Научная статья на тему '电磁发射引纬线圈结构性能仿真'

电磁发射引纬线圈结构性能仿真 Текст научной статьи по специальности «Медицинские технологии»

CC BY
50
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
磁阻线圈 / 电磁引纬 / MAXWELL 仿真

Аннотация научной статьи по медицинским технологиям, автор научной работы — 崔晓龙 崔晓龙, 徐巧 徐巧, 杨涛 杨涛, 贺雨晨 贺雨晨

围绕影响线圈引纬电磁力的因素, 分析磁阻型电磁发射原理以及线圈型电磁发射引纬机构的磁场特性, 对线圈磁场, 铁磁片梭所受到的电磁力进行了计算机 Maxwell 仿真. 进一步探究影响电磁力因素, 通过仿真分析对比线圈结构以及铁磁物质对电磁力大小的影响. 为磁阻型电磁线圈发射器的优化设计提供理论依据和技术支持.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SIMULATION OF STRUCTURE AND PERFORMANCE OF ELECTROMAGNETIC EMISSION WEFT COIL

Focusing on the factors that affect the electromagnetic force of weft insertion, the principle of reluctance electromagnetic launch and the magnetic field characteristics of weft insertion mechanism of coil electromagnetic launch are analyzed. Maxwell simulation is carried out on the electromagnetic force of coil magnetic field and ferromagnetic projectile. The factors affecting the electromagnetic force were further explored, and the influence of coil structure and ferromagnetic material on the size of the electromagnetic force was compared through simulation analysis. It provides theoretical basis and technical support for the optimization design of the magnetoresistance electromagnetic coil transmitter.

Текст научной работы на тему «电磁发射引纬线圈结构性能仿真»

For citation: CUI Xiao-Long, XU Qiao, YANG Tao, HE Yu-Chen. Simulation of structure and performance of electromagnetic emission weft coil //

URL: http://rectors.altstu.ru/ru/periodical/archiv/2021/1/articles/3_3.pdf DOI: 10.25712/ASTU.2410-485X.2021.01.018

UDK 621

Simulation of structure and performance

of electromagnetic emission weft coil*

CUI Xiao-Long1, XU Qiao12*, YANG Tao1, HE Yu-Chen1

1 Wuhan Textile University 2 Hubei Digital Textile Equipment Key Laboratory, Wuhan, 430020, China, E-mail: 1873277605@qq.com ; 327778240@qq.com

0 31»

[1-4].

m^M^m^w^, ttmMR&Mirntott[5], «a^^ra^^x ms, ft^mrn®, »a^f^x^^t,

^mmm^mrn^^, [6,7]. *

m [8,9]

rn«^^. [10], M

Maxwell

1 mmm&msMwm

m1

Figure 1. Schematic diagram of reluctance type electromagnetic emission

* This work was supported by the National Science Foundation of China (Grant No. 51541503), State Key Laboratory of New Textile Materials and Advanced Processing Technologies (Grant No. FZ2020008), Hubei Digital Textile Equipment Key Laboratory, and Hubei Province Natural Science Foundation of China (Grant No. 2020CFB769).

mmmmtmmm^mm&^mmmm-^mmmumm mrnmmmtmmmmmh^mmmmmm k, m^g ^mmmmmmm, ^n^^mtM-m^mmm MmmW^ mm, mM&Maft^amPisjm^, mm

mkbmmm&mmmmm, M, ^mx^M»»^

2 fâïïftfà

1

dr

t ) R 1 ' i ' ,

t R1 I <r À

R2 WÊÊÊÊÊÊÊÊÊÊÊ

-^--^

ffl 2

Figure 2. Schematic diagram of accelerating coil

â, Ri, R2, 2L, i, ra^ N,

j=NI/[2L(R2 - Ri)] WM

Bx = <f[(x + L)ln ±-(x-L)\n £

D

(i)

