Р.С. Мирзоев, М.Х. Лигидов, Р.М. Эльмесова, А.А. Кяров, Р.А. Шетов

СИСТЕМА $Na_2MoO_4 - Cs_2MoO_4 - H_2O$ ПРИ 25°С

(Кабардино-Балкарский государственный университет) e-mail: rmirzoev_2010@mail.ru

Изучено фазообразование в системе Na₂MoO₄-Cs₂MoO₄-H₂O при 25 °C. Показано, что в этой системе кристаллизуются три инконгруэнтно растворимые сложные фазы: 3Na₂MoO₄·Cs₂MoO₄·18H₂O, Na₂MoO₄·Cs₂MoO₄·4H₂O, Na₂MoO₄·3Cs₂MoO₄·12H₂O. Onpedeneны плотность, показатель преломления, динамическая вязкость насыщенных растворов системы. Двойные соли выделены, охарактеризованы методами химического анализа, ИК-спектроскопии и комплексного термического анализа.

Ключевые слова: диаграмма растворимости, молибдат натрия, молибдат цезия, водные растворы, двойные молибдаты натрия-цезия, термическая устойчивость

Данная работа является продолжением исследований растворимости, физико-химических свойств насыщенных водных растворов и твердых фаз в тройных водно-солевых системах, состоящих из молибдатов щелочных металлов и аммония [1-5]. Целью изучения систем является выяснение основных закономерностей зависимости характера взаимодействия между молибдатами щелочных металлов и аммония в насыщенных водных растворах от параметров их состояния и, особенно, от физико-химических свойств исходных компонентов. В работе представлены результаты, полученные нами при исследовании растворимости, физико-химических свойств насыщенных растворов и твердых фаз в системе Na₂MoO₄-Cs₂MoO₄ – H₂O при 25°C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Растворимость в системе изучена при 25±0,1°С методом изотермического насыщения. В качестве исходных веществ использовали перекристаллизованные дигидрат молибдата натрия Na₂MoO₄·2H₂O марки «ч.д.а.», молибдат цезия Cs₂MoO₄ марки «ч.» и дважды дистиллированную воду.

Равновесие в системе достигалось через 6-14 суток в зависимости от состава исходной смеси и времени непрерывного перемешивания.

Анализы жидкой фазы и «остатков» на MoO_4^{2-} проводили объемным редуктометрическим методом [6]. Содержание Cs⁺ определяли гравиметрическим тетрафенилборатным методом [7], а Na⁺ – по разности между сухим остатком и суммой определений Cs⁺ и MoO_4^{2-} . Сухой остаток жидких и твердых фаз в каждой пробе получали упариванием до сухих солей и их прокаливанием при 250°C. Состав твердых фаз устанавливали методом Скрейнемакерса.

Свойства жидкой фазы изучали по методикам, описанным в [8].

Термогравиграммы снимали на дериватографе конструкции Паулик – Паулик – Эрдей, модель МОМ Q-1500D. В динамическом режиме образцы веществ исследовали при скорости нагревания 10 град/мин в атмосфере воздуха. В качестве держателя проб использовали открытые платиновые тигли, а в качестве инертного вещества – свежепрокаленный при температуре 600-800°С оксид алюминия.

При проведении термического эксперимента в квазиизотермических и квазиизобарных условиях (Q-TГ) нагревание образцов осуществлялось со скоростью 3 град/мин до начала разложения, скорость разложения устанавливали равной – 0,4 мг/мин. Образцы для исследования помещали в конический тигель-держатель с крышкой. Температура верхнего предела нагревания образцов составляла 250°С.

ИК спектры регистрировали в области 400-4000 см⁻¹ на спектрофотометре «Specord IR-75». Образцы готовили в виде суспензии в вазелиновом масле.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Экспериментальные данные, полученные при исследовании растворимости в системе $Na_2MoO_4 - Cs_2MoO_4 - H_2O$ (табл. 1, рис. 1), показывают, что в системе образуются три двойных молибдата, инконгруэнтно растворимые в воде: $3Na_2MoO_4$ ·Cs₂MoO₄·18H₂O, Na_2MoO_4 ·Cs₂MoO₄·4H₂O и Na_2MoO_4 ·3Cs₂MoO₄·12H₂O.

