Научная статья на тему 'СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ SM/MSP/1/r'

СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ SM/MSP/1/r Текст научной статьи по специальности «Математика»

CC BY
186
16
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по математике, автор научной работы — В В. Чаплыгин

Рассмотрена однолинейная система массового обслуживания с полумарковским входящим потоком, марковским процессом обслуживания и накопителем конечной или бесконечной емкости. Для этой системы с помощью метода построения вложенной цепи Маркова найдены стационарные распределения основных характеристик обслуживания.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — В В. Чаплыгин

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ SM/MSP/1/r»

13. Красовский Н. Н. Некоторые задачи теории устойчивости движения. - М.:

Физматгиз, 1959.

14. T h a u F. E. Observing the state of non-linear dynamic systems // Int. J. Control. - 1973. - № 17. - P. 471-479.

15. R a g h a v a n S., H e d r i c k J. K. Observer design for a class of nonlinear systems // Int. J. Control. - 1994. - V. 59. - № 2. - P. 515-528.

16. Rajamani R. Observers for Lipschitz nonlinear systems // IEEE Trans. Automat. Contr. - 1998. - V. 43. - № 3. - P. 397-401.

17. A r c a k M., Kokotovic P. V. Observer-based control of systems with slope-restricted nonlinearities // IEEE Trans. Autom. Contr. - 2001. - V. 46. - № 7. - P. 11461150.

18. S o n t a g E. D. Smooth stabilization implies coprime factorization // IEEE Trans. Automat. Contr. - 1989. - V. 34. - P. 435^43.

19. K h a l i l H. K. Nonlinear systems. - N. Y.: Prentice-Hall, 1996.

20. M a r i n o R., T o m e i P. Nonlinear Control Design: Geometric, Adaptive and Robust. - London: Prentice-Hall, 1995.

21. Крищенко А. П. Стабилизация программных движений нелинейных систем // Изв. АН СССР. Сер. Технич. кибернетика. - 1985. - № 6. - С. 103-112.

Статья поступила в редакцию 31.01.2003

Алексей Евгеньевич Голубев родился в 1978 г., окончил в 2002 г. МГТУ им. Н.Э. Баумана. Аспирант кафедры "Математическое моделирование" МГТУ им. Н.Э. Баумана. Автор трех научных работ в области стабилизации нелинейных динамических систем обратной связью по выходу.

A.Ye. Golubev (b. 1978) graduated from the Bauman Moscow State Technical University in 2002. Post-graduate of "Mathematical Simulation" department of the Bauman Moscow State Technical University. Author of 3 publications in the field of output feedback control of nonlinear dynamical systems.

УДК 519.872

В. В. Чаплыгин

СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ

SM/MSP/1/r1

Рассмотрена однолинейная система массового обслуживания с полумарковским входящим потоком, марковским процессом обслуживания и накопителем конечной или бесконечной емкости. Для этой системы с помощью метода построения вложенной цепи Маркова найдены стационарные распределения основных характеристик обслуживания.

Описание системы. Рассмотрим систему массового обслуживания SM/MSP/1/r (r < оо) с накопителем емкости r.

1Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант №02-07-90147).

......^ —^ ) W

1 L

Опишем полумарковский процесс генерации заявок. Рассмотрим полумарковский процесс, функционирующий на конечном множестве состояний — фаз обслуживания {1, 2,..., ш}, ш < то, и управляемый стохастической матрицей переходных вероятностей (матрицей переходных вероятностей вложенной цепи Маркова) М = (Mij ),г, ] = 1 ,ш, с полумарковским ядром В (ж) = (В^ (ж)), г,] = 1, ш, где Mij — вероятность перехода с г-й фазы на ]-ю, а В^(ж), г,] = 1,ш, — условная функция распределения времени генерации заявки на г-й фазе при условии, что процесс генерации заявок перейдет с г-й фазы на ]-ю. Далее

т _

обозначим через Bi (ж) = ^ В^ (ж) безусловную функцию распреде-

3=0

ления времени пребывания процесса генерации заявок на г-й фазе, где Вз (ж) = Мз Вгз (ж).

