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Abstract 

In this research article, we have introduced a new class of continuous probability distributions known 

as the Sine Topp-Leone Exponentiated-G family of distributions. This newly proposed family exhibits 

a higher degree of flexibility compared to some of the established distribution families. The various 

models within this family find wide-ranging applications in fields such as physics, engineering, and 

medicine. Some statistical properties of the Sine Topp-Leone Exponentiated-G family of distributions 

such as moments, moment generating function, quantile function and order statistics are derived. 

Two special models were also presented and studies. Maximum likelihood estimation method was 

used to estimate parameters of the models. The consistency of the proposed family was determine 

using simulation studies. Two real life datasets were analyzed to show the flexibility of the proposed 

model and the results of the analysis showed that, the proposed model was more efficient and best fit 

the data sets than its competitors. 

Keywords: Sine-G Family, Topp-Leone Exponentiated G, Survival Analysis, 

Survival Regression, Maximum Likelihood Estimate 

1. Introduction

The Topp-Leone Distribution is a statistical concept that finds its roots in probability theory and data 

analysis. It was developed by [1] is 2015 and it is a powerful tool in the field of statistics for modeling 

and understanding random variables with various applications across different domains. It is a 

relatively recent addition to the family of probability distributions in statistics and has gained 

prominence for its adaptability in modeling various types of data with flexibility and precision. This 

distribution offers a valuable tool for statisticians, data scientists, and researchers in diverse fields, 

enabling them to capture the underlying characteristics of data sets that may not conform to 

traditional distribution assumptions. The Topp Leone Distribution is particularly well-suited for 

modeling data with heavy tails, which means it can effectively describe observations that exhibit 

extreme values or outliers. This characteristic is especially important in fields like finance, where 

extreme events can have significant consequences, and in environmental science, where rare but 

impactful events need to be accounted for in risk assessment.  
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Recently, some researchers have developed numerous families of Topp-Leone Distribution 

which include: Topp-Leone G Family of Distribution by [2], Topp-leone Marshal Olkin G by [3], 

Transmuted Topp-Leone G by [4], Topp-Leone Exponentiated G Family by [5], Topp-Leone Odd 

Lindley G by [6], Odd Log Logistic Topp-Leone by [7], Frechet Topp-Leone G Family by [8], Topp-

Leone Odd Log Logistic Family by [9], Type II generalized Topp-Leone G Family by [10], Type II 

Exponentiated Half-Logistic Topp-Leone G by [11], Topp-Leone Marshal Olkin G by [12], Type II 

Topp-Leone G by [13], the Weibull Topp-Leone G by [14], Odd Weibull Topp-Leone G by [15], Topp 

Leone Odd Burr III G by [16], The Burr III Topp-Leone G by [17], Topp-Leone Gompertz G by [18], 

Topp-Leone Exponential G by [19] and Topp-Leone Generalized Half-Log Logistic G by [20]. 

In order hand, the Sine-G family of probability distributions is a class of continuous 

probability distributions that is often used in statistical modeling and data analysis. This family is 

characterized by its flexibility and ability to capture a wide range of data patterns, making it a 

valuable tool for statisticians and data scientists. The PDF of a Sine-G distribution is defined in terms 

of the sine function, which introduces oscillatory behavior into the distribution. This oscillatory 

behavior can be adjusted by varying the distribution's parameters, allowing it to fit data with 

different shapes and characteristics. One of the notable features of the Sine-G family is its ability to 

model data with heavy tails, which means it can effectively describe extreme or outlier values in a 

dataset. This makes it useful in fields such as finance, where extreme events can have a significant 

impact on investment portfolios and risk assessment. The Sine-G family is also capable of modeling 

data with various degrees of skewness and kurtosis, providing a versatile tool for capturing complex 

data patterns that may not conform to traditional distribution assumptions like the normal 

distribution.  

Some of the recent development of the Sine G family include: Sine Topp-Leone G by Al-[21], 

the New Sine G Family by [22], the Sine Kumaraswamy G by [23], Exponentiated Sine G by [24], 

Transmuted Sine G by [25], Sine Marshall–Olkin G by [26] and Sine Inverse Lomax G by [27]. These 

developments of flexible families of distributions through innovative transformations, as mentioned 

in this research article, reflects the dynamic nature of statistical research. Such advancements hold 

promise for improving the accuracy and applicability of statistical models in diverse domains and 

addressing the complexities of real-world data.  

