Международный информационно-аналитический журнал «Crede Experto: транспорт,
УДК 621.396.96
DOI 10.51955/2312-1327_2024_1_78
СИНТЕЗ АЛГОРИТМА ОЦЕНКИ ПАРАМЕТРОВ МНОГОПОЗИЦИОННОЙ СИСТЕМЫ НАБЛЮДЕНИЯ И ИССЛЕДОВАНИЕ ЭФФЕКТА РАСХОДИМОСТИ ПРОЦЕССА
ФИЛЬТРАЦИИ
Вячеслав Владимирович Ерохин, orcid. org/0000-0002-5549-3952, доктор технических наук Московский государственный технический университет гражданской авиации (Иркутский филиал),
ул. Коммунаров, 3 Иркутск, 664047, Россия ww_ [email protected]
Борис Валентинович Лежанкин, orcid. org/0000-0001-5504-0884, кандидат технических наук, доцент Московский государственный технический университет гражданской авиации (Иркутский филиал),
ул. Коммунаров, 3 Иркутск, 664047, Россия [email protected]
Дмитрий Юрьевич Урбанский, orcid. org/0009-0000-2574-512X, Восточно-Сибирский филиал ФГУП «ВНИИФТРИ»,
Бородина, 57 Иркутск, 664056, Россия urbdim. ru@gmail. com
Аннотация. Точность измерения местоположения воздушных судов (ВС) напрямую влияет на безопасность полётов и является одной из важнейших тактических характеристик. Внедрение новых перспективных средств наблюдения, таких как многопозиционные системы наблюдения (МПСН), может значительно повысить уровень безопасности полётов, а также улучшить эффективность использования воздушного пространства. В статье рассматривается задача улучшения качества функционирования МПСН и повышения точности оценки координат воздушных судов (ВС). Точность определения местоположения определяется погрешностью измерения времени прихода сигнала в условиях влияния шумов и помех. Случайные возмущения необходимо учитывать для обеспечения качественной работы МПСН, что достигается путем применения методов Калмановской теории фильтрации. Поэтому для решения задачи оценивания переменных состояния МПСН предлагается использовать фильтр Калмана (ФК). Эффективность применения фильтра Калмана зависит от адекватности математических моделей и реальных процессов. Неточности моделей, связанные с функционированием навигационных систем, приводят к расходимости ФК. В работе приведены результаты теоретических исследований и имитационного моделирования процессов функционирования МПСН на основе реализации алгоритма ФК.
© В.В.Ерохин, Б.В.Лежанкин, Д.Ю.Урбанский, 2024
Ключевые слова: фильтр Калмана, расходимость процесса фильтрации, алгоритм оценивания, многопозиционная система наблюдения, случайные возмущения, воздушное судно.
SYNTHESIS OF AN ALGORITHM FOR ESTIMATING PARAMETERS OF A MULTIPOSITION SURVEILLANCE SYSTEM AND RESEARCH OF
FILTERING DIVERGENCE
Vyacheslav V. Erokhin, orcid. org/0000-0002-5549-3952, Doctor of Technical Science Moscow State Technical University of Civil Aviation (Irkutsk Branch), 3, Kommunarov Irkutsk, 664047, Russia ww_ [email protected]
Boris V. Lezhankin, orcid.org/0000-0001-5504-0884, Candidate of technical sciences, Associate Professor Moscow State Technical University of Civil Aviation (Irkutsk Branch), 3, Kommunarov Irkutsk, 664047, Russia [email protected]
Dmitry Y. Urbansky, orcid. org/0009-0000-2574-512X, East Siberian branch of FSUE «VNIIFTRI»,
57, Borodina Irkutsk, 664056, Russia urbdim.ru@gmail. com
Abstract. The accuracy of aircraft position measurements directly affects flight safety and is one of the most important tactical characteristics. The introduction of new advanced surveillance tools, such as multi-position surveillance systems (MPSS), can significantly increase the level of flight safety, as well as improve the efficiency of airspace use. The authors consider the task of improving the quality of MPSS functioning and increasing the accuracy of estimating the aircraft coordinates. The accuracy of position-fixing is determined by the error in measuring the time of signal arrival under the influence of noise and interference. Random disturbances must be taken into account to ensure high-quality MPSS operation. This is achieved by applying the methods of Kalman filtration theory. Therefore, to solve the problem of estimating the MPSS state variables, it is proposed to use a Kalman filter (KF). The effectiveness of using the Kalman filter depends on the adequacy of mathematical models and real processes. Model inaccuracies associated with the functioning of navigation systems lead to KF divergence. The paper presents the results of theoretical studies and simulating the MPSS functioning processes based on the implementation of the KF algorithm.