Будем полагать, что матрица М неразложима и непериодична,

оо

Ьз = J tdBij(£) < то для любых г,] = 1, ш. Кроме того, для простоты

о _

изложения будем предполагать, что для любых г,] = 1,ш функция

распределения В^ (£) абсолютно непрерывна. Вектор стационарных вероятностей цепи Маркова с матрицей переходных вероятностей М будем обозначать через Па.

Марковский процесс обслуживания заявок определяется следующим образом. Имеется марковский процесс с непрерывным временем и конечным числом / состояний (фаз обслуживания). Тогда если в неко-торый момент в системе на обслуживании находится к, к > 1, заявок и фаза обслуживания г-я, г = 1,/, то за "малое" время А с вероятностью \зА + о(А) фаза изменится на ]-ю, ] = 1,/, и при этом заявка будет продолжать обслуживаться, а с вероятностью п^А + о(А) фаза изменится на ]-ю, ] = 1, /, но обслуживание заявки закончится, и она покинет систему. Матрицы из элементов А^ и п^ будем обозначать через Л и N; введем матрицу Л* = Л + N, причем матрицу Л* будем полагать неразложимой, а матрицу N — ненулевой. Будем считать также, что на свободном периоде фаза обслуживания не изменяется. Вектор стационарных вероятностей марковского процесса обслуживания заявок (т.е. марковского процесса с инфинитиземальной матрицей Л*) будем обозначать через 7г8. Тогда стационарная интенсивность ^ обслуживания заявок имеет вид ^ = (Пв

Заявки обслуживаются в порядке поступления (дисциплина Заявка, поступающая в систему, в которой уже находится г + 1 заявок (одна на приборе и г в накопителе), теряется.

Для 5М/М5Р/1/г далее получены стационарные распределения

числа заявок в системе по моментам изменения состояний вложенной цепи Маркова и по времени, а также стационарные распределения времени ожидания начала обслуживания и времени пребывания заявки в системе.

Система SM/MSP/1/r является обобщением системы G/MSP/1/r (r < то). В работе [1] система G/MSP/1/r исследована методом введения дополнительной переменной, и для конечного числа мест ожидания, т.е. для r < то, получено стационарное распределение длины очереди. В работе [2] для G/MSP/1/r с помощью построения вложенной цепи Маркова получены стационарные распределения числа заявок в системе по моментам изменения состояний вложенной цепи Маркова и по времени и времен ожидания начала обслуживания и пребывания заявки в системе.

Процедура вычисления экспоненциальных моментов подробно описана в работе [3] для системы MAP/G/1 /r, которая является двой-ственной к системе G/MSP/1/r [3, 4].

Конечный накопитель. Рассмотрим последовательные моменты тп, n > 0, поступления заявок в систему.

Пусть n(t) — фаза, на которой находится полумарковский процесс прихода заявок, £(t) — фаза обслуживания заявок в момент времени t, v (t) — число заявок в системе в этот момент. Определим случайные величины Пп = п(тп + 0), £п = £(тп + 0) и Vn = v(тп + 0), соответствующие фазе прихода, фазе обслуживания и числу заявок в системе непосредственно после момента поступления n-й заявки. Кроме того, положим Zп = (пп, £п, ^). Тогда последовательность (Сп, n > 0} образует однородную цепь Маркова, которую будем назы-вать вложенной цепью Маркова.

Очевидно, что

X = (i,j, k), i = 1,m, j = 1,l, k = 1,R,

где X — множество состояний вложенной цепи Маркова; индексы i, j и k соответствуют фазе прихода заявок, фазе обслуживания и числу заявок в системе непосредственно после момента поступления заявок.

