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Concurrent games, in which participants run some distance in real physical time, are
investigated. Petri-Markov models of paired and multiple competitions are formed. For
paired competition formula for density function of time of waiting by winner the moment of
completion of distance by loser is obtained. A concept of distributed forfeit, which amount
is defined as a share of sum, which the winner gets from the loser in current moment of
time is introduced. With use of concepts of distributed forfeit and waiting time the formula
for common forfeit, which winner gets from loser, is obtained. The result, received for a
paired competition, was spread out onto multiple concurrent games. Evaluation of common
wins and loses in multiple concurrent game is presented as a recursive procedure, in which
participants complete the distance one after another, and winners, who had finished the
distance get forfeits from participants, who still did not finish it. The formula for evaluation
of common winning in concurrent game with given composition of participants is obtained.
The result is illustrated with numerical example.
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Introduction

At present time the game theory is widely used in economics, industry, military,
parallel computing and in other spheres of human activity. Traditionally the game theory
was developed as a methodology of forming of strategies in struggle for some resource,
and the dynamics of game was interpreted as a correction of strategy during the game
without link activity of participants to real physical time [1]. As a matter of fact any
competition is developed in real physical space/time. The space aspect lies in necessity
of conversion of any resource (material, energetic, informational, etc.) of pre-specified
volume by participants. This resource below will be symbolically called "the distance".
The space aspect lies in the fact, that a concurrent participant can overcome the distance
not instantly, but in finite time. Time of overcoming of distance by a participant is random
and individual for every participant.

Time aspects of concurrent game evolution are investigated insufficiently. In particular
the problem of evaluation of forfeits, when forfeits are linked to a time factor is not solved.

In this article there were accepted the following restrictions:

1. Concurrent game consists in passing the equal distance by participants, in real
physical time: all participants start passing the distance at the same time;

2. The time of passing the distance by any of participant is random and is defined for
each participant individually with precision to density of distribution;

3. Winning or losing in competition is understood as finishing the distance and being
the first or the second;
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4. The winner doesn’t get the forfeit, value of which is distributed in time, until the
loser finishes the distance.

Passing the distance by participants may be presented as a parallel random process.
For its investigation a mathematical apparatus of Petri-Markov nets [2]|, which is a
development of formalism of Petri nets (both classic and time-extended) [3-6] may be
used. The usage the formalism of Petri-Markov nets allows to define a time factor, which
stipulates a forfeit from loser to winner, and to evaluate cost parameters of a concurrent
game.

1. Waiting Time at Paired Competition

Competition of two participants is represented by a Petri-Markov net [2]:

Yo = (Ily, My), (1)

where Iy = {As, Z5, Roaz, Roza} is a structure of the Petri net; My = [q,, f, (1), Lo] is a
semi-Markov process; As = {a1,as} is a set of places; Zo = {21, 22} is a set of transitions;

Ropy = ( 8 1 ) is an adjacency matrix, which represents transitions of set of places
1

0 0
transitions of set Z5 to set of places As; g2 is a vector, which determines probabilities
0 fi(?)
0 f2(t)

time densities of stay of semi-Markov process stay in places of set Ag; Ly =

Ay to set of transactions Zsy; Roza = ) is an adjacency matrix, which represents

of start of a process in one of transitions of set Zy; fo (t) = { } is a matrix of

1 1.

00 )

matrix of logical conditions for switching the process from the transitions of set Zs.
The following restrictions are imposed on time densities: fi2 () = 0, when ¢ < 0 and

Tfl,Q (t) dt == 1

Consider the situation, when the first participant finished the distance at a moment 7
and waits, while the second participant finishes. In this case using a Petri-Markov net (1)
there can be formed a semi-Markov process, see fig. 1.

State ag simulates the start of semi-Markov process. State a; is the absorbing one and
simulates finishing of the distance by the second participant, if the first participant hadn’t
finished it. State «y is the absorbing one and simulates the end of waiting by the first
participant for finishing of the distance by the second participant. The subset of states
simulates the process of completion of the distance by the second participant in the case
when the first participant had finished it.

