СИНТЕЗ ЛИГАНДА 1,3-ДИБЕНЗИЛХИНАЗОЛИН-2,4-ДИОНА

Национальный университет Узбекистана имени М.Улугбека 100174, Узбекистан, Ташкент, Вузгородок, химический ф-т

Санкт-Петербургский государственный технологический университет растительных полимеров 198095, Санкт-Петербург, ул. Ивана Черных, 4

Институт химии растительных веществ имени С.Ю.Юнусова АН РУз., 100170, Узбекистан, Ташкент, пр-т Мирзо Улугбека, д.77

Синтезирован лиганд 1,3-дибензилхиназолин-2,4-дион $C_{22}H_{18}N_2O_2$; его строение и структура изучены методами ИК, ¹Н ЯМР спектроскопии и рентгеноструктурного анализа. Кристаллы $C_{22}H_{18}N_2O_2$ имеют ортором-бическую сингонию. Параметры ячейки: а = 17.898(4) A, b = 14.0071 (4) A, c = 27.7222 (6) A, V = 6950.3 (3) A³, Z = 16, d_{выч} = 1.309 г/см³, пространственная группа Рbса. ССDC 786511.

Ключевые слова: лиганд, 1,3-дибензилхиназолин-2,4-дион, строение, структура, монокристалл, кристаллическая ячейка.

Введение д

Одним из важнейших направлений координационной химии является синтез и исследование комплексных соединений переходных металлов с биологически активными лигандами. Создание новых высокоэффективных биологически активных препаратов является одной из проблем современной бионеорганической химии. В решение этой проблемы существенную помощь может оказать целенаправленный синтез координационных соединений переходных металлов с физиологически активными органическими соединениями.

К таким соединениям относятся хиназолин-2,4дион и его производные, которые достаточно широко распространены в растительных и биологических объектах. Среди них выявлены препараты, обладающие гербицидными, фунгицидными, бактерицидными, рострегулирующими, фармакологическими и др. свойствами [1-3].

Известно, что комплексообразование физиологически активных лигандов с ионами биометаллов в большинстве случаев увеличивает биологическую активность препарата и нередко обнаруживает новые биологические свойства.

В ряду органических соединений существует большое число разнообразных лигандов, сильно отличающихся по свойствам и строению.

Следовательно, исследование строения и структуры потенциальных лигандов на основе производных хиназолина представляет определенный интерес для развития бионеорганической химии.

Результаты и их обсуждение

В настоящей работе представлены результаты рентгеноструктурного анализа монокристаллов 1,3-

дибензилхиназолин-2,4-диона (ДБХД), полученных по модифицированной методике, описанной в [4], взаимодействием хиназолин-2,4-диона с хлористым бензилом по схеме:

Строение синтезированного гетероциклического лиганда было изучено методами ИК- и ¹Н ЯМР - спектроскопии.

В ИК спектре 1,3-дибензилхиназолин-2,4-диона обнаружены характеристические валентные колебания карбонильных групп в положениях 2- и 4- в области 1763-1731 см⁻¹ [v_{as} (C=O)] и 1656-1697 см⁻¹ [v_{s} (C=O)]. Группа интенсивных полос поглощений в среднечастотной области 1607-1483 см⁻¹ отнесена к колебаниям С-N-связи гетероцикла. Колебания метиленовых групп бензольных колец обнаружены в области высоких частот при 2969-3088 см⁻¹. В области низких частот обнаружены группы полос с высокой интенсивнов, отнесенные, согласно [5], к колебаниям СН₂-групп молекулы лиганда. В области высоких частот при 3448 см⁻¹ в виде уширенной полосы с малой интенсивностью наблюдается полоса поглощения, отнесенная к колебаниям молекул воды, присутствующих в увлажненном лиганде.

В спектре ¹Н ЯМР 1,3-дибензилхиназолин-2,4-диона в области слабого поля наблюдается группа мультиплетных сигналов при 7.26-7.42, 7.85-7.99 м.д., которые отнесены к сигналам протонов водородсодержащих метиленовых групп

¹ Каримова Гавхар Шавкатжановна, стажер-соискатель каф. общей, неорганической и аналитической химии Национального университета Узбекистана им. М.Улугбека.

² Ишанходжаева Мухабат Мухутдиновна, д-р хим. наук, профессор каф. физической и коллоидной химии Санкт-Петербургского государственного технологического университета растительных полимеров. imukhabat@yandex.ru.