Keywords: Kalman filter, divergence of the filtering process, estimation algorithm, multiposition surveillance system, random disturbances, aircraft.
Введение
Гражданская авиация является активно развивающейся отраслью промышленности и играет важную роль в обеспечении экономического развития Российской Федерации. Увеличение интенсивности воздушного движения
послужило началом модернизации Единой системы организации воздушного движения (ЕС ОрВД). Для обеспечения эффективного функционирования системы УВД предлагается использовать многопозиционную систему наблюдения (МПСН).
Системный анализ принципов построения и функционирования МПСН показал значительные преимущества МПСН по сравнению с существующими классическими средствами наблюдения - возможность использования системы в труднодоступных районах для радиолокационных средств, а также простота обслуживания [Исследование..., 2023; Лежанкин и др., 2019].
Точность измерения местоположения воздушных судов (ВС) напрямую влияет на безопасность полётов и является одной из важнейших тактических характеристик. Внедрение новых перспективных средств наблюдения, таких как МПСН, может значительно повысить уровень эффективности использования воздушного пространства [Синтез., 2022]. При этом важное значение имеет исследование точностных характеристик МПСН в зависимости от конфигурации параметров системы.
Точность определения местоположения ВС характеризуется качеством измерения времени прихода сигнала в условиях влияния шумов и помех [Арефьев и др., 2021; Применение., 2021; Туринцев и др., 2022]. Случайные возмущения необходимо учитывать для обеспечения качественной работы МПСН, что достигается путем применения методов Калмановской теории фильтрации [Формирование., 2008; 2022]. При синтезе алгоритмов
оценки параметров МПСН, необходимо учитывать случайные возмущения для обеспечения качественной работы в условиях действующих шумов и помех, что достигается путем применения различных методов, в том числе, методов Калмановской теории фильтрации. Эффективность применения фильтра Калмана (ФК) существенно зависит от степени соответствия математических моделей реальным процессам. Неточности моделей, связанные с функционированием радионавигационных систем, приводят к появлению эффекта расходимости ФК.
На основе анализа вышеизложенного можно сделать вывод о том, что исследование точностных характеристик МПСН и повышение эффективности определения координат ВС в условиях воздействия случайных возмущений является актуальной научно-исследовательской задачей.
Цель работы - разработка алгоритма определения переменных вектора состояния многопозиционной системы наблюдения и исследование расходимости процессов фильтрации.
Постановка задачи
В основе принципа работы МПСН при определении положения приёмоответчика ВС лежат измерения на приемных пунктах значений псевдозадержки принятых сигналов, которые можно представить в виде:
Si(t, frn) = AtGRK(t - fi)GHc(t - ti) cos(voi(t - ti) + Фод = = AiGRK(t - ii)GHC(t - ti) cos(^0it + 2n ¡*fm(v)dv + фод,
где Si(t,ii, faj) - принимаемый i-ым 1111 сигнал с амплитудой Ai,; rn0i- несущая частота; ф0 - случайная начальная фаза; ti - псевдозадержка; f^ -псевдодоплеровское смещение частоты; GftK(t - ii), GHC(t - ti) - координатная часть в виде преамбулы и информационное сообщение, содержащее данные о воздушном судне, параметрах его движения; n(t) - белый гауссовский шум (БГШ).
Измеренную псевдодальность представим в виде:
Di = cii = Di + Di = ^(Xi-x)2 + (yi-y)2 + (zi-z)2 + Di , (1)
где Di - расстояние от ВС до i-й приемной станции; x,y,z - координаты ВС; ii -измеренное значение времени прихода сигнала от ВС до приемного пункта; с -скорость распространения радиоволн; Di - погрешность измерения дальности.