Изотерма растворимости (рис. 1) системы делится тремя переходными (P₁, P₂, P₃) и одной эвтонической (Е) точками на ветви, отвечающие областям кристаллизации Na₂MoO₄ 2H₂O (AP₁),

Таблица 1 Растворимость в системе Na₂MoO₄(I) – Cs₂MoO₄(II) – H₂O при 25°C Table 1. Solubility in the Na₂MoO₄-Cs₂MoO₄-H₂O system at 25°C

			system a			
Номер точки	Состав жид- кой фазы, мас. %		Состав «остат- ка», мас. %		Твердая фаза	
	Ι	I II		II		
1	39,43		80,48	_	I ² H ₂ O	
2	38,66	3,87	78,01	0,98	То же	
3	34,88	10,45	75,88	2,44	>> >>	
4	32,11	15,70	76,15	3,06	>> >>	
5	31,66	15,99	75,16	3,24	>> >>	
6	31,17	18,55	73,21	3,99	>> >>	
7	28,60	21,68	74,66	4,21	>> >>	
8	25,33	28,95	75,61	4,78	>> >>	
9	24,92	29,20	71,86	6,18	>> >>	
10	23,17	33,32	75,58	4,97	>> >>	
11	22,35	34,41	71,52	7,12	>> >>	
12	21,77	37,03	70,01	0.08	$I^{-}2H_{2}O +$	
				7,00	$+3I \cdot II \cdot 18H_2O$	
13	21,56	37,05	45,60	26,74	То же	
14	21,33	37,13	44,15	31,05	>> >>	
15	20,80	37,75	42,88	31,44	3I·II·18H ₂ O	
16	20,32	38,44	44,04	31,31	То же	
17	19,64	40,07	44,85	30,31	>> >>	
18	19,48	41,94	43,81	30,75	>> >>	
19	18,91	42,03	33,20	43,10	$3I \cdot II \cdot 18H_2O +$ +I · II · 4H ₂ O	
20	18,72	41,72	28,44	59,46	То же	
21	17,97	43,19	28,57	59,51	I·II·4H ₂ O	
22	17,18	44,36	26,80	61,88	То же	
23	14,46	48,43	29,00	60,53	>> >>	
24	12,84	51,22	28,78	60,22	>> >>	
25	11,04	54,27	28,33	60,07	>> >>	
26	7,95	58,14	28,44	60,88	>> >>	
27	7,43	58,20	17,83	63,72	$I \cdot II \cdot 4H_2O +$ + $I \cdot 3II \cdot 12H_2O$	
28	7.37	58.29	12.41	74.81	Тоже	
29	5.03	64.05	12.10	74,77	I-3II-12H ₂ O	
30	2,39	68.25	11.93	74.66	Тоже	
31	0,69	74.24	11.96	75.15	>>>>	
32	0,29	79,38	11,84	75,03	$I \cdot 3II \cdot 12H_2O + HI$	
33	0.31	79.41	5.72	80.30	Тоже	
34	-	79,76	-	86,12	II	