Рассмотрим матрицу переходных вероятностей вложенной цепи Маркова {£п, n > 0}. Для этого определим следующие матрицы. Fk (ж) — матрица, элемент (Fk(x))j которой представляет собой условную вероятность того, что за время ж обслужится ровно k заявок и процесс обслуживания перейдет на j-ю фазу при условии, что в начальный момент в системе число заявок превышает k (вместе с заявками на

приборе), процесс обслуживания находится на %-й фазе и за время х не заканчивается обслуживание заявки на приборе. Ак — квадратная матрица размером т1 х т1, где элемент (Ак)^, % = 1(и — 1) + V, ] = 1(п — 1) + д, v,q = 1,1, и,п = 1, т, представляет собой вероятность того, что за время между поступлениями заявок обслужится ровно к заявок и процесс обслуживания перейдет на д-ю фазу при условии, что в начальный момент в системе число заявок превышает к и процесс обслуживания находится на v-й фазе, а процесс поступления заявок перешел с и-й фазы на п-ю. Е*(х) и А*к — матрицы, аналогичные матрицам Ек (х) и Ак, но соответствующие условию, что в начальный момент в системе было ровно к заявок.

Матрицы Ек(х) и Е*(х) определяются соотношениями

ад = еЛх,

X

Ек(х) = I Ек-г(у— у)в.у, к > 1,

0

X

ад = У Е- 1(у)И(1у, к > 1, 0

а матрицы Ак и Ак — соотношениями

сю

Ак = ! ¿В(х) ® Ек(х), к > 0, (1)

0

с

Ак = I ¿В(х) (8> Е*(х), к > 0, (2)

0

где ® — символ кронекерова произведения матриц.

Рассмотрим снова вложенную цепь Маркова процесса обслуживания. Из состояния с % заявками, % = 1,Я, вложенная цепь Маркова может перейти только в одно из состояний с ] заявками, ] = = 1, шт(% + 1, Я). При этом переход из состояния с % заявками, % = 1,г, в состояние с ] заявками, ] = 2,% + 1, осуществляется тогда, когда за время между поступлениями заявок обслужатся ровно % — ] + 1 заявок, а в состояние с одной заявкой — когда обслужатся все % находящихся в системе заявок. Аналогично определяются переходы из состояния с Я заявками, за исключением перехода в состояние также с Я заявками, ко -торый происходит не только тогда, когда будет обслужена одна заявка,

но и когда не будет обслужено ни одной заявки, и новая поступающая в систему заявка будет потеряна.

Таким образом, матрица Р переходных вероятностей вложенной цепи Маркова, представленная в блочной форме Р = (Ркп), к, п = 1,Я, имеет следующий вид:

Mi Ao 0 • 0 0

A2 Ai Ao • • 0 0

A3 a2 Ai • • 0 0

A* Ar-1 Ar-2 • • Ax Ao

\AR Ar Ar-i • .. A2 Ai + Ao/

Можно показать, что вложенная цепь Маркова является неприводимой и непериодической. Обозначим через p*k, i = 1 , d, d = mZ, k = 1 , R, где i = Z(n — 1) + j, j = 1 , Z, n = 1 , m, стационарную по вложенной цепи Маркова вероятность того, что в системе имеется k заявок, фаза, на которой находится процесс поступления заявок, n-я и фаза обслуживания j-я, и положим Pk = (pik, • • • ,Pdk)т, ~* = (Pi* т5, • • • ,~дг)т. Тогда для * справедлива система уравнений равновесия (СУР)

тт

P = ~ P, (3)

или, в координатной форме,

R

тт

Pi = Pm (4)

m=i

R

= Е ~ттAm-k+1, k = 2^, (5)

m=k-1

PRт = p* тАо + pR^(Ao + Ai) (6)

с условием нормировки

P*. = 1; (7)

здесь символ " • " означает суммирование по всем значениям соответствующего дискретного аргумента.

СУР (3) имеет единственное, с условием нормировки, решение, которое можно получить методом, приведенным в рабое [2].

Зная стационарное распределение вложенной цепи Маркова, нетрудно определить другие стационарные характеристики обслуживания в рассматриваемой системе.