³ Кадирова Шахноза Абдухалиловна, д-р хим. наук, и.о.профессора каф. общей, неорганической и аналитической химии Национального университета Узбекистана им. М.Улугбека, shahnoza1975@mail.ru

⁴ Мухамедов Носир Сайидалиевич, канд. хим. наук, ст. науч. сотр. института химии растительных веществ им. С.Ю.Юнусова АН РУз, nasirxon@rambler.ru

⁵ Парпиев Нусрат Агзамович, д-р хим. наук, академик АН РУз., профессор каф. общей, неорганической и аналитической химии Национального университета Узбекистана им. М.Улугбека

ароматических ядер и протонов CH2-групп, связанных с ароматическими циклами. Дублет-дублетные сигналы, зафиксированные при 8.19-8.38 м.д., отнесены к сигналам соседних $\mbox{CH}_2\mbox{-}$ групп хинозолиндионового кольца [6, 7].

По данным рентгеноструктурного анализа (РСА) монокристаллов 1,3-дибензилхиназолин-2,4-диона получены кристаллографические характеристики, соответствующие орторомбической сингонии. На рисунке 1 представлено строение молекулы 1,3-дибензилхиназолин-2,4-диона; на рисунке 2 - упаковка молекул лиганда 1,3-дибензилхиназолин-2,4-диона. В таблице 1 приведены основные параметры рентгеноструктурного эксперимента и расчетов. В таблице 2 приведены межатомные расстояния и валентные углы, в таблице 3. - координаты атомов и эквивалентные изотропные тепловые параметры в структуре 1,3-дибензилхиназолин-2,4-диона.

Рис. 2.

Таблица 1. Основные кристаллографические параметры и характеристики рентгеноструктурного эксперимента для структуры L

структура лиганда				
Молекулярная формула	C ₂₂ H ₁₈ N ₂ O ₂			
М	342			
Сингония	Орторомбическая			
Пространственная группа	Pbca			
Z	16			
<i>a,</i> Å	17.8989			
<i>b,</i> Å	14.0071			
<i>c,</i> Å	27.7222			
a	90			
β	90			
γ	90			
V, Å ³	6950.3			
D _х , г/см ³	1.309			
Размеры кристалла (мм)	0.35x0.40x0.50			
µ _{ехр} (мм ⁻¹)	0,68			
Число отражений	1894			
Число отражений с I>2о(I)	4141			
R ₁ (I>2σ(I) и общее)	0.030			
wR ₂	0.1115			
S	0.90			
Разностные пики электронной плотно-	-0.14 и 0.28 Å ⁻³			
СТИ				

Таблица 2. Межатомные расстояния и валентные углы в структуре 1,3либензилхиназолин-2.4-лиона

Связь	d , A	Связь	d, A
O ^{1A} -C ^{2A}	1.222(2)	C ^{9A} -C ^{10A}	1.507(2)
O ^{2A} -C ^{4A}	1.222(2)	C ^{10A} -C ^{11A}	1.378(3)
N ^{1A} -C ^{2A}	1.379(2)	C ^{10A} -C ^{15A}	1.392(3)
N ^{1A} -C ^{8AA}	1.397(2)	C ^{11A} -C ^{12A}	1.384(3)
N ^{1A} -C ^{9A}	1.474(2)	C ^{12A} -C ^{13A}	1.376(3)
N ^{3A} -C ^{2A}	1.388(2)	C ^{13A} -C ^{14A}	1.373(3)
N ^{3A} -C ^{4A}	1.388(2)	N ^{3A} -C ^{16A}	1.479(2)
		•	
Угол	ω, град	Угол	ω, град
C ^{2A} -N ^{1A} -C8 ^{AA}	122.66(14)	O ^{2A} -C ^{4A} -N ^{3A}	120.90(15)
C ^{2A} -N ^{1A} -C ^{9A}	116.99(14)	O ^{2A} -C ^{4A} -C ^{4AA}	123.68(16)
C8AA-N1A-C9A	C ^{8AA} -N ^{1A} -C ^{9A} 120.36(13)		113.30(14)
C ^{2A} -N ^{3A} -C ^{4A}	125.30(14)	N ^{1A} -C ^{8AA} -C ^{4AA}	119.22(14)
C ^{2A} -N ^{3A} -C ^{16A}	116.87(14)	N ^{1A} -C ^{8AA} -C ^{8A}	121.84(15)
C ^{4A} -N ^{3A} -C ^{16A}	117.81(13)	N ^{3A} -C ^{16A} -C ^{17A}	113.76(13)
O1A-C2A-N1A	122.50(16)	N ^{3A} -C ^{4A} -C ^{4AA}	115.40(14)
O1A-C2A-N3A	120 76(15)	N1A_C2A_N3A	116 74(16)
0 0 1	120.70(13)	N -C -N	110.74(10)