 $3Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 18H_2O(P_1P_2), Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 4H_2O(P_2P_3), Na_2MoO_4 \cdot 3Cs_2MoO_4 \cdot 12H_2O(P_3E)$ и Cs_2MoO_4 (EB). Ветвь растворимости молибдата цезия (EB) настолько мала, что положение эвтонической точки E (0,30 мас. % Na2MoO4 и 79,40 мас. % Cs2MoO4) практически совпадает с точкой B, отвечающей индивидуальной растворимости молибдата цезия (79,60 масс. %). Ветвь растворимости Na_2MoO_4 \cdot 2H_2O (AP1), напротив, имеет точка раствора на кривой АР₁ в случае изотермического испарения раствора, будет менять свое положение, передвигаясь по этой кривой к переходной точке Р₁ по причине выделения из раствора в твердую фазу дигидрата молибдата натрия. Переходная точка Р₁ является конечным пунктом кристаллизации Na₂MoO₄ 2H₂O и соответствует началу кристаллизации двойной соли 3Na₂MoO₄·Cs₂MoO₄·18H₂O. В точке P₁ насыщенный раствор системы будет содержать 21,53 мас. % Na₂MoO₄ и 37,07 мас. % Сs₂MoO₄. Вещество 3Na₂MoO₄·Cs₂MoO₄·18H₂O кристаллизуется ИЗ насыщенных растворов, состав которых может меняться в очень узком концентрационном интервале, нижняя граница соответствует второй переходной точке P₂ (18,82 мас. % Na₂MoO₄ и 41,88 мас. % Сs₂MoO₄). Обращает внимание на себя то обстоятельство, что мольное отношение молибдата цезия к молибдату натрия в растворе, которому отвечает точка Р₁, значительно превышает отношение в составе самой двойной соли. Последнее указывает на крайнюю неустойчивость 18-водного молибдата. Две другие двойные соли Na2MoO4·Cs2MoO4·4H2O и Na2MoO4·3Cs2MoO4·12H2O более устойчивы. Их ветви растворимости на диаграмме достаточно протяженны, а отношение количества молибдата цезия к количеству молибдата натрия в растворах, отвечающих переходным точках P₂ и P₃ (7,40 мас.% Na₂MoO₄ и 58,17 мас.% Cs₂MoO₄) только чуть больше, чем мольное отношение солевых компонентов в соответствующих двойных солях.

В системе Na₂MoO₄ – Cs₂MoO₄ – H₂O при 25°C экспериментально определены плотность (ρ), показатель преломления (n_D), динамическая

вязкость (η) насыщенных растворов. Результаты исследования этих свойств представлены в табл. 2 и на рис. 2. Полученные данные показывают их закономерное изменение при изменении состава жидких фаз и характера взаимодействия компонентов в системе.

Таблица 2 Физико-химические свойства насыщенных растворов системы Na₂MoO₄ (I)– Cs₂MoO₄(II)– H₂O при 25°C

Table 2. Physical-chemical properties of saturated solutions in the Na_2MoO_4 - Cs_2MoO_4 - H_2O system at $25^{\circ}C$

No	Состав	солевой	Свойства			
точ-	массы р	аствора,				
ки	MOJ	1.%	2 2 2			
	Ι	Π	ρ10-3	n _D	η 10°,	
			кг/м		HC/M	
1	100,00	0,00	1,4422	1,4164	4,37	
2	95,38	4,62	1,4935	1,4182	4,21	
3	87,35	12,65	1,5466	1,4239	4,18	
4	80,88	19,12	1,5919	1,4279	4,21	
5	80,37	19,63	1,5901	1,4284	4,21	
6	77,65	22,35	1,6140	1,4300	4,21	
7	73,18	26,82	1,6490	1,4330	4,24	
8	64,40	35,60	1,7328	1,4382	4,30	
9	63,83	36,17	1,7400	1,4383	4,30	
10	58,98	41,02	1,7660	1,4420	4,31	
11	57,32	42,68	1,7913	1,4428	4,32	
12	54,87	45,13	1,8300	1,4454	4,33	
13	54,61	45,39	1,8305	1,4455	4,34	
14	54,30	45,70	1,8303	1,4460	4,33	
15	53,26	46,74	1,8370	1,4459	4,39	
16	52,22	47,78	1,8507	1,4468	4,41	
17	50,34	49,66	1,8610	1,4480	4,45	
18	48,99	51,01	1,8714	1,4491	4,50	
19	48,20	51,80	1,8824	1,4495	4,50	
20	48,13	51,87	1,8810	1,4490	4,50	
21	46,25	53,75	1,8990	1,4497	4,45	
22	44,47	55,53	1,9120	1,4504	4,34	
23	38,17	61,83	1,9460	1,4525	4,07	
24	34,14	65,86	1,9790	1,4540	3,95	
25	29,61	70,39	2,0230	1,4558	3,77	
26	22,04	77,96	2,0800	1,4580	3,57	
27	20,89	79,11	2,1213	1,4588	3,42	
28	20,73	79,27	2,1217	1,4591	3,43	
29	13,97	86,03	2,1621	1,4619	3,42	
30	6,75	93,25	2,2603	1,4691	3,66	
31	1,89	98,11	2,4258	1,4858	4,33	
32	0,75	99,25	2,6327	1,5000	7,18	
33	0,80	99,20	2,6331	1,5003	7,20	
34	0,00	100,00	2,6353	1,5050	7,28	

Кривые плотности, показателя преломления имеют аналогичный вид. Эти свойства, чего нельзя сказать о динамической вязкости, могут быть удовлетворительно рассчитаны по правилу смешения через кажущиеся мольные свойства солевых компонентов системы и свойства воды, как это описано в [4]. Среднее отклонение плотности и показателя преломления от аддитивности не превышает 0,70 и 0,53 отн.%, соответственно, в то время как для вязкости – до 60%.