Time counting in semi-Markov process, shown on fig. l.begins when the first
participant gets the finish of the distance. Probability of the fact that the first participant
completes his distance exactly at time 7 is equal to fi(7)d7. Probability of the fact
that second participant does not finish the distance at this time is equal to 1 — Fy(7),
where Fy(7) is the distribution function corresponding to time density fs (¢). Events of
finishing are independent, therefore probability of achievement of subset S is equal to

oo

Paop = [ (1= Fx(7)] f1 (7)dr = [ Fi(t) f2(t) dt. Weighted density of waiting time may
0 0

a
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[1 - Fa()lfi(t)de

——

Fig. 1. Waiting time illustration

be received by means of Cutting off from correlation integral the meanings with negative
argument, hq_,o (¢ f f1(7) fo (t + 7)dr, where n(t) is a Heaviside function.

Therefore, the den81ty of waiting time, when the first participant finishes his distance
first, is the following

ffl ) f2(t+7)dr
f1—>2 (t) = : (2)
fFl )dFy (t

It is necessary to say, that operation (2) is not the commutative one, and in general
case

ffz ) fi(t+7)dr

fas1 (1) = # fisa (t). (3)
ng )dFy (t)

As an example of waiting time definition consider some significant practical cases.
Case 1. Time density f1(t) = 0(t—1T}) is a shifted Dirac §-function, fy(¢) is an arbitrary
density function with expectation 7o and Thyin < arg fo (1) < Thmax. Expression (2) for
this case takes the form
nt)fa(t + Th)

f1—>2<t> = 1 — F2<T1) . (4)

Depending on location of functions fi(¢) and f>(t) on time axis, the following situations
are possible:

A) 71 < Tomin-

In this situation denominator of (4) is equal to 1 and expression (4) transforms to
fio2(t) = fo(t+T1). The set of nonzero values of function fi_,o(t) is defined by T i —T1 <
arg [fg(t + Tl)] S TZmax — Tl.

B) Tomin <11 < Tomax.
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In this situation waiting time density is defined as (4), and the set of nonzero values
of function fi ,(¢) is defined by 0 < arg [fo(t + T1)] < Tomax — T1-

C) T > Tgmax.

In this situation expression (4) is impossible due to the fact, that difference of time
intervals completely shifts into area of negative values of argument (the loser cannot wait
the winner).

Case 2. Time density is represented by shifted Dirac o-function, i.e. fo(t) = 0(t — T3),
fi(t) is an arbitrary time density with expectation T} and T, < arg fi (t) < T1max-
Expression (2) for this case takes the form

n(t)fi (T — 1) .

F\(Ty) )

fisa(t) =

Depending on location of functions fi(t) and f3(t) on time axis, the following situations
are possible:

A)T2 < T min.

In this situation expression (5) is impossible.

B) Tl min S T2 S Tl max-

In this situation waiting time density is equal to (5), and the domain of nonzero values
of function fi_,2(¢) is defined by to 0 < arg[fi2 (t)] < To — T min-

C) Ty > T} max-

In this situation f12(t) = fi(To —t) and Ty — T max < arg[fio2 (1)] < To — T min-

Case 3. Time density f> (t) is represented by an exponential law f> (t) = Aexp (—At),
fi1(t) is an arbitrary density function.

Expression (2) for this case takes the form:

0(8) [ f1(7) hexp [-A (¢ + 7)] dr
fise (t) = L = Aexp (—Af).
1 _t—fo [1 —exp (—At)| dF; (1)

It is obvious, that the case under consideration reflects the property of absence of
after-effect in pure Markov processes with continual time. Absence of after-effect can be
formulated as follows: if time density between two events is distributed by an exponential
law, then for external observer time until the next event is distributed by the same law
and does not depend on the starting point observation. In our case time density fi (¢)
simulates an external observer, who is involved into "competition" with Markov process.
Independently of events before observation, new time counting begins at the moment of
starting of observation.

