Э» языка технологического проектирования Терго1, который представляет собой интегрированную среду создания программного обеспечения контроллеров и содержит все средства для редактирования, компиляции, компоновки и отладки программ [4].
При использовании языка Терго1 технологический алгоритм представляется в виде набора графически соединенных между собой программно-
алгоритмических блоков из библиотечного набора. Схемный редактор позволяет набрать схему технологического алгоритма, а графический редактор создать новые блоки. Автоматизированы также компиляция набранной схемы в программу на языке С и создание загрузочного модуля. Инструментальный комплекс, использующий средства языка Терго1, позволяет автоматизировать отладку ПО и исследование характеристик контроллеров, в которых оно используется, с помощью встроенных средств моделирования.
Для иллюстрации приведена программная реализация средствами языка Терго1 алгоритма формирования задания регулятору — алгоблока ALG_SET (рис. 2). Алгоблок на языке Терго1 — укрупнённый, функционально законченный модуль, в развёрнутом виде представляющий собой схему программной реализации выполняемого им алгоритма. Входными параметрами в алгоблок ALG_SET являются обработанные в алгоблоке ALG_OBR сигналы от указателей положения клапанов БРУ-К и датчика уровня в конденсаторе, вычисленная в алгоблоке ALG_NAGR величина сброшенной нагрузки, а также команды по переключению режима работы САР БРУ-К и изме-
ОМСКИЙ НАУЧНЫЙ ВЕСТНИК №3 (93) 2010 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ОМСКИЙ НАУЧНЫЙ ВЕСТНИК №3 (93) 2010
%
Рис. 2. Структура алгоблока ALG_SET формирования задания регулятору
нению задания. На выходе алгоблока ALG_SET формируется задание давления в ГПК, поступающее в алгоблок ALG_REG. Используемые в алгоблоках параметры настройки хранятся в электрически стираемом программируемом постоянном запоминающем устройстве (ЭСППЗУ) ВЛР-2.1.
На рис. 3 показана реализация на языке Teprol входящего в состав алгоблока ALG_REG импульсного ПД-преобразователя, осуществляющего собственно функцию импульсного регулирования, выполненного так же, как на традиционных средствах, на основе трехпозиционного релейного звена с гистерезисом, охваченного обратной связью в виде апериодического звена первого порядка.
На испытательном стенде ЗАО «Автоматика-Э» проведены динамические испытания по оценке качества регулирования САР БРУ-К и соответствия техническим требованиям. В результате проведенных исследований выработаны рекомендации по оптимизации настройки САР БРУ-К. При этом учитывалось следующее.
С одной стороны, при резком снижении потребления пара турбогенератором должно производиться быстрое открытие РК БРУ-К, обеспечивая немедленный сброс пара в конденсатор турбины. С другой стороны, быстрое перемещение РК может привести к недопустимому падению давления в ГПК (перерегулированию) и срабатыванию блокировки на отключение САР БРУ-К. Кроме того, необходимо по технологическим соображениям по возможности уменьшить количество срабатываний исполнительных механизмов РК БРУ-К при стабилизации давления.
Поэтому для выбора оптимальных настроек принят интегральный показатель качества, позволяющий учесть все названные факторы
т
J3 = |(е2 + (5и)2М ,
0
где е—величина отклонения давления в ГПК от заданного значения; и—выходной сигнала регулятора на ИМ; {—текущее время; Т—верхний предел интегрирования, выбираемый не меньше времени переходного процесса.
Как видно из рис. 4а, критерий J3, представляет собой сумму следующих показателей: JI (оценивающего величину е), и рассматриваемого в установившемся режиме J2 (учитывающего с весовым коэффициентом выход регулятора и). Минимизация принятого показателя качества J3 позволяет обеспечить быстродействие системы, отсутствие перерегулирования, а также уменьшение количества срабатываний ИМ.
Кроме вышеизложенного, необходимо также принять во внимание, что основным рабочим режимом САР БРУ-К является так называемый пульсирующий режим, в котором выходная величина контура обратной связи следует за входной величиной регулятора, отличаясь от нее при движении ИМ в одном направлении на небольшую приблизительно постоянную величину. При этом ИМ включается несколько раз подряд в одном направлении, пока рассогласование не уменьшится до величины зоны нечувствительности.
В пульсирующем режиме при некоторых настройках САР БРУ-К в контуре регулирования могут возникнуть автоколебания, недопустимые в условиях нормальной эксплуатации как по технологическим соображениям, так и из-за опасности перегрева электродвигателя от частых реверсивных включений
Рис. 3. Структура импульсного ПД-преобразователя
50
100
Т ,с
и
Рис. 4. Графики для выбора параметров настройки САР БРУ-К:
0
К
Р
а — показатели качества работы, б — область рекомендуемых настроек кр и Ти
и усиленной амортизации подвижных элементов исполнительного механизма.