Рис. 2. Изотермы плотности ρ , показателя преломления n_D , динамической вязкости η насыщенных растворов системы Na₂MoO₄-Cs₂MoO₄-H₂O при 25°C Fig. 2. Isotherms (25°C) of density ρ , refractive index n_D ,

dynamic viscosity η for saturated solutions of the $Na_2MoO_4-Cs_2MoO_4-H_2O$ system

Методом изотермического испарения $(25^{\circ}C)$ концентрированных растворов системы, близких по составам переходным точкам, с небольшим избытком молибдата цезия, получены кристаллогидраты двойных молибдатов. Для исследования применялись первые выпавшие кристаллы. Поскольку соль $3Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 18H_2O$ выкристаллизовывается в узком концентрационном интервале (P₁P₂), то этот молибдат выделяли в твердую фазу из большой массы раствора.

Согласно химическому анализу кристаллы двойных солей имеют состав: найдено, мас.%: Na₂O – 14,48; Cs₂O – 21,05; MoO₃ – 41,6; H₂O – 22,91. Для $3Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 18H_2O$ вычислено,

мас.%: Na₂O – 13,59; Cs₂O – 20,60; MoO₃ – 42,09; H₂O – 23,71. Найдено, мас.%: Na₂O – 8,73; Cs₂O –40,55; MoO₃ – 40,56; H₂O – 10,15.

Для $Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 4H_2O$ вычислено, мас.%: $Na_2O - 8,81$; $Cs_2O - 40,04$; $MoO_3 - 40,91$; $H_2O - 10,24$. Найдено, мас.%: $Na_2O - 4,87$; $Cs_2O - 48,89$; $MoO_3 - 34,00$; $H_2O - 12,23$.

Для $Na_2MoO_4 \cdot 3Cs_2MoO_4 \cdot 12H_2O$ вычислено, мас.%: $Na_2O - 3,65$; $Cs_2O - 49,75$; $MoO_3 - 33,88$; $H_2O - 12,72$.

Пикнометрическая плотность соединений составила 2,25; 3,06; 3,12 г/см³ для $3Na_2MoO_4$ ·Cs₂MoO₄·18H₂O, Na_2MoO_4 ·Cs₂MoO₄·4H₂O и Na_2MoO_4 ·3Cs₂MoO₄·12H₂O соответственно.

Инфракрасные спектры высоководных двойных молибдатов $3Na_2MoO_4$ ·Cs $_2MoO_4$ ·18H₂O и Na_2MoO_4 ·3Cs $_2MoO_4$ ·12H₂O оказались малоструктурированными, что, по-видимому, связано с плавлением солей в собственной кристаллизационной воде при приготовлении суспензий веществ в вазелиновом масле.

ИК спектр $Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 4H_2O$ (рис. 3) имеет в области частот валентных колебаний ОН-групп молекул воды плечо при 3280 см⁻¹ и среднюю по интенсивности полосу поглощения при 3220 см⁻¹. Столь большая величина сдвига полос поглощения гидроксогрупп молекул кристаллизационной воды в структуре двойной соли в область низких частот в сравнении с линией полносимметричного колебания молекул парообразной воды, у которой отсутствуют водородные связи (3750 см⁻¹), предполагает наличие в структуре рассматриваемого вещества очень прочных водородных связей О_w.....О(MoO₄) и коротких контактов Na - Ow. Молекулы воды в структуре двойной соли испытывают сильное возмущающее действие ионов натрия. Вышесказанное подтверждается полосой при 1710 см⁻¹, которая расположена вблизи пограничной области частот деформационных колебаний воды и ионов гидроксония [9]. Такое влияние катионов на молекулы воды приписывают, как правило, многозарядным катионам переходных металлов [10]. Однако, согласно [11], при наличии коротких контактов Na – O_w, катионы натрия также могут оказывать возмущающее влияние на молекулы воды.