Все псевдодальномерные измерения можно объединить в вектор, состоящий из сигналов n видимых приемных станций:
w w w Т
y(tv) = [S^ty,
fttn) + njn] , (2)
где nji, I = l,n - дискретные БГШ (ДБГШ) с нулевыми математическими
■2 = N0/(2Td); Td = tj - tj.
ожиданиями и дисперсией = N0/(2Td); Td = tj - tj_1 - шаг дискретизации.
Синтез алгоритма
Применительно к задаче дискретной фильтрации, в предположении Марковского характера процесса ху, алгоритм вычисления значений апостериорной плотности вероятности (АПВ) имеет вид:
= срЬМРЫГо'1), (3)
= J_^op(xv-i|^o_1) cp(xvlxv_1)dxv_1, (4)
p(Xq|® = РарЫ. (5)
Уравнения (3) - (5) позволяют рекуррентно вычислять значение АПВ р(ху|^0) на у-м шаге по соответствующему значению той же плотности на предыдущем шаге. Начальные условия для такой рекуррентной процедуры описываются выражением (5).
При использовании метода максимума правдоподобия для обработки аддитивной смеси полезного сигнала и шума напряжение на выходе
дискриминатора запишем в виде
т
.. (- ) _ (Э1пр(#Д)) | иду(ху) —( 9х ) |х_ ^
где ^ _ {Уу-1д,Уу-1,2,.. .,Уу-1,м)- принимаемые сигналы на интервале
т
[^у-1,1, ], вектор состояния х — |т /д| ; р(^, х) - функция правдоподобия. Применительно к рассматриваемой задаче АПВ р(^,х) представим в
виде:
р^х) = ехр (^^(^т,/^^—1 (у(^-1,0 - ^(^Д,/^))), (6)
На основании выражений (3) - (6) вычисляются оценки времени задержки т и доплеровского сдвига частоты /д, соответствующие максимуму АПВ:
{т,/Д} _ шахр(т,/д|г£+Т).
Модель динамики параметров МПСН представим в виде:
ту — ту-1 + ГКт,у-1, (7)
_ ^-1 + ™т,у-1, (8)
где Т - время наблюдения; пту - ДБГШ с известной дисперсией ; -скорость изменения времени задержки сигнала; V - временной индекс. Уравнение наблюдения представим в виде:
^ — ту + (9)
где - ДБГШ с дисперсией .
На основе моделей (7) - (9) синтезирован алгоритм оценки параметров МПСН в скалярном виде:
(С,-
'-г
Л1,У _ п , Л2,г _ п
где - коэффициенты усиления фильтра Калмана в выражениях для оценки соответствующих переменных; Rj - элементы главной диагонали матрицы ошибок R [Assad et al., 2019].
Матрица R вычисляется на основе выражений:
Rv = Rv'
Rv = ^v,v-1Rv-1^i/,v-1 + GG^
где Rv - экстраполированная матрица.
При реализации перехода от скалярного вида к векторно-матричному получаем следующую форму записи уравнений (7) - (9):
Ху Фу,у—1Ху—1 + Су,у—1ПХ,у — 1, - НуХу + П^,у,
ф =
1 т , G 0
0 1 1
,Н = |1 0|.
Алгоритм оптимальной фильтрации вектора состояния представим в векторно-матричном виде:
Ху _ + — НуХу/у-1), (10)
RV ^V,V — lRV — l^'V,V—l + £^-^-10^-1 ,
н? + Уу] ,
Rv — [I —КVНV]RV, (11)
Алгоритм позволяет решить задачу фильтрации параметров МПСН, состоящую в нахождении наилучшей оценки времени прихода сигнала по результатам псевдодальномерных измерений при наличии ошибок, вызванных действием случайных возмущений.
Результаты моделирования и исследования
В работе выполнено исследование характеристик алгоритма оптимальной фильтрации параметров МПСН на основе специализированного программного обеспечения. В качестве исходных данных выбраны значения параметров, которые представлены в [Исследование., 2023; Лежанкин и др., 2019].
Для оценки качества измерений разности времён прихода переданного приемоответчиком объекта сигнала на рис. 1 представлены ошибки оценки т -т
и СКО ат, на рис. 2 приведены графики ошибки оценки V - V
и
среднеквадратического отклонения аГт. Представленные на рисунках 1, 2 результаты показывает достаточно высокую точность оценки параметров сигналов МПСН при совпадении фактических и расчетных параметров фильтра Калмана.
