Научная статья на тему 'Система поддержки принятия решений на основе когнитивного моделирования «игла»'

Система поддержки принятия решений на основе когнитивного моделирования «игла» Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
790
315
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Гулаков В. К., Подвесовский А. Г., Лагерев Д. Г.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Система поддержки принятия решений на основе когнитивного моделирования «игла»»

сов, пользуется этим уровнем абстракции и включает в себя связанную с данными семантическую информацию, то есть веб-сервисы определяют не только данные, но и порядок обработки и преобразования этих данных в базовые программные приложения и обратно.

Порядок описания, поиска и взаимодействия веб-сервисов друг с другом определяют стандарты. Взаимодействующие через Интернет программы должны уметь обнаруживать друг друга, находить информацию, позволяющую им осуществить связь, понимать, какая модель контактирования должна

быть применена, и договариваться об использовании таких услуг, как защита информации, подтверждение передачи сообщений и составление сделок. Некоторые из этих сервисов реализуются существующими технологиями и предлагаемыми стандартами. Использующее веб-сервисы сообщество стремится удовлетворить все требования, но это - эволюционный процесс, как и сам Интернет. С самого начала инфраструктура и стандарты веб-сервисов подразумевали возможность расширения, что позволяет использовать их сразу же после появления новых стандартов и технологий.

СИСТЕМА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ НА ОСНОВЕ КОГНИТИВНОГО МОДЕЛИРОВАНИЯ «ИГЛА»

В.К. Гулаков, к.т.н., Д.Г. Лагерев, А.Г. Подвесовский, к.т.н. (Брянск)

Важнейшим процессом, связывающим основные функции управления социально-экономическими системами, является разработка управленческих решений, так как именно принимаемые решения определяют не только эффективность процесса управления, но и возможность устойчивого развития управляемой системы.

Вместе с тем, для процесса разработки управленческих решений характерен ряд проблем: трудноформали-зуемость большинства его этапов; уникальность возникающих задач; необходимость учета множества факторов и целей, имеющих сложную структуру взаимосвязи, а зачастую противоречащих друг другу. Поэтому наиболее эффективным подходом к разработке решений является сочетание опыта, знаний, интуиции менеджера и современных технологий автоматизированной поддержки принятия решений, позволяющих систематизировать и структурировать имеющуюся информацию, исследовать альтернативные варианты решений и выбирать из них наиболее удачные. В основе указанных технологий лежит математическое моделирование процесса разработки решений.

В целом процесс разработки управленческого решения состоит из трех основных этапов: подготовка, обоснование и принятие решения. На каждом из этих этапов решается множество подзадач, при этом их решение обычно носит параллельный и итерационный характер. Для некоторых подзадач, таких как получение критериальных оценок альтернатив, моделирование предпочтений лица, принимающего решение (ЛПР), выбор оптимального решения и других, существуют достаточно хорошо проработанные подходы к их моделированию. Большинство таких подходов основано на математической теории принятия решений (см.: Э.А. Трах-тенгерц. Компьютерная поддержка принятия решений. М.: СИНТЕГ. 1998). С другой стороны, такие подзадачи, как идентификация проблемы, формирование целей, анализ факторов, характеризующих моделируемую ситуацию, разработка прогноза ее развития, синтез и отбор альтернатив и управляющих стратегий для достижения нечетко поставленной цели, решаются в основном на приближенном уровне с помощью интуиции и нестрогих рассуждений.

Основная сложность, возникающая при построении моделей подобных задач, состоит в том, что аналитиче-

ское описание либо статистическое наблюдение зависимостей между входными и выходными параметрами, характеризующими исследуемую ситуацию, затруднено или невозможно, и, более того, большинство параметров не являются измеримыми и допускают только качественное выражение - подобные ситуации называют слабо структурированными (см.: З.К. Авдеева, С.В. Коврига, Д.И. Макаренко. Когнитивное моделирование для решения задач управления слабоструктурированными системами (ситуациями) // Управление большими системами. Вып. 16. - М.: ИПУ РАН. 2007). Поэтому приходится прибегать к субъективным моделям, основанным на экспертной информации, обрабатываемой с привлечением логики здравого смысла, интуиции и эвристик.

Научным направлением, лежащим в основе исследования слабоструктурированных систем, является методология когнитивного моделирования. В рамках когнитивной модели информация о системе представляется в виде набора понятий (факторов) и связывающей их причинно-следственной сети, называемой когнитивной картой, которая является отражением субъективных представлений эксперта (или группы экспертов) о законах и закономерностях, присущих моделируемой системе. К когнитивной карте применяются методы аналитической обработки, ориентированные на исследование структуры системы и получение прогнозов ее поведения при различных управляющих воздействиях, с целью синтеза эффективных стратегий управления.

Предлагаемая программная система поддержки принятия решений (СППР) «ИГЛА» (Интеллектуальный генератор лучших альтернатив) основана на применении нечетких когнитивных моделей и обеспечивает поддержку группового построения и согласования когнитивной карты, выполнение расчета и анализа ее системных показателей, а также динамического моделирования сценариев развития ситуации (см.: В.Б. Силов. Принятие стратегических решений в нечеткой обстановке М.: ИНПРО-РЕС. 1995). Рассмотрим основные понятия, используемые в СППР.