Координационные полиэдры MoO_4^{2-} в структуре Na₂MoO₄·Cs₂MoO₄·4H₂O, по видимому, представляют деформированные тетраэдры. На ИК спектре этого двойного молибдата имеется плечо при 900 см⁻¹, которое согласно [12], соответствует симметричному валентному колебанию $v_I(A_I)$, а пики при 810, 830 и 870 см⁻¹ интерпретированы как расщепленная полоса трижды вырожденного антисимметричного валентного колебания $v_3(F_2)$. Слабые по интенсивности линии при 580 и 555 см⁻¹, вероятно, являются проявлением либрационных колебаний молекул кристаллизационной воды.

Термический анализ двойных молибдатов натрия-цезия представлен на рис. 4. В условиях линейного нагрева для образца $Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 4H_2O$ (рис. 4, *a*) наблюдалась четко выраженная стадия потери массы, которая начинается при 90°С и заканчивается при 233°С. При более высоких температурах на кривой ДТА обнаруживаются три эндоэффекта (470, 504, 520°С), природа которых связана с превращениями, протекающими в безводной твердой фазе. В Q-режиме двойная соль $Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 4H_2O$ (рис.4, *г*) теряет четыре моля воды в одну стадию и строго изотермично (121°С).

Термическая устойчивость у молибдата состава $3Na_2MoO_4 \cdot Cs_2MoO_4 \cdot 18H_2O$ низкая. На кривой ДТА образца (рис. 4, δ) уже при 40°C виден незначительный эндоэффект, который можно

Рис. 4. Термоаналитические кривые Na₂MoO₄Cs₂MoO₄H₂O (а, г), 3Na₂MoO₄Cs₂MoO₄18H₂O (б, д) и Na₂MoO₄3Cs₂MoO₄12H₂O (в, ж) в динамическом (10 К/мин) режиме нагревания (а-в) и в квазиизотермическом режиме (г-ж) Fig. 4. Thermal curves for Na₂MoO₄Cs₂MoO₄H₂O (а, г), 3Na₂MoO₄Cs₂MoO₄18H₂O (б, д) and Na₂MoO₄3Cs₂MoO₄12H₂O (в, ж) recorded in dynamic heating mode (10 K/min) (а-в) and in quasi-isothermal mode (г-ж)

объяснить инконгруэнтным плавлением кристаллогидрата в собственной кристаллизационной воде. Продукты плавления двойной соли, по-видимому, представляют смесь, состоящую из жидкой фазы солевого расплава и двух кристаллических фаз: Na₂MoO₄·2H₂O и Na₂MoO₄·Cs₂MoO₄·4H₂O. Поэтому ход термоаналитических кривых после плавления отражает процессы испарения, вскипания остатков жидкой фазы, дегидратации Na₂MoO₄ 2H₂O и термолиз Na₂MoO₄·Cs₂MoO₄·4H₂O. Так, кривая ДТА на данном участке имеет сложный вид: при 121°С фиксируется плечо эндоэффекта, а при 142°С – минимум ярко выраженного эндоэффекта. В Q- режиме образец 3Na₂MoO₄·Cs₂MoO₄·18H₂O начинает терять массу при 106°С. Из рис. 4, д видно, что эта температура отвечает в этих же условиях температуре дегидратации Na₂MoO₄ 2H₂O. Этот факт подтверждает правильность наших представлений о присутствии Na₂MoO₄ 2H₂O в составе продуктов плавления девятиводного молибдата в собственной кристаллизационной воде. Далее вскипает солевой расплав. Кривая Q-TГ указывает на неизотермичность этого процесса, что можно объяснить изменением состава кипящего раствора. Вероятно, при этом из раствора выделяются в твердую фазу безводный молибдат натрия Na2MoO4 и Na2MoO4·Cs2MoO4·4H2O. При 121 °C происходит термолиз Na2MoO4·Cs2MoO4·4H2O.