2. Evaluation of Effectiveness of a Paired Competition

One of the most important factors of competition simulation is evaluation of its
effectiveness. The natural model of evaluation of effectiveness is a model, in which the
participant, who had finished, received the forfeit from a loser. Owing to the fact that
competition in a considered case is developing in time and there is a valuation of waiting
time (2), the forfeit is defined as a distributed payment sy3 (t), received by the winner
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(participant 1) from the loser (participant 2) in time ¢. In total the first participant gets
from the second participant forfeit which is defined by integral

sh= / " e (t) s (B d. (©)

If the second participant wins, the first participant pays the forfeit

531 = /000 fas1 (t) - 801 (1) dt, (7)

where so; (f) is the payment, received by the winner (participant 2) from the loser
(participant 1) in time ¢.

Generally s15 (t) # 521 (1), fisa (t) # fas (1), 50 515 7 53,

3. Individual Competition of J Participants
Competition is defined with Petri-Markov net

Yy = (Il;, My), (8)
01
1 1 1
HJ = {al, vy gy ey aJ},{Zl,ZQ}, 01 s |: 0 0 0 :| 3 (9)
01
0 fi(t)
1 1 1
0 fr(t)
where {a1, ..., a;j, ..., as} is a set of places; {z1, 22} is a set of transitions; f; () is the

time density of distance completion by participant 5, 1 < j < J.
If all J participants start the distance simultaneously, then the probability that the
j-th participant wins is determined as

b= [ 50 ] G-rla (1)
0 b
kA

Time density function of finishing by j-th participant-winner is determined as

fiO-T1) ) L= Fe ()]

k#J
Juj () = : (12)
pwj
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In a specific case, when f; (t) = A\jexp[—\;t], 1 < j < J, we get

J
pwj:ZA ¥ s fuj (t Zz\ exp(—t-;)\j).

Let us note, that (11), (12) describe condltlonal time density of winning of participant
j, when all other participants lose competition. Therefore the conditional time densities
of achievement of transition 2y for all J participants are equal, and the probabilities are
quite different for different participants.

Time density function and probability of taking the last place in competition is
determined as

fi (@) HJk _ 1 B(@)

k#j
Jaj (1) Do (13)

00 J
Paj = / i I Fe@a (14)
0
k=1
k#j
Consider the case, when the fact of completion by any 1 < K < J participants from

J is important. Let us construct the set V; of J-digit binary natural codes and assign the
j-th binary digit o; to the j-th participant. Digit o; may take two values:

h . finish the di ]
o, = { 0, when participant j finish the distance; (15)

1, when participant 5 does not finish the distance.

Let us select from the set N the subset NX C N; of binary J-digit codes, which have
K units and J — K zeros

Nj( = {nl, ceey nc(J’K), ceey nc(lK)}, (16)
where C'[J, K] = #‘_K), is quantity of J-digit codes with K units, which is equal to
K-th binomial coefficient; C' (J, K) is the ordinal number of a code in set (16);

nC(J’K) = <O’1(JK), ceey U;(']’K), ceey UE(J’K)> . (]_7)

Define a function ® (fj, CUK)), which takes two values:
LK) _ 1.

Fj (t), when o
O (f;, 08K = J ’ 18
() = = R hen o598 =, 18)

Taking into account (18) we get the dependence for time distribution of completion of
competition by any K participants from J:

=S e (). (19)

c(J,K)=1j=1
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The first derivative of (19) the considered gives time density

C(J,K) J (J,K)
dZC(JvK)Zl Hj:1 o <f]) Uj >

fr(t) = — . (20)

It is obvious, that (20) is the time density (but not weighed density) due to the
fact, that after finishing the distance by K participants, the number of participants, who
finishes the distance should only increase. Since multiple participation in the competition
is impossible.