По результатам динамических испытаний были определены области без автоколебаний для настроек основных параметров контура регулирования: коэффициента передачи регулятора кр, постоянной времени Ти (рис. 4б) и коэффициента длительности импульса кимп (рис. 5).
На основе полученных результатов была выполнена оптимизация настройки контура регулирования САР БРУ-К и выработаны рекомендации для ее осуществления. Рекомендуется осуществлять оптимизацию настройки системы с помощью следующих последовательно выполняемых этапов.
Сначала устанавливается постоянная времени Ти в соответствии с постоянной времени объекта управления Тоб, являющегося по динамическим характеристикам апериодическим звеном для технологического параметра — давления в ГПК. Определяется Ти = (0,6 — 0,8) Тоб, как принято в практике наладочных
работ для ПИ-регуляторов. Затем выбирается коэффициент передачи регулятора кр, минимизирующий принятый интегральный показатель качества регулирования и находящийся в области отсутствия автоколебаний в системе (рис. 4). Далее из условия отсутствия автоколебаний выбирается желаемая длительность импульса по зависимости ^мп = f(kр ,Ти) (рис. 5а) и, наконец, по графику на рис. 5б устанавливается соответствующий коэффициент
кимп = ^(кр )'
На рис. 6 представлены полученные при проведении испытаний на моделирующем стенде динамические процессы в САР БРУ-К с установленными оптимальными параметрами. Возмущающее воздействие отрабатывается системой в соответствии с требованиями к протеканию проверяемого технологического режима III.
Динамические испытания ПТК САР БРУ-К, построенного на базе цифровых регуляторов ВЛР 2.1,
ОМСКИЙ НАУЧНЫЙ ВЕСТНИК №3 (93) 2010 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ОМСКИЙ НАУЧНЫЙ ВЕСТНИК №3 (93) 2010
г
К а)
Р ’
Рис. 5. Графики для выбора длительности импульса - зависимости:
а - (ими = 1(кр Ти) , б - кимп = 1(кр )
Рис. 6. Переходные процессы в САР БРУ-К при проведении испытаний
подтвердили выполнение требований к функционированию системы в различных эксплуатационных режимах.
Следует отметить, что высокий уровень диагностики состояния технических средств ПТК, технологического оборудования и параметров объекта управления, реализованный при построении ПТК САР БРУ-К, а также возможность регистрации и архивирования событий, возникающих в системе, позволяют повысить показатели надежности и улучшить качество протекания динамических режимов на энергоблоке.
Библиографический список
1. Иванов, В.А. Регулирование энергоблоков / В.А. Иванов. — Л.: Машиностроение, Ленингр. отд-ние, 1982. — 311 с.
2. НП-026-04 Требования к управляющим системам, важным для безопасности атомных станций.—М.: Технорматив, 2007. — 6 с.
3. Трофимов, А.И. Принципы построения автоматических регуляторов теплоэнергетических процессов АЭС / А. И. Трофимов, Н.Д. Егупов, Я.В. Слекеничс. — М.: Энергоатомиздат, 1999. — 340 с.
4. Раскин, Е.М. Инструментальный комплекс проектирования систем управления ЯЭУ на базе средств СПА-ПС. / Е.М. Раскин,
Л.А. Денисова, М.И. Федосеев // Математические модели для исследования и обоснования характеристик оборудования и ЯЭУ в целом при их создании и эксплуатации: тез. докл. семинара НТС Минатома России «Динамика, теплогидравлика и безопасность реакторов и АЭС». — Гатчина: НИТИ, 2000. — С. 175 — 177.
РАСКИН Евгений Михайлович, кандидат технических наук, директор ЗАО «Автоматика-Э», доцент кафедры «Автоматизированные системы обработки информации и управления» Омского государственного технического университета.
ДЕНИСОВА Людмила Альбертовна, кандидат технических наук, доцент кафедры «Автоматизированные системы обработки информации и управления» Омского государственного технического университета, старший научный сотрудник ЗАО «Авто-матика-Э».
ШИПИЛОВА Жанна Владимировна, инженер системотехнического отдела ЗАО «Автоматика-Э». Адрес для переписки: 644050, г. Омск, пр. Мира, 11.
Статья поступила в редакцию 04.06.2010 г.
© Е. М. Раскин, Л. А. Денисова, Ж. В. Шипилова