2. Methods

2.1 The Sine-G Family of Probability Distribution 

Let ℎ(𝑥; 𝜉)and H(x;  ξ) be the pdf and cdf of a Univariate continuous distribution, then, the Sine-G 

family of probability distribution according to [28] is defined by:  
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where ( ; )H x   and ( ; )h x   are the cdf and the pdf of any baseline distribution with vector 

parameter 𝜉. 

2.2 Topp-Leone Exponentiated-G Family of Distributions 

The cdf of the Topp-Leone Exponentiated G family of distribution according to [4] is given by: 
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where 𝛼 is a shape parameter, ( ; )g x   and ( ; )G x   are pdf and cdf of any baseline distribution

respectively and 𝜉 is a vector parameter of the baseline distribution. 

2.3 The Proposed Sine Topp-Leone Exponentiated G Family of Distributions 

The cdf of the new Sine Topp-Leone Exponentiated G Family is given by: 
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with corresponding pdf given by:
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The survival function S(x), hazard function h(x), reversed hazard function r(x) and the quantile 

functions Q(x) of the STLE-G are presented in equation (7) to (10). 
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where 𝐺−1(𝑥, 𝜉) is the quantile function of the baseline distribution 𝐺(𝑥; 𝜉). 

2.4 Expansion of Density 

The pdf and the cdf of the Sine Topp-Leone Exponentiated G family can be expanded using power 

series expansion as follows: 
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The cdf can also be expanded as follows: 
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2.5 Mathematical Properties 

2.5.1 The Moment 

Moments is used to study many important properties of distribution such as dispersion, tendency, 

skewness and kurtosis. The 𝑟𝑡ℎ moments of the Sine Type II Topp Leone G family of distribution is 

obtained as follow: 
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Therefore, the moment of the Sine Topp-Leone Exponentiated G is obtained as follows: 
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2.5.2 Moment Generating Function 

The moment generating function of a random variable X is defined as 𝐸(𝑒𝑡𝑥). 
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2.5.3 Entropy 

Entropy is used as a measure of information or uncertainty, which present in a random observation 

of its actual population. There will be the greater uncertainty in the data if the value of entropy is 

large. For some probability distributions expression, the differential entropy is considered mostly 

effective. It can be derived using the formula: 

1
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The entropy for the Sine Topp-Leone Exponentiated G family of distributions is given by: 
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2.5.6 Order Statistics 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of size n from a continuous population having a pdf f(x) and 

cdf F(x), Let 𝑋1:𝑛 ≤ 𝑋 ≤ 𝑋𝑛:𝑛 be the corresponding order statistics (OS). [29] defined the pdf of 𝑋1:𝑛 

that is the 𝑖𝑡ℎ order statistics by: 
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The order statistics of the Sine Topp-Leone Exponentiated G is given by: 
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2.6 Parameter Estimation 

2.6.1 Maximum Likelihood Estimate 

Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 be a random sample of size 𝑛 from the Sine Type II Topp-Leone G family of 

distribution. Then, the likelihood function of the Sine Type II Topp-Leone G family is derived as 

follows: 

RT&A, No 3 (79) 
Volume 19, September 2024

162



A. M. Isa, S. I. Doguwa, B. B. Alhaji and H. G. Dikko 
SINE TOPP-LEONE EXPONENTIATED-G FAMILY

 
1 1 1

log( ) log( ) log( ) log ( ; , , ) ( 1) log ( ; , , ) log 1 ( ; , , )
n n n

i i i

n n n g x G x G x             
  

         

   
2 2

0 0

( 1) log 1 1 ( ; , , ) logcos 1 1 ( ; , , )
2

n n

i i

G x G x


 
      

 

                 
     (17)  

Differentiating the likelihood function in equation (17) with respect to 𝛼 gives the following 

expression: 
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Differentiating the likelihood function in equation (17) with respect to 𝜃 gives: 
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Differentiating the likelihood function in equation (17) with respect to 𝜉 gives: 
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The expression in equation (18), (19) and (20) are the maximum likelihood estimates of the 

parameters 𝛼, 𝜃 and the vector parameter 𝜉. 

2.7 Special Models of STLE-G Family 

Here, we consider two special models of the STLE-G family along with the plots of their density and 

hazard rate function. 