• Нечеткая когнитивная карта (НКК) представляет собой нечеткую причинно-следственную сеть, вершины которой соответствуют концептам (переменным), характеризующим моделируемую ситуацию, а дуги описывают причинно-следственные связи между ними.

Управление процессом согласования

Подсистема визуализации

□ визуализация когнитивных карт

□ визуализация результатов моделирования

□ интерактивный ввод и

редактирование данных

Ж

Подсистема согласования

□ сбор информации от экспертов

□ определение несогласованности мнений экспертов

□ выдача рекомендаций по согласованию мнений

Подсистема управления базой знаний

обеспечивает взаимодействие между пользователями и базой знаний

Сервер

Подсистема статического моделирования

□ расчет системных показателей

□ определение взаимного влияния концептов и системы

□ генерация рекомендаций по

„ корректировке НКК_

Подсистема динамического моделирования

□ генерация сценариев

□ редактирование сценариев

□ моделирование сценариев

□ выбор оптимальных сценариев

□ выдача рекомендаций ЛПР

Архитектура СППР «ИГЛА»

• Концепт (фактор, переменная) - значимый фактор ситуации. Концепты делятся на целевые, управляемые, промежуточные, способствующие и препятствующие.

• Связь задает влияние концепта-причины на концепт-следствие. При этом если увеличение значения концепта-причины приводит к увеличению значения концепта-следствия, то влияние считается положительным («усиление»), если же значение уменьшается - отрицательным («торможение»). Вес связи определяет степень (интенсивность) влияния.

• Граф (взвешенный ориентированный граф) является наглядным графическим представлением НКК.

• Когнитивная матрица строится на основе знака и весов связей и фактически является матрицей смежности взвешенного орграфа.

• Транзитивно замкнутая матрица рассчитывается на основе когнитивной матрицы с помощью операций нечеткой причинно-следственной алгебры, что позволяет учесть все опосредованные влияния.

• Системные показатели - множество характеристик, которые рассчитываются на основе транзитивно замкнутой матрицы. Анализ системных показателей позволяет выделить множество способствующих и препятствующих концептов с учетом их степени влияния на систему и достоверности этого влияния.

• Граф а-уровня (а-срез) строится на основе среза матрицы системных показателей и позволяет выделить «узловые точки» когнитивной модели, то есть классы концептов, которые образуют наиболее устойчивые структуры и оказывают значительное влияние на всю систему в целом.

• Воздействие описывает управляющее или внешнее влияние на концепт или связь. Характеризуется знаком, силой влияния и длительностью.

• Сценарий (альтернатива) описывает изменение состояния системы во времени, вызванное управляющими и внешними воздействиями на нее.

• Результаты динамического моделирования описывают динамику поведения исследуемой системы при реализации выбранного сценария.

• График - двухмерное графическое представление результатов динамического моделирования сценариев, отражающее изменение состояния выбранного концепта во времени и позволяющее наглядно сравнивать различные сценарии.

Архитектура системы «ИГЛА» приведена на рисунке. Эксперты формализуют свои знания и представления об исследуемой ситуации в виде нечеткой когнитивной карты. Координатор помогает им в согласовании терминологии (в первую очередь названий концептов) и разрешает спорные вопросы. В системе поддерживаются процедуры оценки интенсивности связей на основе

как прямых (непосредственное назначение весов), так и более эффективных косвенных методов, среди которых метод парных сравнений Саати и метод множеств уровня Ягера.

Далее аналитики выполняют верификацию НКК и исследование ее устойчивости. Если были выявлены значимые несоответствия модели с реальной ситуацией, экспертам следует выполнить корректировку НКК. Если же модель описывает ситуацию с приемлемой точностью, то выполняется расчет системных показателей НКК, на основе которых выделяются множества способствующих и препятствующих концептов (из числа управляемых), и осуществляется генерация сценариев. Аналитики также могут создавать собственные сценарии или вносить изменения в сгенерированные, например, добавлять различные внешние воздействия или корректировать управляющие. Динамическое моделирование сценариев выполняется на основе импульсных процессов. Результаты моделирования представляются отдельно для каждого концепта в виде двухмерного графика, при этом ось абсцисс отражает управленческие такты, а ось ординат - относительное изменение состояния выбранного концепта. Оценка результатов моделирования для каждого из целевых концептов позволяет исключить из дальнейшего анализа заведомо неудачные сценарии, а удачные представить ЛПР для дальнейшего анализа и оценки.

Таким образом, разработанная СППР может быть использована в качестве инструментария для концептуального анализа и моделирования стратегий управления сложными слабоструктурированными ситуациями, а также порождения и проверки гипотез, связанных с развитием данных ситуаций при различных внешних воздействиях. Например, при обосновании решений по управлению инновациями на предприятии (см.: Д.В. Ерохин, Д.Г. Лагерев, Е.А. Ларичева, А.Г Подвесов-ский. Моделирование инновационного механизма предприятия с применением нечетких когнитивных карт // Менеджмент в России и за рубежом. - 2006. - № 3).

СППР «ИГЛА» зарегистрирована в Отраслевом фонде алгоритмов и программ 20 июня 2007 г. свидетельство № 8539.

i Надоели баннеры? Вы всегда можете отключить рекламу.