В то же время при работе фильтра Калмана может наблюдаться расходимость процессов фильтрации, как показано на графиках, приведенных на рисунках 3 и 4, при несоответствии между принятыми моделями и реальными процессами. Такое несоответствие, как показывают результаты исследований, представленные на рисунках 3 и 4, приводит к расходимости процессов фильтрации, т. е. к отличию между расчетным значением дисперсии ошибки оценивания и действительной ошибкой.
Расходимость возникает из-за того, что вероятностные характеристики шума наблюдений неизвестны и не учитываются в выражениях (4), (5) алгоритма фильтрации, при этом возникают расхождения между реальными процессами и моделями, принятыми в фильтре.
Расходимость процессов фильтрации приводит к увеличению дисперсии ошибки параметров МПСН, что демонстрируется на рисунках 5,6.
о -
t--^-----ЩV
О 100 200 300 400 500 600 700 800 900 1*10'
Время, с
Рисунок 1 - Ошибка оценки времени
задержки
О 100 100 300 400 500 «00 700 800 900 1»10'
Время, с
Рисунок 2 - Ошибка оценки скорости изменения времени задержки
900 Ы03 Время, с
Рисунок 3 - Ошибка оценки времени задержки при расходимости
Рисунок 4 - Ошибка оценки скорости изменения времени задержки при расходимости
Рисунок 5 - Дисперсия ошибки оценки времени задержки: 1 - при корректной работе; 2 - при расходимости.
Рисунок 6 - Дисперсия ошибки оценки скорости изменения времени задержки: 1 - при корректной работе; 2 - при расходимости.
Анализ представленных результатов показывает необходимость исследования эффекта расходимости процессов фильтрации и разработки новых подходов к оценке параметров МПСН для устранения данной проблемы, что и предопределяет актуальность выбранного направления исследований.
Анализ проблемы расходимости процессов фильтрации
При использовании алгоритмов Калмановского типа при обработке информации в МПСН возникают ситуации, когда действительные ошибки фильтрации превышают теоретически рассчитанные значения. Это явление называется расходимостью (неустойчивостью) фильтра Калмана. Причины расходимости заключаются в неточном задании моделей процессов сообщения и наблюдения, отсутствии достоверной информации о реальных физических процессах. Расходимость вызывают ошибки моделирования шумов в условиях статистической неопределенности их вероятностных характеристик [Болелов, 2021].
Основная причина расходимости процесса фильтрации - быстрое стремление к нулю коэффициента передачи (усиления) К фильтра Калмана, как показано на рисунках 7, 8. При этом процесс оценивания перестает быть зависимым от обновляющей информации, содержащейся в последовательности наблюдений, и рост ошибки не влияет на формирования оценки.
Рисунок 7 - Коэффициент усиления Рисунок 8 - Коэффициент усиления фильтра фильтра
Следует отметить, что эффект расходимости - явление сложное и противоречивое, требующее проведения глубоких исследований применительно к решению конкретной задачи повышения эффективности функционирования МПСН.
В работе [Сейдж и др., 1976] рассматриваются методы устранения расходимости применительно к различным задачам. В основе рассмотренных методов лежит идея ограничения коэффициента усиления, чтобы избежать «нечувствительности» процесса фильтрации к вновь поступающей последовательности наблюдений.
Для уменьшения матричного коэффициента усиления предлагается использовать процедуру, состоящую в ограничении элементов матрицы снизу некоторой заранее выбранной величиной, либо можно добавить к элементам матрицы некоторую величину [Марковские модели., 2019]. Например, в работе [Schmidt et al., 1968] для расчета матричного коэффициента усиления предлагается использовать следующее выражение:
Kv — [Rv + £l]Hy [HvRvHy
Предложенный подход можно использовать для ограничения элементов матрицы дисперсий ошибок Rv. В работе [Andrews, 1968] был развит другой подход, позволяющий контролировать нестабильность, который состоит в вычислении квадратного корня из матрицы R v. При рассмотрении данного способа вносится предположение, что шум модели равен нулю. Уравнение для матрицы ковариаций Rv при Gv = 0 записывается в виде:
Rv — [1 — KvHv]Rv, где Rv — Ov,v-1Rv-1OV,v-1 - экстраполированная матрицаковариаций.