2.7.1 Sine Topp-Leone Exponentiated Lomax (STLE-L) Distribution 

Let the Lomax distribution be the baseline distribution with cdf and pdf defined by: 
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where 𝛾 is a shape parameter and 𝜆 is a scale parameter, the cdf and pdf of the STLE-L distribution 

are respectively given by: 
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Figure 1: pdf plot of STLE-Lomax distribution Figure 2: plot of the hrf of the STLE-L distribution 

The survival function, hazard function, reverse hazard function and quantile function of the 

proposed STLE-Lomax distribution is presented below: 
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2.7.2 Sine Topp-Leone Exponentiated Weibull (STLE-W) Distribution 

Let the Weibull distribution be the baseline distribution with cdf and pdf defined by: 
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where 𝛾 is a shape parameter and 𝜆 is a scale parameter, the cdf and pdf of the STLE-L distribution 

are respectively given by: 
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Figure 3: pdf plot of STLE-W distribution  Figure 4: Plot of the hrf of the STLE-W 

 Distribution 

The survival function, hazard function, reverse hazard function and quantile function of the 

proposed STLE-Weibull distribution is presented below. 
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3. Results

3.1 Assessing the Consistency of the Parameter Estimates of the New Family 

To evaluate the performance of the recently introduced Sine Tope Leone Exponentiated Lomax 

distribution, we conducted a Monte Carlo Simulation method. The aim of the simulation is to 

compute the mean, bias, and root mean square error of the estimated parameters obtained through 

maximum likelihood estimation. The simulated data was generated using the quantile function of 

STLE-Lomax distribution for various sample sizes, specifically: n=20, 50, 100, 150, 200, and 250, with 

1000 replications for each sample size. Throughout these simulations, we set the parameters to 𝛼 =

1.72, θ=1.2, θ = 0.05 and γ = 0.99. The results of the parameter estimates, bias, and root mean square 

error from the new distribution are summarized in Table 1 

Table 1: Estimate, Bias and RMSE of the new STLE-Lomax Distribution 

N Properties 𝛼 = 1.72 𝜆 = 1.2 𝜃 = 0.05 𝛾 = 0.99 

Est. 1.8431 1.3277 0.0562 1.1256 

20 Bias 0.1231 0.1277 0.0062 0.1356 

RMSE 0.3805 0.4730 0.0164 0.5804 

Est. 1.7846 1.2416 0.0525 1.0996 

50 Bias 0.0646 0.0416 0.0025 0.1096 

RMSE 0.2661 0.2967 0.0093 0.5034 

Est. 1.7541 1.2241 0.0512 1.0692 

100 Bias 0.0341 0.0241 0.0012 0.0792 

RMSE 0.2148 0.2022 0.0063 0.4446 

Est. 1.7488 1.2086 0.0507 1.0646 

150 Bias 0.0288 0.0086 0.0007 0.0746 

RMSE 0.1836 0.1693 0.0051 0.4603 

Est. 1.7480 1.2024 0.0506 1.0535 

200 Bias 0.0280 0.0024 0.0006 0.0635 

RMSE 0.1561 0.1397 0.0044 0.4229 

Est. 1.7488 1.1957 0.0504 1.0575 

250 Bias 0.0288 -0.0043 0.0004 0.0675 

RMSE 0.1521 0.1250 0.0040 0.4147 

The results of the Monte Carlo Simulations are shown in table 1 above. The values of biases and 

RMSEs tend to zero as shown in Table 1 and the estimates tend to the true parameter values as the 

sample size increases, indicating that the estimates are efficient and consistent. 
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3.2 Application 

Two datasets were considered for illustrative purposes and comparison with the baseline 

distribution [30] and other extensions of the Lomax distribution such as: Tope-Leone Exponentiated 

Lomax distribution by [31], Type II Topp-Leone Lomax by [32], Half Logistic-Lomax distribution 

developed by [33], Weibull Lomax distribution by [34] and Gompertz Lomax distribution by [35]. 

For each data set, we estimated the unknown parameters of each distribution by the maximum-

likelihood method and also obtained the values of the Akaike information criterion (AIC) for the 

proposed model and the competitors. 