4. Evaluation of Effectiveness of Individual Competition

In this case it is natural to determine forfeits as a payment matrix of size J x J:

s (t) = [si; ()] (21)

where s;; (t) is the distribution of forfeit, which in time ¢ the winner (participant ¢) receives
from the loser (participant j).

Generally s;; (t) # sj; (t), therefore matrix (21) is asymmetrical. Due to the fact, that
winner can’t forfeit himself, s; () = 0.

In waiting time participant ¢ wins from participant j a forfeit with total value equal
to

5= [ sy 0 (22

where fi_,; (t) is evaluated by expression (2).

Total forfeit, which the participant can get in the competition, depends on the sequence
of completion of distance with use of recursive procedure.

Without loss of generality, we consider the situation when the places in competition
are aligned increasing order of indices j. In accordance with accepted order on the first step
the first participant leaves the competition as a winner. He gets from every participant,
who stays on the distance, the forfeit with value equal to

ST :/0 friogn (8) - 515 () dt, 2 < o <, (23)

where j; is an index, corresponding to the first step of recursion.
The total prize of the first participant as a winner after first step is equal to the sum
of forfeits obtained from participants with numbers from the second to J-th:

7
siy = Z st (24)
j1=2

After the first participant completed the competition participants from the second to
the J-th stay in a concurrent game. Time densities of completion of distance by the rest
[J(a) — 1] participants are defined by

fjé (t) = f11—>j1 <t> 2<j1 < J (25)
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In general the i-th participant i(a) wins from participants with number from (i 4 1)-th
to J-th, forfeits with values equal to

5t = /0 Fross (0« () i +1 < i < (26)

Total value of winning of the i-th participant after the ¢-th stage is equal to the sum
of forfeits, obtained from participants with numbers from the (i + 1)-th to the J-th:

J
sk = Z s;rj (27)
Jji=i+1

Time densities of completion of competition by the rest J — ¢ — 1 participants are
defined by

fji+1 (t) = fii—>j1: (t) 7i +1< ]Z < J (28)

And finally, after completion of the distance by the (J — 1)-th participant, the forfeit
obtained from the J-th participant is equal to

o1y, 0y = S0y, x = /0 fo-1, =, () - s@-ys (B) di. (29)

Time density of completion of competition by J-th participant is equal to

fo, @) = fo-1y, =0 (1) (30)

In addition to winning forfeits from participants, that stay in competition, participants
lose forfeits to those, who completed competition earlier. Total losses of the j-th participant
consist of winnings of participants with numbers from 1 to 7 — 1

Siy = C (31)

In such a way, effectiveness of competition for the j-th participant is equal to

Six = 8y — S5 (32)
It is necessary to say, that probability of announced above order of completion of
distance (increment of indexes j) is equal to

P(j=1,2 .., J) = 1:[/000 oy I = F@)d (33)

jn:('H"l)n

Let us evaluate effectiveness of the participant with number one taking part in
competition with given composition of participants. The mentioned participant can take
any place from the first till the J-th. If the first participant takes the k-th place
(1 < k < J), then quantity of commutations of participants with numbers 1 < j <
J,j # k, is equal to M(j = k) = (J — 1)!. Designate the number of commutation by
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m(j = k),1(j = k) <m(j = k) < M(j = k). Then the average winning of the first
participant is equal to

J
=Y > StmG=nzPing-ns (34)

=1 m(j=k)

where 7 is the ordinal number of the place, hypothetically taken by the first participant;
m(j = k) is the ordinal number of the commutation of indexes of participants with numbers
from 2 to J; Sim@j=k)x is the total winning of the first participant, who takes the j-
th place, if places of other participants are distributed in accordance with m (j = k)-th
commutation; P; ,,(j—k)x is the probability of emergence of the m (j = k)-th commutation.