Показано, что корень из матрицы Rv равен
R1/2 - ф R1/2 Kv — Vv,v-1K
Фт
1 ■ 1"
RV — Rv-1 I-
T
Hv ({Vv + HVRVH^}1) ({Vv + HVRVH£}2)
-i i HVRv-1
где используется нижняя треугольная матрица корней из дисперсий. Для случая непрерывного времени аналогичные выражения были предложены в [Andrews, 1968].
Перспективным направлением устранения эффекта расходимости является применение адаптивных алгоритмов фильтрации. Применение адаптивных алгоритмов представляется более эффективным ввиду того, что из-за расходимости величина ошибки становится относительно большой, что даёт возможность использовать большее количество информации для адаптации [Воскобойников, 2015]. Разработка и исследование алгоритмов адаптивной фильтрации параметров МПСН рассматривается в качестве приоритетного направления дальнейших исследований.
Заключение
Разработан алгоритм оценки переменных вектора состояния МПСН при использовании АЗН-В: времени, скорости и ускорения изменения времени задержки прихода сигнала на основе Калмановской теории фильтрации. Проведены исследования точностных характеристик МПСН наблюдения с применением специализированного программного обеспечения. Анализ представленных результатов показывает высокую точность оценки параметров при совпадении фактических и расчетных параметров фильтра Калмана. В то же время при несоответствии между принятыми моделями фильтра Калмана и реальными процессами на выходе алгоритма наблюдается расходимость процессов фильтрации, которая проявляется в отличии между расчётной и действительной ошибкой оценивания. Показано, что расходимость процессов фильтрации приводит к увеличению дисперсии ошибки оценки параметров МПСН. Обоснована необходимость разработки новых подходов к оценке переменных вектора состояния для устранения расходимости. Рассмотрены методы устранения неустойчивости функционирования разработанного алгоритма, при этом разработка и исследование алгоритмов адаптивной фильтрации параметров МПСН выбраны в качестве приоритетного направления дальнейших исследований.
Библиографический список
Арефьев Р. О. Применение помехоустойчивого кодирования при обработке сообщений локальной корректирующей станции / Р. О. Арефьев, С. В. Туринцев, М. С. Туринцева // Актуальные проблемы и перспективы развития гражданской авиации: сборник трудов X Международной научно-практической конференции, Иркутск, 14-15 октября 2021 года. Том 2. Иркутск: Иркутский филиал федерального государственного бюджетного
образовательного учреждения высшего образования «Московский государственный
технический университет гражданской авиации», 2021. С. 22-32. EDN YMDPPC.
Болелов Э. А. Методы и алгоритмы комплексной обработки метеоинформации при
метеорологическом обеспечении полетов воздушных судов гражданской авиации:
специальность 05.22.14 Эксплуатация воздушного транспорта: диссертация на соискание
ученой степени доктора технических наук / Болелов Эдуард Анатольевич, 2021. 421 с. EDN
RAOAVI.
Воскобойников Ю. Е. Критерий расходимости и алгоритм адаптации рекуррентного алгоритма оценивания вектора состояния / Ю. Е. Воскобойников // Научный вестник Новосибирского государственного технического университета. 2015. № 3(60). С. 7-22. DOI 10.17212/1814-11962015-3-7-22. EDN UNEYLH.
Исследование точностных характеристик широкозонной многопозиционной системы наблюдения Иркутского регионального центра организации воздушного движения / Э. А. Болелов, Б. В. Лежанкин, М. А. Межетов, В. В. Ерохин // Вестник Санкт-Петербургского государственного университета гражданской авиации. 2023. № 3(40). С. 89-101. EDN LKMFMX.
Лежанкин Б. В. Системный анализ задачи определения местоположения воздушного судна в многопозиционной системе наблюдения / Б. В. Лежанкин, В. В. Ерохин, В. С. Марюхненко // Информационные технологии и математическое моделирование в управлении сложными системами. 2019. № 1(2). С. 46-61. EDN ZDOOGT.