The pdf of Lomax developed by [30] is given by: 

( 1)

( ) 1
x

f x




 

 

 
  

 
  (34) 

The pdf of TLE-Lm as developed by [31] has pdf defined by: 

 
1

( 1) 1( ) 2 (1 ) (1 (1 ) ) [1 (1 (1 ) ) ] 1 [1 (1 (1 ) ) ]f x x x x x

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

                     (33) 

The pdf of TIITL-Lm developed by [32] is defined by: 
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  (35) 

The pdf of HL-Lm developed by [33] is defined by: 

( 1)
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The pdf of W-Lm distribution by [34] is defined by:

1
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  (37) 

The pdf of GoLm distribution by [35] is defined by: 

1( ) (1 ) exp 1 (1 )f x x x 
  



  
      

 
 (38) 

3.2.1 First Data Set 

The first data set as listed below represents the COVID-19 positive cases record in Pakistan from 

March 24 to April 28, 2020, previously used by [36] and [37]: 2, 2, 3, 4, 26, 24, 25, 19, 4, 40, 87, 172, 38, 

105, 155, 35, 264, 69, 283, 68, 199, 120, 67, 36, 102, 96, 90, 181, 190, 228, 111, 163, 204, 192, 627, 263. 

3.2.2 Second Dataset 

The second data set represents the failure times of the air conditioning system of an airplane. The 

data set was given by [38], it has been used by [39], and also by [4]. The data set is presented below: 
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23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 

95. 

Figure 5: Density plot of the STLE-Lomax distribution 

for the first data sets 

Figure 6: Density plot for the STLE-Lomax distribution for 

the second data set 

Table 2 and table 3 gives the summary statistics of the two data sets such as the mean, the median, 

the first and third quartile, the minimum and the maximum values. 

Table 2: Summary Statistics of the two data sets 

Data Minimum 𝑄1 Median Mean 𝑄3 Maximum 

Dataset I 2.00 32.75 93.00 119.28 183.25 627.0 

Dataset II 1.00 12.50 22.00 59.60 83.00 261.0 

Table 3: Estimate, Bias and RMSE of the new STLE-Lomax Distribution 

Data set I α λ θ γ LL AIC 

STLE-Lm 1.03323 0.11602 0.40035 2.56160 -189.4279 386.8558 

TIITL-Lm 0.18430 24.5957 14.4732 - -213.8879 433.7758 

Lm 0.41228 6.73500 - - -224.5627 453.1253 

HL-Lm 7.14437 0.00191 - - -208.3690 420.7379 

W-Lm 0.01813 0.84166 1.12087 1.67046 -207.9697 423.9394 

Go-Lm 7.96169 2.14265 47.014355 - -209.7675 425.5349 

Dataset II α λ θ γ LL AIC 

STLE-Lm 1.77323 0.13691 0.64458 1.70984 -131.7712 271.5425 

TIITL-Lm 34.2579 2.67719 0.06294 - -167.6184 341.2368 

Lm 17.1694 27.7386 - - -153.0699 310.1398 

HL-Lm 0.05118 0.00178 - - -134.2354 272.4707 

W-Lm 5.54118 5.62194 0.23070 0.18368 -183.2427 274.4856 

Go-Lm 0.03744 0.01936 0.00819 - -186.4186 378.8372 
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Table 3 presents the results of the two datasets. The analysis compared the performance of the Sine-

Topp-Leone Exponentiated Lomax distribution against several other distributions, namely the Type 

II Topp Leone Lomax distribution, Lomax distribution, Half-Logistic-Lomax distribution, Weibull-

Lomax distribution, and Gompertz-Lomax distribution. The results indicated that the proposed Sine 

Topp-Leone Exponentiated Lomax distribution outperformed some competing distributions, as it 

exhibits the lowest AIC value. 

The visual assessment of the goodness of fit, as depicted in Figures 5 and 6, further validates the 

superiority of the proposed distribution when compared to other competing distributions. 

Therefore, it can be concluded that the proposed family of distributions is the most suitable choice 

for modeling both the COVID-19 and failure times of the air conditioning system of an airplane 

datasets. 

4. Discussion

In this research, we introduced a new family of lifetime distributions by applying a Sine 

Transformation. Two special distributions were derived from the family by considering Lomax and 

Weibull distributions. Numerical analysis of fitting two real live data sets was presented using a 

maximum likelihood technique and density plots were provided to visually assess the outcomes. 
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