A = R2 + + (x + L)2 B = R2 + + (x - L)2

C = Rt+ ^R2 + (x + L)2 D = R± + ^R2 + (x - L)2

3 fàMftfâ

i

(a) (b) (c)

m 3

Figure 3. Magnetic field analysis diagram of a reluctance launcher

(a) mmatf^mmmm, m (b) mmmmmwrnm b m m, m (c) mrnrnmmmm b ^

mummm-mmim, »»g^ms^, wmMm, ummmmrn ■^zm^sm gra^^m mmmrnmrnm^mzm, mmtmmmnmrnmmm m^mt^^m^,

4

90mm, ^^ 14mm, ^^ 6mm; m^miSfc® 90mm, ft^ 16mm, M fi 60g, 0 m^mm^um: 1000, ^m Maxwell

mi

Table 1. Size of electromagnetic force at different positions

0 30.885656473893498

10 64.501301014215500

20 108.925780617953990

30 152.963657624679001

40 192.204168888900000

50 216.269042203609018

60 216.411109886129992

70 185.440624491296006

80 114.972401454307999

90 -1.395651412783520

ШЖдаШШтт

100 -113.272692414318001

110 -184.548283992934984

120 -216.421319740406972

130 -217.121374999409994

140 -193.607241282873986

150 -154.159685632682994

160 -108.346923332211006

170 -63.733928900990193

180 -30.478221245139498

(a) (b) (c)

a 4

Figure 4. Electromagnetic size diagram with different parameters

a 4 (a), rn^mm (b), rrnmi-fo® (c) t^Ä

&Ä45mm ÖPM,

m ^mnmmmtiim 90mmjt, s^^^Ami,

0; M^ft + ^m^te^, 90mm ^

5

^ffl Maxwell

mtimm^rn^Mmmm, mfömteföm.

(References)

1. Gao Yong. The new development trend of textile industry [N]. China Textile News, 2019-07-26(001).

2. Hong Haicang, Li Xueqing. Progress and development trend of weaving technology at home and abroad recently. Textile Review, 2019 (09):59-60+62-64+66-67.

3. ZHANG Dan. Review of Patent Technology of Rapier Loom [J]. Textile Industry & Technology, 2019, 48(04):48-49.

4. Lu Yuzheng, Wang Hongbo, Gao Weidong. Recent Development Status and Technological Progress of Air Jet Loom [J]. Cotton Textile Technology, 2019, 47(02):10-14.

5. Teng Teng, Tan Dali, Wang Qingyu, Zhang Xiaoyi. Review of Ship Electromagnetic Launch Technology [J]. Ship Science and Technology, 2020, 42(13):7-12.

6. Wang Zhenchun, Tan Yi, Liu Fucai. Research Status and Development of Electromagnetic Coil Transmitter [A]. Chinese Association of Automation. Proceedings of China Automation Conference 2020 (CAC2020) [C]. Chinese Association of Automation: Chinese Association of Automation, 2020:6.

7. Huang Wenkai, Chen Guangxin, Hu Mingbin, Liang Qichao, Yang Kangyao, Zhang Mingkai. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch [J]. The Review of scientific instruments, 2019, 90(2).

8. Xu Qiao, Yan Wenjun, Mei Shunqi, Zhang Zhiming. Design Method of Weft Inserting Mechanism of Ultra-wide Automatic Loom Based on Electromagnetic Emission [J]. Journal of Textile Research, 2018, 39(07):130-136.

9. Xu Qiao, Yan Xiaoyu, Mei Shunqi, Zhang Zhiming. Modern Manufacturing Engineering, 2018(03):138-142+46. (in Chinese)

10. Song Yugui, Peng Jia, Chen Wujun, Pan Tengfei, Li Lei. Parameter Optimization of Magnetoresistive Electromagnetic Projector [J]. Communications World, 2015(06):230-231.

i Надоели баннеры? Вы всегда можете отключить рекламу.