Марковские модели технического состояния перспективных бортовых радиолокационных систем воздушных судов / А. С. Богачев, Э. А. Болелов, А. Т. Кудинов [и др.] // Научный вестник ГосНИИ ГА. 2019. № 26. С. 113-125. EDN YVVCPC.
Применение технологии LoRa в беспилотных авиационных системах / М. А. Межетов, А. И. Тихова, У. С. Вахрушева, А. В. Федоров // Актуальные проблемы и перспективы развития гражданской авиации: сборник трудов X Международной научно-практической конференции, Иркутск, 14-15 октября 2021 года. Том 2. Иркутск: Иркутский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет гражданской авиации», 2021. С. 180-185. EDN UZUCLT.
Сейдж Э. П. Теория оценивания и ее применение в связи и управлении / Э. П. Сейдж, Дж. Мелс [пер. с англ. под ред. Б.Р. Левина]. М.: Связь, 1976. 496 с.
Синтез многопозиционных радиолокационных систем на базе сети специализированных излучателей / А. В. Журавлев, В. В. Кирюшкин, А. В. Коровин, Д. И. Савин // Успехи современной радиоэлектроники. 2022. Т. 76, № 4. С. 47-55. DOI 10.18127/j00338486-201807-21. EDN OQAAER.
Туринцев С. В. Программная реализация алгоритма кодирования и декодирования местоположения ВС в дискретно-адресном режиме вторичной радиолокации / С. В. Туринцев, М. С. Туринцева // Актуальные проблемы и перспективы развития гражданской авиации : Сборник трудов XI Международной научно-практической конференции. посвященной празднованию 100-летия конструкторского бюро "Туполев", 55-летия Иркутского филиала МГТУ ГА, 75-летия Иркутского авиационного технического колледжа, Иркутск, 13-14 октября 2022 года. Том 2. Иркутск: Иркутский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет гражданской авиации», 2022. С. 115-121. EDN YGUUUY.
Формирование радиолокационной карты подстилающей поверхности путем фильтрации случайных полей / О. Н. Скрыпник, Б. В. Лежанкин, Б. М. Миронов, Н. П. Малисов // Научный вестник Московского государственного технического университета гражданской авиации. 2008. № 133. С. 60-66. EDN KVVEYT.
Andrews A. A square root formulation of the Kalman covariance equations // AIAA Journal. 1968. Vol. 6. pp. 1165-1166. DOI 10.2514/3.4696.
Assad A. Novel Adaptive Fuzzy Extended Kalman Filter for Attitude Estimation in Gps-Denied Environment / A. Assad, W. Khalaf, I. Chouaib // Gyroscopy Navig. 2019. Vol. 10. pp. 131-146. DOI 10.1134/S2075108719030027.
Schmidt S. F. (1968) Case Study of Kalman Filtering in the C-5 Aircraft Navigation System / S. F. Schmidt, J. P. Weinberg, J. S. Lukesh // Joint Automatic Control Conf. Univ. of Michigan. 1968. pp. 59-109.
Using a MLAT Surveillance System to Locate Unmanned Aerial Vehicles Flying as a Swarm / E. A. Bolelov, B. V. Lezhankin, V. V. Erokhin, S. A. Zyabkin // 2022 XIX Technical Scientific Conference on Aviation Dedicated to the Memory of N.E. Zhukovsky (TSCZh). 2022. pp. 67-70. DOI 10.1109/TSCZh55469.2022.9802475.
References
Andrews A. (1968). A square root formulation of the Kalman covariance equations. AIAA Journal. 6: 1165-1166. DOI 10.2514/3.4696.
Arefyev R. O., Turintsev S. V., Turintseva M. S. (2021). The use of noise-resistant coding in the processing of messages from a local correction station. Aktual'nye problemy i perspektivy razvitiya grazhdanskoj aviacii : sbornik trudov X Mezhdunarodnoj nauchno-prakticheskoj konferencii. Irkutsk: Irkutskij filial federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya «Moskovskij gosudarstvennyj tekhnicheskij universitet grazhdanskoj aviacii». pp. 22-32. EDN YMDPPC. (in Russian)
Assad A., Khalaf W., Chouaib I. (2019). Novel Adaptive Fuzzy Extended Kalman Filter for Attitude Estimation in Gps-Denied Environment. Gyroscopy Navig. 10: 131-146. DOI 10.1134/S2075108719030027.