Таблица 3. Координаты атомов (*10⁴) и эквивалентные изотропные тепловые параметры (*10³ A²) в структуре 1,3-дибензилхиназолин-2,4она

				ди
Атом	x	У	Z	Uª
01A	0.90039 (7)	0.27786 (11)	0.72998 (5)	0.0745 (4)
O2A	0.85328 (8)	0.30319 (11)	0.89063 (5)	0.0770 (4)
01A	0.61180 (7)	0.06448 (9)	0.98324 (5)	0.0633 (4)
O2A	0.54505 (7)	0.03102 (10)	0.82607 (5)	0.0668 (4)
N1A	0.77945 (8)	0.27259 (10)	0.75417 (5)	0.0498 (4)
N3A	0.87693 (8)	0.29234 (10)	0.81052 (6)	0.0531 (4)
N1A	0.70512 (7)	0.06323 (10)	0.92718 (5)	0.0467 (3)
N3A	0.57889 (7)	0.04627 (9)	0.90467 (5)	0.0455 (3)
C2A	0.85450 (10)	0.28112 (13)	0.76252 (7)	0.0538 (5)
C4A	0.82872 (11)	0.29654 (13)	0.84973 (7)	0.0542 (5)
C5A	0.69582 (11)	0.30185 (13)	0.87449 (7)	0.0596 (5)
C6A	0.62102 (11)	0.29916 (14)	0.86422 (8)	0.0639 (5)
C7A	0.59835 (11)	0.29017 (13)	0.81658 (8)	0.0627 (5)
C8A	0.64939 (10)	0.28232 (13)	0.77977 (7)	0.0563 (5)
C9A	0.75706 (10)	0.24198 (13)	0.70537 (6)	0.0531 (4)
C10A	0.73253 (9)	0.32101 (13)	0.67192 (6)	0.0480 (4)
C11A	0.76693 (11)	0.40913 (13)	0.67155 (7)	0.0583 (5)
C12A	0.74673 (12)	0.47754 (15)	0.63777 (8)	0.0722 (6)
C13A	0.69229 (13)	0.45750 (18)	0.60452 (8)	0.0775 (7)
C14A	0.65844 (13)	0.37067 (19)	0.60429 (8)	0.0801 (7)
C15A	0.67784 (11)	0.30240 (16)	0.63795 (7)	0.0671 (5)
C16A	0.95826 (10)	0.29432 (13)	0.81973 (8)	0.0627 (5)
C17A	0.98951 (9)	0.19523 (13)	0.82771 (7)	0.0530 (4)
C18A	1.00645 (10)	0.13649 (14)	0.78927 (8)	0.0617 (5)
C19A	1.03111 (11)	0.04455 (16)	0.79674 (9)	0.0748 (6)
C20A	1.04120 (12)	0.01171 (18)	0.84297 (10)	0.0873 (7)
C21A	1.02667 (12)	0.07020 (18)	0.88159 (9)	0.0853 (7)
C22A	1.00042 (10)	0.16140 (16)	0.87410 (7)	0.0684 (6)

Примечание. ^a U = $(\Sigma \Sigma U_{ij} \mathbf{a}_i^* \mathbf{a}_j \mathbf{a}_j)/3$

Независимая часть кристаллической ячейки содержит две молекулы 1,3-дибензилхиназолин-2,4-диона (рисунок 3). В этих молекулах ориентация бензильных групп относительно хиназолин-2,4-дионового ядра разные. Угол между плоскостями хиназолиндионового и бензильных групп составляют 73.97 (4)° и 70.07 (4)° (для молекул А) и 75.63 (4)° и 63.52 (3)° (для молекул В). В кристаллической структуре хиназолиндионовые ядра расположены параллельно.

Расстояния между центроидами бензольных колец молекулах А---В---А составляют 3.735 (2) Å и 3.791 Å, соответственно, что указывает на п-п взаимодействие между молекулами 1,3-дибензилхиназолин-2,4-диона в кристалле. Структуры зарегистрированы в Кембриджском банке структурных данных. Депозитные номера СССС 786511.