Вычислим сначала векторы р- = (р—,...,р-к)т, к = 1,Я, где р—, % = 1(п — 1) + j, ] = 1,1, п = 1, т, — стационарная вероятность того, что при поступлении заявки в системе будет к других заявок, марковский процесс обслуживания будет на j-й фазе, а процесс поступления заявок — на п-й фазе. Заметим, что при поступлении заявки в системе будет к, к = 0,г — 1, других заявок, если в систему поступит к + 1 заявок. Учитывая, что в момент поступления заявки фаза обслуживания не изменяется, имеем

Рк~ = рк*+1, к = 0,г — 1

Нетрудно видеть, что

я

Р-т = т Аз-к, к = Г,Я.

3=к

В частности, стационарная вероятность п потери заявки определяется формулой

тт

п = ТРя 1= ТРя Ао1,

—*

где ~1 — вектор-столбец из единиц.

Для нахождения стационарных вероятностей состояний по времени введем матрицы Тк и Тк, элементы которых (Тк)^ и (Тк)^, i,j = 1, 1, % = 1(п — 1) + д, д =1,1, п = 1,т, j = 1(и — 1) + V, V = 1,1, и = 1,т, представляют собой среднее время между соседними моментами поступления заявок в систему БМ/МБР/1/г (с накопителем емкости г) в состоянии (и, V, М — к) при условии, что после поступления первой заявки в системе оказалось М заявок и фаза обслуживания была д-я, и процесс поступления заявок находился на п-й фазе, М = г + 1. При этом в первом случае предполагается, что М > к, а во втором — что М = к. Матрицы Тк и Тк определяются соотношениями

сю

Тк = !(! — В(Х)) в Л

о

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

с

т: = I (I — В(х)) в г:(х)1х.

о

Введем вектор р, компоненты которого представляют собой (с учетом фаз генерации заявок и обслуживания) средние значения времени между соседними моментами изменения состояний вложенной цепи Маркова (между поступлениями заявок). Тогда

рР = Ь в 1,

где Ь — вектор с координатами Ь = / I dBi (£).

0

Среднее время Т между соседними моментами изменения состояний вложенной цепи Маркова в стационарном режиме функционирования системы определяется формулой

я я

Т = Е = Е Ркт( Ь ® 1» )■ (8)

к=0 к=0

Рассмотрим соотношение

Т = (Па)тМ^ Ь^ 1т.

—* —* —* _

Действительно, (Па)т = р* тЬ, где Ь = 1т ® 1» и Ь = М(Ь^) 1т. Перемно-

—*

жая матрицу Ь и вектор Ь, получаем

ЬЬ = Ь ® 1,

откуда немедленно приходим к формуле (8).

Заметим также, что загрузку системы р можно представить в виде

1

р = ТУ

Используя результаты теории полумарковских процессов, получаем для векторов рк, к = 0,Я, стационарных вероятностей состояний по времени формулы

1 Я

р0 = Т 5-У Рт Т?га '

т=1

я

1

_

= Т

Рк = ^Е РтТт-к, к =

т=к

Введем обозначение

Чк = рТ^, к = 0,Я,

где Q = 1т ® I ■

Получим соотношение между векторами дк и которое будем использовать в дальнейшем. Для этого заметим, что матричные функции Рк (ж) удовлетворяют дифференциальному уравнению

^0(ж) = Рк(ж)Л + и(к)Рк-1(ж)^, к > 0;

отсюда с учетом формул (1), (2) можно получить

АоЯ = —((1т—В(х))вГо(х))Я

+ ((1т — В(х))в(Ро(х)Л))д1х =

о

о

= (1а + То(1т в Л))Я, 1 = т1, где 1т — единичная матрица размера т,

АкЯ=—((1т — В(х)) в Рк(х))Я

+ / ((1т — В(х))в

о

о

в(Рк(х)Л + Гк(х)И))Я1х = (Тк(1т в Л) + Тк-г(1т в N))Я, к > 1

Ак Я = — | (1т — В(х)) в Гк (у ^ I Я

+ / ((1т — В(х))

о

о

в (Гк-^))Я1х = (Тк-!(1т в N))Я, к > 1.