It is obvious that all cases of commutations of places in competition form complete
J  M(j=k)
group of incompatible events, thus > Pimg=rx = 1.
J=1 m{j=k)

5. Numerical Example

As an example let us consider the case of paired competition, which is described by a
Petri-Markov net (1). Time densities f; () and fs (¢) are equal to (fig. 5a):

0, when 0 <t < 0,5;
fi(t)=4q e, when 0,5 <t <15,  fo(t)=erexp(—ez-1), (35)
0, whent > 1,5.

where parameters e; and e, have the dimensions [%Lmbé} and [ﬁ} respectively.

It is obvious that f;(¢) and fo(¢) have dimension [%] Expectations of time

densities are quite equal, i.e. T} = Ty = 1 [time]. Distribution functions, corresponding to
time densities f; (t) and f> (f), and having dimension |[prob.| are as follows (fig. 5b):

0, when 0 <t <0,5;
Fi(t)=< t—0,6, when 0,5 <t <1,5; [prob.]
1, when t > 1,5.

Fy(t) =1—exp(—t) [prob.]. (36)

(=
In spite of equality of expectations of fi (t) and f; (¢), the probabilities of winning of
participants are quite different: p,; = 0,3834 [prob.]; py2 = 0,6166 [prob.].
Waiting time densities are equal to (fig. 5¢):

rob.
fina (t) =erexp(—ey - t) ﬁime} :
fos1 (8) = 1 0,3834 -exp (ex-t) mpu 0 <t <0,5; prob.
221 = 073834 | 1-0,2231 -exp (e -t) mpn 0,5 <t < 1,5. | time | -

If densities of forfeit are equal to

s12 () = s21 (1) = N -exp (—ct),
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1 A1) [prob./time] fi(6 a t F(t) [prob.] b
17 1
20
Fy(1)
\ FI(I)

| [~ g[time] [ { [t=ime]
0 0.5 1.0 1.5 0 0.5 1.0 L5

t F_(1) [prob./time] ¢

f2—>1(r)

fi%?.(f)

] |
0 0.5 1,0 L5

~

[ [time]

Fig. 2. Time densities and time distributions

where C [ﬁ} is a coefficient; ¢ [#} is the rate of diminution of forfeit, then
time-prob. time

the sum of forfeit received by the first participant from the second one with probability
0,6166, is equal to

s = Q-el/exp [—(e2+q) - t]dt = Zf; [doll.].

0
The sum of forfeit, received by the second participant from the first one with
probability 0,3834, is equal to

sy = e% [1+1,5819 - exp 0,5 (e2 — q) — 0,5819 - exp 1,5 (e — ¢)] +
2 4260529 (
q

exp0,5q —exp 1, 5q) .

In spite of equality of expectations fi(t) and fy(¢), and equality of forfeit densities,
sums, that participants can potentially win and probabilities of winning are quite different,
and this obstacles should be taken into account when planning concurrent games.

Conclusion

We have presented a concurrent game as a process of passing the distance by
participants in accidental time, which is defined with accuracy to distribution density.
Use of mathematical apparatus of Petri-Markov nets allows to determine winner’s waiting
for other participants time. It also allows to evaluate total forfeits, which losers pay to
winner in the case when forfeit density is assigned. Moreover waiting time allows to analyze
multiple competition and to evaluate a total participant’s winning for known composition
of participants.
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Time and stochastic characteristics were obtained in a general form. They are essential

for planning the strategy and tactics of concurrent game if strategy/tactics change time
densities of distance passed by participants. Next researches in this area may be directed
to working out of the apparatus, which links a proposed method of competition simulation
with traditional game theory. Moreover the method may be useful for solving the problem
of game optimization since it permits to generate a criterion function or restrictions for
this problem. Development of this method may be directed to working out of a simple
engineering method of effectiveness calculation with use of only numerical characteristics
of time distributions.
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MATEMATUNYECKOE MOJAEJINMPOBAHUE
COPEBHOBATEJIbHBIX UT'P