Экспериментальная часть

ИК спектры записывали на Фурье-спектрометре Spectrum GX фирмы «Перкин-Элмер» (США) в области 400-4000 см⁻¹, в таблетках КВг.

Спектры ЯМР ¹Н снимали на спектрометре Varian Inova-400 UNITY 400+ (400 МГц) в DMSO, внутренний стандарт ТМС.

Значения R_f определены на пластинках «Sorbfil» (Россия) и «Whatman[®] UV-254» (Германия), элюент – смесь бензола с этанолом 5:1; проявитель: 1 г KMnO₄ + 4 мл H_2SO_4 + 96 мл H_2O , УФ - свет. Температуру плавления синтезированных веществ определяли на приборе «Boetius» (Германия) и «MEL-TEMP» (США).

Синтез 1,3-дибензилхиназолин-2,4-диона. К смеси 1,62 г (0,01 моль) хиназолин-2,4-диона, 4 г (0,1 моль) NaOH в 40 мл воды, 1,28г (0,004 моль) тетрабутиламмония бромида (ТБАБ) и 40мл бензола добавляли 3,79 г (0,03 моль) хлористого бензила, нагревали до 60°С и выдерживали при этой температуре в течение 6 часов. Органический слой отделяли, промывали до нейтральной реакции, высушивали над сульфатом натрия; растворитель упаривали, остаток перекристаллизовывали из бензола. Выход 1,3-дибензилхиназолин-2,4-диона 3,0 г (88%). Т.пл. 125-127°С. R_f = 0,82 (бензол : ацетон=5:1). Лит. т.пл. 123-125°С [4].

Монокристаллы 1,3-дибензилхиназолин-2,4диона, подходящие для РСА, получали перекристаллизацией порошка лиганда из этанола. РСА монокристаллов 1,3-дибензилхиназолин-2,4-диона проводили на автоматическом дифрактометре Oxford Diffraction-2009 (λ МоК α , графитовый монохроматор, θ /2 θ -сканирование, 2 θ_{max} =56⁰). Структуру расшифровывали прямым методом с помощью комплекса программ SHELXS-97 и уточняли с помощью комплекса SHELXL-97 [8]. Атомы водорода устанавливали геометрически и уточняли по модели наездника. Молекулярную графику осуществляли программой XP в SHELXTL-Plus [9].

Сбор экспериментальных данных проводили при 293±2 К. Размеры кристалла 0.35х0.40х0.50 мм с абсорбционным коэффициентом μ (*CuK*_a) 0.678 мм⁻¹ и *F*(000) 2880.

Кристаллы $C_{22}H_{18}N_2O_2$ имеют орторомбическую сингонию. Параметры ячейки: а = 17.8989(4) A, b = 14.0071 (4) A, c = 27.7222 (6) A, V = 6950.3 (3) A³, Z = 16, d_{выч} = 1.309 г/см³, пространственная группа *Pbca*.

Литература

1. Шахидоятов Х.М., Янгибаев С., Юн Л.М., Кадыров Ч.Ш. Синтез, алкилирование 2-меркаптохиназолона-4 и фунгицидная активность полученных соединений // Химия природных соединений. 1982. № 4. С. 112-118.

2. *Машковский М.Д.* Лекарственные средства: в 2 т. Т. 2 М.: Новая волна, 2002. 608 с.

3. *Шахидоятов Х.М.* Хиназолоны-4 и их биологическая активность. Ташкент: ФАН, 1988. С. 3-4.

4. Шахидоятов Х.М., Эгамов Д.И., Аскаров И.Р. Синтез хиназолин-4-ил-2-тиоамидов и их химические превращения // Узбекский химический журн. 1997. № 6. С.26-29.

5. *Накамото К.* ИК спектры неорганических и координационных соединений. М.: Мир, 1996. С. 204-206.

6. *Гюнтер Х.* Введение в курс спектроскопии ЯМР. / пер. с англ. М.: Мир, 1984. 478 с.

7. *Дероум Э*. Современные методы ЯМР для химических исследований. / пер. с англ. М.: Мир, 1992. 403 с.

8. Siemens XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-Ray Instruments Inc. Madison, 1994.

9. Sheldrick G.M. SHELXL97. Program for the refinement of Crystal Structures. Göttingen: Univ. of Göttingen, 1997.