Суммируя СУР по к от 1 до Я и подставляя вместо Ак и Ак их выражения из формул (1), (2), после простых преобразований получим

я я я

тЯ = Е Р* тЯ + Т5>кт(1т в Л * )Я. к=1 к=1 к = 1

Из этого сооношения имеем

я

^Р*(1т в Л* )Я = 0т. к=1

Следовательно,

я

У^ Ррк = СП3, к=1

где с — нормировочная постоянная, которая может быть записана в виде

с = 1 — ро.

Здесь через рк = р ,к, к = 0, Я, обозначена стационарная по времени вероятность наличия в системе к заявок.

Рассмотрим некоторые характеристики времени пребывания заявки в системе. Для этого обозначим через Ук (х), к > 1, матрицу, элементом (Ук(х))^ которой является вероятность того, что за время х будет

с

ОО г-

с

ОО г-

X

оо

обслужено не менее к заявок и в момент окончания обслуживания к-й заявки процесс обслуживания перейдет на ]-ю фазу при условии, что в начальный момент фаза обслуживания была г-я и в системе находилось не менее к заявок, а через Фк (в) обозначим преобразование Лапласа-Стилтьеса матрицы V-(ж). Обозначим также через /(в), к > 0, преобразование Лапласа-Стилтьеса матрицы (в), которая введена ранее.

Поскольку вероятность того, что обслуживание группы из т заявок, т < к, окончится на временном интервале [ж, ж + ^ж) при условии, что до этого момента уже обслужено к — т заявок, определяется формулой Рк-тоАт^ж, и поскольку за время ж может быть обслужено от 1 до к — 1 заявок, имеем

ф^в) = [ е-вхеЛх^ж = (в/ — Л)-1^,

фк (в) = фк (в), к > 2.

Отсюда нетрудно получить преобразования Лапласа-Стилтьеса и ^(в) стационарных распределений Ш(ж) и V(ж) — времени ожидания начала обслуживания и времени пребывания в системе произвольной заявки, принятой к обслуживанию:

1 г

Цв) = -- УУ-т(/т <8> Фк (в)) 1,

1 — П ^—'

к=0

1 ^

^(в) —- ^Р-т(/т ® Фк+1 (в)) 1.

1 — П ^—'

=0

Дифференцируя эти формулы в точке в = 0, получаем для среднего времени т ожидания начала обслуживания и среднего времени V пребывания в системе произвольной заявки, принятой к обслуживанию, для стационарного режима функционирования системы выражения

-1 г

т = .-£Р-т(/т ® Фк(0)) 1 =

к=1

= т—; XхР-' (/- ® (XX(—>'л-1) ) 1 =

т—1 г

= —г^Е Е Р-т(/™® ((—Л-1^)'Л-1))!,

-- £ р-т(1т ® Ф'к+1(0))1 =

1 — П —'

к=0

= 7-7Xх(1- ® (¿(-л-1 Ю>лА)- =

к=0 \ \j=0 ) ) .. г г

= - т^ Е Е р-т (I- ® ((-л_1^ )j л-1))

j=0 к=

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Для численных расчетов воспользуемся формулой

1

^к(х) 1 = 1 Ег(х)т, к > 1

г=0

из которой получаем следующие выражения для Ш(х) и V(х):

Ш(х) = 1 -

V (х) = 1 -

т-П¿( ¿р-')

i=0 \ к=г+1 /

1-П ± Xт)

г=0 =г

(I- ® Ъ(х)) 1,

(I- ® Ъ(х)) 1.

Бесконечный накопитель. Обратимся теперь к системе с бесконечным накопителем (г = ж).

Можно показать, что для системы с бесконечным накопителем необходимым и достаточным условием существования стационарного режима является стандартное условие р < 1, где р — загрузка системы.