A.H. Ueymun, E.B. Jlapxun

Uccmenytorca copeBHOBATEIBHBIE UTPHI, 3AKJIIOYAIONINECS B MPOXOXKICHUHN MapTHEPA-
MF HEKOTOPOU IHUCTAHIMM B peajbHOM (usndeckom spemenu. Cdopmuposansr [lerpr—
MapkoBckue MOIeIn MapPHBIX ¥ MHOYKECTBEHHBIX CODEBHOBaHwWi. [lyisi mapHOro COpeBHO-
BAHUsI TIOJIYIEHO BBIDAYKEHUE [IJTsl IJIOTHOCTH PACTIPEIE/IEHUsT BPEMEHN OXKUIAHWS TT00eTH-
TeJeM 3aBEPIIEeHNs JUCTAHIINY TPOUTPABIITNM YIaCTHUKOM. BBeIEHO MTOHATHE PACIIPEIeIEH-
HOTO TrTpada, BeJIMYrHa, KOTOPOTO ONPENE/IsieTCs KaK IO CyMMBbI, KOTOPYIO B TEKYIIHI
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MOMEHT BPeMeHHU MoJjydaer nobemurens oT nobexaennoro. C MCHOIb30BAHUEM MMOHATHIA
pacupe/iesieHHOro mrpada u BPEMEHU OXKHJIAHUS II0JLYyY€HO BbIPAXKEHUE JJIsi CyMMAapHOIO
mrpacda, KOTophlil MobeIuTeN b MOJYyIAeT OT MODEKIEHHOrO. Pe3yabTar, moayYeHHbIi 11s
MTAPHBIX <COPEBHOBAHUII>, PaCIPOCTPaHEH Ha MHOXKECTBEHHbIE COPEBHOBATE/BHBbIE WIDHI.
OrneHKa CyMMapHOTO BBIUTPBINIA W MPOWTPHINIA B MHOYKECTBEHHBIX COPEBHOBAHUAX MPEJI-
CTaBJIEHA B BHUJE PEKYPCHUBHOIN NPOIEAYPHI, B KOTOPOH YJIACTHUKH 3aKAHUUBAIOT THCTAH-
[0 OfWH 33 APYTHUM, U HMODEIUTEN, y2KE 3AKOHIUBIINE JUCTAHIINAIO, MOJIYJA0T mTPadb
OT YYaCTHUKOB, €Ile He 3akKOHYMBIIMX ee. [lo/yueHo BhIpaKeHWe s ONEHKH CYMMBI BbI-
WUTPBITTa B COPEBHOBATETBLHOU HUTPE C OMPEIEIEHHLIM COCTABOM YYaCTHUKOB. Pe3ymbTaThb
WTIOCTPUPYIOTCA YUCAEHHBIM IIPUMEDPOM.

Karoueesvie crosa: copesnosarue; copeshosamenrvhas uepa; cems Ilempu—Maprosa; du-
CMAHYUA; Pacnpedesennvill wmpad; 6pems 0HCUIGHUA; CYMMAGPHBLT GbLUZPHIUL; NAPHOE CO-

PEBHOBAHUE;, MHONHCECITNBEHHOE COPEBHOGAHUE.

Anekceit Hukomaesua UBytwn, Kanangar TeXHUIeCKAX HAYK, JA01eHT, Kadeapa <Boi-

qucanTeb A TeXHIKa>, Tyabckuil rocyrapersennbiii yausepeuter (1. Tyna, Poccuiickas
Denepanus), alexey.ivutin@gmail.com.

Esrennit Bacunbesuya JlapkuHn, 10KTOp TeXHUYECKUX HAYK, mpodeccop, kadeapa <Po-

GoTOTEXHUKA M aBTOMATHU3AIMA NMPOU3BOACTBA>, TyIbLCKHUHA rOCYapCTBEHHbIH yHUBEPCH-
rer (1. Tyna, Poceniickast @enepanns), elarkin@mail.ru.

Hocmynuaa 6 pedakyuro 11 gespana 2015 .
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