Термоустойчивость Na2MoO4·3Cs2MoO4·12H2O изучали как в динамическом, так и в квазиравновесных режимах. Незначительный эндоэффект при 87°С на кривой ДТА (рис. 4, в) может быть интерпретирован как плавление соли в кристаллизационной воде. Обнаруживаемое при 110°С плечо эндоэффекта отражает вскипание жидкой фазы солевого расплава, а минимум на кривой ДТА при 145°С максимальной скорости разложения твердых низководных молибдатов. Предложить вероятную схему процесса термолиза Na₂MoO₄·3Cs₂MoO₄·12H₂O с обозначением составов промежуточных фаз на данном этапе изученности фазовых равновесий в системе Na_2MoO_4 – Cs_2MoO_4 – H_2O затруднительно. Авторами работы [13] показано, что в безводной системе Na₂MoO₄ - Cs₂MoO₄ образуется соединение Na₂MoO₄·3Cs₂MoO₄, которое при 390°С имеет полиморфный переход, а при 510°С плавится инконгруэнтно. Однако на кривой ДТА Na₂MoO₄·3Cs₂MoO₄·12H₂O эндоэффект при 390°С не фиксируется. Это указывает на то, что в результате полного обезвоживания $Na_2MoO_4 \cdot 3Cs_2MoO_4 \cdot 12H_2O$ молибдат состава Na₂MoO₄·3Cs₂MoO₄ не образуется. В Q-условиях (рис. 4, \mathcal{H}) убыль массы Na₂MoO₄·3Cs₂MoO₄·12H₂O происходит одностадийно, с заметной неизотермичностью (120-125°С).

ЛИТЕРАТУРА

- Каров З.Г., Мирзоев Р.С., Дохова Н.М., Жилова С.Б. // Журн. неорган. химии 1993. Т. 34. № 2. С. 377-381; Кагоv Z.G., Mirzoev R.S., Dokhova N.M. Zhilova S.B. // Zhurn. Neorg. Khim. 1993. V. 34. N 2. P. 377-381 (in Russian).
- Тхашоков Н.И., Мирзоев Р.С., Жилова С.Б. // Журн. неорган. химии. 2009. Т. 54. № 10. С. 1732-1738; Tkhashokov N.I., Mirzoev R.S., Zhilova S.B. // Zhurn. Neorg. Khim. 2009. V. 54. N 10. P. 1732-1738 (in Russian).
- Мирзоев Р.С., Эльмесова Р.М., Шетов Р.А., Лигидов М.Х. // Изв. вузов. Химия и хим. технология. 2010. Т. 53. Вып. 9. С. 36-40;
 Mirzoev R.S., El'mesova R.M., Shetov R.A., Ligidov M.Kh. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.
- 2010. V. 53. N 9. P. 36-40 (in Russian).
 4. Мирзоев Р.С., Шетов Р.А., Лигидов М.Х., Эльмесова Р.М. // Журн. неорган. химии. 2010. Т. 55. № 1. С. 99-105; Міггоеv R.S., Shetov R.A., Ligidov М.Кh., El'mesova R.M. // Zhurn. Neorg. Khim. 2010. V. 55. N 1. P. 99-105 (in Russian).
- Мирзоев Р.С., Каров З.Г., Кяров А.А., Шетов Р.А. // Изв. вузов Северо-Кавказский регион. Естественные науки. 2007. № 4. С. 59-62;
 Mirzoev R.S., Karov S.G., Kyarov A.A., Shetov R.A. // Izv. Vyssh. Uchebn. Zaved. 2007. Severo-Kavkazs. Reg.: Estestv. Nauki. N 4. P. 59-62 (in Russian).
- Гиллебранд В.Ф., Лендель Г.Э., Брайт Г.А., Гофман Д.К. Практическое руководство по неорганическому анализу. М.: Химия. 1966. С. 361;
 Hillebrand W.F., Lundell G.E.F., Bright H.A. Hoffman D.I. Applied Inorganic Analysis: With Special Reference to

the Analysis of Metals, Minerals, and Rocks, 2nd ed. (Wiley, New York. 1953). M.: Khimiya. 1966. P. 361 (in Russian).