Рассмотрим, как и в случае конечного накопителя, вложенную цепь Маркова, множество состояний которой

X = (%, 2, к), % = 1,т, у = 1,1, к > 1,

в данном случае является счетным.

Рассмотрим, как и ранее, векторыр**т, к > 1, ир* = (р*т,р*т,.. Имеем

(А\ А0 0 0 ..Д

А2 А1 А0 0

Р =

А3 А2 А1 А0 А4 Аз А2 А1

т

Приведем также развернутую запись СУР:

го

т т

р1 = 2^! Ат, т=1

го

рг = Е РттАт-к+1, к > 2.

т=к-1

Введем векторы рк, к > 0, стационарных вероятностей состояний по времени. Для рк справедливы формулы

го

т 1 т Ро = т

т=1

1 го

ркт = т Е , к >1

Также имеет место соотношение

го

Е^к = (1 — Ро)П®, к=1

причем р = (1 — р0), где р — загрузка системы. Найдем искать решение СУР в виде

р* т = РГ^-1, к > 1, (9)

где С — решение уравнения,

го

С = ^ Ак = А(С). (10)

к=0

Лемма. Уравнение (10) при р < 1 имеет единственное решение в классе матриц, все собственные значения которых по модулю меньше единицы. Это решение является матрицей, все элементы которой положительны, и итерационная процедура = А(С(п-1)) при п ^то сходится к нему, если в качестве начальной итерации С(0) выбрать любую матрицу с собственными значениями, по модулю меньшими единицы.

Доказательство этой леммы приведено в работе [5]. При численных расчетах в качестве С(0) удобно выбрать нулевую матрицу для монотонной сходимости последовательности к С.

При любом р* последовательность векторов рк*, задаваемых формулой (9), где С — решение уравнения (10), удовлетворяет всем уравнениям (4)-(6), и, кроме того, поскольку все собственные значения матрицы С по модулю меньше единицы, имеем

го / 1 \

Б Б |р.к I

к=1 \¿=1 )

к ¡1 < то. (11)

Оставшийся неизвестным вектор р* получим из первого уравнения СУР. 1

Перед этим подставим в уравнение (10) выражения для Ак из формул (1), (2). Получаем

С = /(( + и(/т ® Л)+ Си(/т ® N), (12)

где

го

укг

и = ^ СкТк.

к=0

—*

Умножая обе части равенства (12) на 1, имеем

(/( — С) 1= (/( — С)и(/т ® N) 1.

Поскольку матрица /т — С невырожденная, то последнее равенство эквивалентно равенству

и(/т ® N) 1 = 1,

которое, в свою очередь, в силу неотрицательности элементов матрицы UN означает, что матрица и(/т ® N) является стохастической. Уравнение

рТ = Р1 ти(/т ® N)

имеет единственное, с условием нормировки, решение. Условие нормировки легко приводится к виду

рТ(/( — С)-11=1.

Для вектора рк-, к > 0, стационарных вероятностей того, что в момент поступления заявки в системе содержится к других заявок, получим

Рк = Рк = Р* С .

Для вектора рк, к > 0, стационарных вероятностей по времени получим

- ^

Р0 = О Т-,

-=1

11

Рк = Р*тО--1 т—-к = - р*тОк-1и, к > 1,

— ' ^ 1 -—к —

-=к

где среднее время Т между моментами изменения состояний цепи Маркова вычисляется по формуле

ж ж

— = Е р**т~ = Е р**т( ~ ). =0 =0

Для преобразований Лапласа-Стилтьеса ш (в) и <р(в) стационарных распределений Ш(х) и V(х) — времени ожидания начала обслуживания и времени пребывания в системе произвольной заявки — получим

ж

т

ш(в) = ^2Р**тОк(I- ® Фк(в)) 1,

=0

Ж

= Р*ток(I- ® Фк+1 (в)) 1. =0

Для среднего времени т ожидания начала обслуживания и среднего времени V пребывания в системе произвольной заявки, принятой к обслуживанию, для стационарного режима функционирования системы получим