Bogachev A. S., Bolelov E. A., Kudinov A. T. (2019). Markov model of the technical state of advanced airborne radar systems aircraft. Scientific bulletin of GosNII GA. 26: 113-125. EDN YVVCPC. (in Russian)
Bolelov E. A. (2021). Methods and algorithms of complex processing of meteorological information in meteorological support of flights of civil aviation aircraft: Special'nost' 05.22.14 Ekspluataciya vozdushnogo transporta: dissertaciya na soiskanie uchenoj stepeni doktora tekhnicheskih nauk. 2021. 421 p. EDN RAOAVI. (in Russian)
Bolelov E. A. Lezhankin B. V. Erokhin V. V., Zyabkin S. A. (2022). Using a MLAT Surveillance System to Locate Unmanned Aerial Vehicles Flying as a Swarm. 2022 XIX Technical Scientific Conference on Aviation Dedicated to the Memory of N.E. Zhukovsky (TSCZh). 67-70. DOI 10.1109/TSCZh55469.2022.9802475.
Bolelov E. A., Lezhankin B. V., Erokhin V. V., Mezhetov M. A. (2023). Study of the accuracy characteristics of the wide-area multi-position surveillance system of the Irkutsk regional center for air traffic management. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta grazhdanskoj aviacii. 3(40): 89-101. EDN LKMFMX. (in Russian)
Lezhankin B. V., Erokhin V. V., Maryukhnenko V. S. (2019). System analysis of the problem of determining the location of the aircraft in the multiposital observation system. Informacionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami. 1(2): 46-61. EDN ZDOOGT. (in Russian)
Mezhetov M. A., Tikhova A. I., Vakhrusheva U. S., Fedorov A. V. (2021). Application of LoRa technology in unmanned aircraft systems. Aktual'nye problemy i perspektivy razvitiya grazhdanskoj aviacii: sbornik trudov X Mezhdunarodnoj nauchno-prakticheskoj konferencii, Irkutsk, 14-15 oktyabrya 2021 goda. Tom 2. Irkutsk: Irkutskij filial federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya «Moskovskij gosudarstvennyj tekhnicheskij universitet grazhdanskoj aviacii». 180-185. EDN UZUCLT. (in Russian)
Sage E. P., Mels J. (1976). The theory of evaluation and its application in communication and management [transl. from English B.R. Levina]. Moscow: Svyaz', 1976. 496 p. (in Russian) Schmidt S. F., Weinberg J. P., J. S. Lukesh (1968). Case Study of Kalman Filtering in the C-5 Aircraft Navigation System. Joint Automatic Control Conf. Univ. of Michigan. 59-109.
Skrypnik O. N., Lezhankin B. V., Mironov B. M., Malisov N. P. (2008). Formation of a radar map of the underlying surface by filtering random fields. Nauchnyj vestnikMoskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. 133: 60-66. EDN KVVEYT. (in Russian) Turintsev S. V., Turintseva M. S. (2022). Software implementation of the algorithm for encoding and decoding the location of aircraft in the discrete-addressable mode of secondary radar. Aktual'nye problemy i perspektivy razvitiya grazhdanskoj aviacii: Sbornik trudov XIMezhdunarodnoj nauchno-prakticheskoj konferencii Irkutsk: Irkutskij filial federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya "Moskovskij gosudarstvennyj tekhnicheskij universitet grazhdanskoj aviacii". 115-121. EDN YGUUUY. (in Russian)
Voskoboynikov Yu. E. (2015). The divergence criterion and the algorithm for adapting the recurrent algorithm for estimating the state vector. Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. 3(60): 7-22. DOI 10.17212/1814-1196-2015-3-722. EDN UNEYLH. (in Russian)
Zhuravlev A. V., Kiryushkin V. V., Korovin A. V., SavinD. I. (2022). Synthesis of multi-position radar systems based on a network of specialized emitters. Uspekhi sovremennoj radioelektroniki. 4: 47-55. DOI 10.18127/j00338486-201807-21. EDN OQAAER. (in Russian)