Кафедра химической экологии

- Плющев В.Е., Степин Б.Д. Аналитическая химия рубидия и цезия. М.: Наука. 1975. 224с.;
 Plyushchev V.E., Stepin B.D. The Analytical Chemistry of Rubidium and Cesium. M.: Nauka. 1975. 224 p. (in Russian).
- Каров З. Г., Кяров А. А., Лепешков И.Н., Эльмесова Р. М. // Журн. неорган. химии.1987. Т. 32. № 2. С. 467; Karov Z.G., Kyarov А.А., Lepeshkov I.N., El'mesova R.M. // Zhurn. Neorg. Khim. 1987. V. 32. № 2. Р. 467-470 (in Russian).
- Юхневич Г.В. // Успехи химии. 1963. Т. 32. № 11. С. 1397-1423;
 Yukhnevich G.V. // Uspekhi Khimii. 1963. V. 32. N 11. P. 1397-1423 (in Russian).
- Макатун В.Н. Химия неорганических гидратов. Минск: Наука и техника. 1985. 246 с.; Makatun V.N. Chemistry of Inorganic Hydrates. Minsk: Nauka i Tekhnika. 1985. 246 р. (in Russian).
- Барановский В.И., Сизова О.В., Третьяк В.М. // Журн. общей химии.1984. Т. 54. Вып. 3. С. 507-510;
 Baranowskiy V.I., Sizova O.V., Tretyak V.M. // Zhurn. Obshcheiy Khimii. 1984. V. 54. N 3. P. 507-510 (in Russian).
- Иванов-Эмин Б.Н., Зайцев Б.Е., Коротаева Л. Г., Ремизов В.Г. Колебательные спектры в неорганической химии. М.: Наука. 1971. С. 300-309;
 Ivanov-Emin B.I., Zaiytsev B.E., Korotaeva L.G, Remizov V.G. Vibration Spectra in Inorganic Chemistry. M.: Nauka. 1971. P. 300-309 (in Russian).
- Мохосоев М.В., Базарова Ж.Г. Сложные оксиды молибдена и вольфрама с элементами I-IV групп. Москва: Наука. 1990. 224 с.;

Mokhosoev M.V., Bazarova Zh.G. Complex oxides of molybdenum and tungsten with elements of the I-IV groups. M.: Nauka. 1990. 224 p. (in Russian).

УДК 541(64+127): 547.538.141

Н.В. Улитин, Р.Я. Дебердеев, Т.Р. Дебердеев

КИНЕТИКА РАДИКАЛЬНОЙ ПОЛИМЕРИЗАЦИИ БУТИЛАКРИЛАТА, ПРОТЕКАЮЩЕЙ В УСЛОВИЯХ ОБРАТИМОЙ ПЕРЕДАЧИ ЦЕПИ С ИСПОЛЬЗОВАНИЕМ ТРИТИОКАРБОНАТОВ

(Казанский национальный исследовательский технологический университет) e-mail: n.v.ulitin@mail.ru; rudeberdeev@rambler.ru; deberdeev@mail.ru

Смоделирована кинетика получения полибутилакрилата радикальной полимеризацией по механизму присоединения-фрагментации в присутствии дибензилтритиокарбоната. Справедливость модели доказана хорошей корреляцией расчетных и экспериментальных значений средних молекулярно-массовых характеристик полимера.

Ключевые слова: моделирование, обратимая передача цепи, полибутилакрилат, радикальная полимеризация

ВВЕДЕНИЕ

Кинетика радикальной полимеризации, протекающей в условиях обратимой передачи цепи (ОПЦ) по механизму присоединения-фрагментации в присутствии симметричных тритиокарбонатов R'–S–C(=S)–S–R' и приводящей к получению узкодисперсных разветвленных полимеров, по сравнению с кинетикой классической ОПЦ- полимеризации, где в качестве ОПЦ-агентов выступают серосодержащие соединения вида Z--C(=S)-S--R', изучена мало [1, 2]. В связи с этим, в статье [3] нами была предложена математическая модель кинетики ОПЦ-полимеризации стирола в присутствии дибензилтритиокарбоната (ДБТК), в основе которой лежал механизм, учитывающий перекрестный обрыв радикалов и ин-