ж / ж \

т = -Р*'Е Е Оk){I- ® (-Л—1М)'Л—^1 = j=0 \к=' + 1 /

ж

= -Р*тО(и - О'' (I- ® (-л—1му л-1) 1,

j=0

жж

V = -Р*т Е Е О Л^- ® (-л—1N У л—1) 1 = j=0 \к=' )

= -р*т(Ь - О)—1^ о' (I- ® (-л—^ул—1) 1. j=0

Функции распределения Ш(ж) и V(ж) для системы с бесконечным накопителем можно представить в виде

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ш (ж) = 1 - РГ > , С*) (1т ® (ж)) 1 =

СЮ / ГО \

ЕЕ«*

¿=0 \*=, + 1 /

С

1 - тОД - О)-1 ^ « (1т ® (ж)) 1, (13)

, =0

СС

ЕЕс

¿=0 \*=, /

V(ж) = 1 - т у у С* (1т ® (ж)) 1 =

т ^ ± ]\

1 - Р7т(/^ - С)-1^ « (1т <8> (ж)) 1. (14)

,=0

Положим

С

Я(ж) = ^ Сг(/т <8> ВД) (15)

г=0

и обозначим через а модуль минимального диагонального элемента матрицы Л.

Положим Q = /^ - (/т ^ Л)/а. Найдем матричную функцию Я (ж) в виде

с / \ г

Я(ж)= е-"^ ^Яг. (16)

^—' г!

г=0

С помощью преобразований, аналогичных приведенным в работе [2], получаем следующее рекуррентное соотношение:

Я0 = /* (17)

1 1

Яг = Qг + У -ОЯ, (/т ® N— =

а

¿=0

+ Iх аСЯ, (/т ® N, Q+

+ 1 ОЯг-1(/т <8> N)= Яг-lQ + 1 ОЯг-1(/т <8> N), г > 1. (18) аа

Таким образом, из формул (13)-(14) следует, что функции распределения W (x) и V(x) можно вычислить по формулам

W(x) = 1 - plTG(Id - G)~lR(x) 1,

V(x) = 1 - рГ(1й - G)-1R(x)

где матричная функция R(x) определяется из соотношений (16)-(18).

Отметим, что расчет функций распределения W (x) и V(x) предложенным способом реализован программно для полумарковского входящего потока заявок с экспоненциальным, гиперэрланговским и детерминированным распределениями времени между поступлениями заявок и марковским процессом обслуживания (или с процессом обслуживания фазового типа как частным случаем марковского процесса).

СПИСОК ЛИТЕРАТУРЫ

1. Бочаров П. П. Стационарное распределение конечной очереди с рекуррентным потоком и марковским обслуживанием // Автоматика и телемеханика.

— 1996. — №9. — C. 66-78.

2. Бочаров П. П., Д'Апиче Ч., Печинкин А. В., Салерно С. Система массового обслуживания G/MSP/1/r // Автоматика и телемеханика. - 2003. -№2.-C. 127-143.

3. Бочаров П. П., Печинкин А. В. Теория массового обслуживания. - М.: Изд-во РУДН, 1995. - 529 с.

4. Бочаров П. П. Анализ системы массового обслуживания MAP/G/1 /г конечной емкости // Вестник РУДН. Сер. Прикладная математика и информатика.

- 1995.- №1.- С. 52-67.

5. N e u t s M. F. Matrix-geometric solutions in stochastic models. An algorithmic approach. - Baltimore and London: The Jonhs Hopkins Univ. Press, 1981.

Статья поступила в редакцию 29.05.2003

Василий Васильевич Чаплыгин родился в 1978 г., окончил в 2001 г. МГТУ им. Н.Э. Баумана. Аспирант кафедры "Высшая математика" МГТУ им. Н.Э. Баумана.

V.V. Chaplygin (b. 1978) graduated from the Bauman Moscow State Technical University in 2001. Post-graduate of "Higher Mathematics" department of the Bauman Moscow State Technical University.

i Надоели баннеры? Вы всегда можете отключить рекламу.