Научная статья на тему 'Simplified selection of optimal shell of revolution'

Simplified selection of optimal shell of revolution Текст научной статьи по специальности «Строительство и архитектура»

CC BY
95
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КУПОЛ / ОБОЛОЧКА ВРАЩЕНИЯ / ПАРАБОЛОИД ВРАЩЕНИЯ / ПАРАБОЛОИД ВРАЩЕНИЯ ЧЕТВЕРТОГО ПОРЯДКА / ЦЕПНАЯ ЛИНИЯ / ВАРИАЦИОННО-РАЗНОСТНЫЙ МЕТОД РАСЧЕТА / ЛИНЕЙНАЯ ТЕОРИЯ ОБОЛОЧЕК / ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ / ОПТИМАЛЬНОЕ ПРОЕКТИРОВАНИЕ / DOME / SHELL OF REVOLUTION / PARABOLOID OF REVOLUTION / THE FORTH ORDER PARABOLOID OF REVOLUTION / CATENARY LINE / VARIATIONAL-DIFFERENCE ENERGY METHOD OF ANALYSIS / LINEAR SHELL THEORY / GEOMETRICAL MODELING / OPTIMAL DESIGN

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Krivoshapko Sergey N., Ivanov Vyacheslav N.

Relevance. Architects and engineers, designing shells of revolution, use in their projects, as a rule, spherical shells, paraboloids, hyperboloids, and ellipsoids of revolution well proved themselves. But near hundreds of other surfaces of revolution, which can be applied with success in building and in machine-building, are known. Methods. Optimization problem of design of axisymmetric shell subjected to given external load is under consideration. As usual, the solution of this problem consists in the finding of shape of the meridian and in the distribution of the shell thickness along the meridian. In the paper, the narrower problem is considered. That is a selection of the shell shape from several known types, the middle surfaces of which can be given by parametrical equations. The results of static strength analyses of the domes of different Gaussian curvature with the same overall dimensions subjected to the uniformly distributed surface load are presented. Variational-difference energy method of analysis is used. Results. Comparison of results of strength analyses of six selected domes showed that a paraboloid of revolution and a dome with a middle surface in the form of the surface of rotation of the z = a cosh( x/b ) curve around the Oz axis have the better indices of stress-strain state. These domes work almost in the momentless state and it is very well for thin-walled shell structures. New criterion of optimality can be called “minimum normal stresses in shells of revolution with the same overall dimensions, boundary conditions, and external load”.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Упрощенный выбор оптимальной оболочки вращения

Актуальность. Архитекторы и инженеры, работающие с оболочками вращения, используют в своих проектах в основном хорошо зарекомендовавшие себя сферические оболочки, параболоиды, гиперболоиды и эллипсоиды вращения, хотя известны около сотни поверхностей вращения, которые могут быть с успехом применены в строительстве и машиностроении. Методы. Рассматривается оптимизационная задача в проектировании осесимметричной оболочки, подверженной действию внешней нагрузки. Обычно решение этой проблемы заключается в нахождении формы меридиана и в распределении толщины оболочки вдоль меридиана. В статье исследуется более узкая задача, которая заключается в выборе формы оболочки вращения из нескольких известных подклассов, срединные поверхности которых могут быть заданы параметрическими уравнениями. Приводятся результаты статических расчетов куполов различной гауссовой кривизны с одинаковыми габаритными размерами на осесимметричную поверхностную распределенную нагрузку типа собственного веса. Используется вариационноразностный метод. Результаты. Сравнительный анализ результатов расчета шести куполов показал, что с точки зрения напряженно-деформированного состояния лучшие результаты у параболоида вращения и у оболочки вращения кривой z = a ch( x/b ) вокруг оси Oz . Эти оболочки работают почти в безмоментном состоянии, к чему стремятся проектировщики тонкостенных оболочечных структур. Предложенный критерий оптимальности предлагается назвать «минимальные нормальные напряжения в оболочках вращения с одинаковыми базовыми размерами, граничными условиями и внешними нагрузками».

Текст научной работы на тему «Simplified selection of optimal shell of revolution»

2019. 15(6). 438-448 Строительная механика инженерных конструкций и сооружений Structural Mechanics of Engineering Constructions and Buildings

HTTP://JOURNALS.RUDN.RU/STRUCTURAL-MECHANICS

Теория тонких оболочек Theory of thin elastic shells

DOI 10.22363/1815-5235-2019-15-6-438-448 RESEARCH PAPER

UDC 539.3:624.04

Simplified selection of optimal shell of revolution

Sergey N. Krivoshapko*, Vyacheslav N. Ivanov

Peoples' Friendship University of Russia (RUDN University),6 Miklucho-Maklaya St., Moscow, 117198, Russian Federation *sn_krivoshapko@mail.ru

Abstract

Relevance. Architects and engineers, designing shells of revolution, use in their projects, as a rule, spherical shells, paraboloids, hyperboloids, and ellipsoids of revolution well proved themselves. But near hundreds of other surfaces of revolution, which can be applied with success in building and in machine-building, are known. Methods. Optimization problem of design of axisymmetric shell subjected to given external load is under consideration. As usual, the solution of this problem consists in the finding of shape of the meridian and in the distribution of the shell thickness along the meridian. In the paper, the narrower problem is considered. That is a selection of the shell shape from several known types, the middle surfaces of which can be given by parametrical equations. The results of static strength analyses of the domes of different Gaussian curvature with the same overall dimensions subjected to the uniformly distributed surface load are presented. Variational-difference energy method of analysis is used. Results. Comparison of results of strength analyses of six selected domes showed that a paraboloid of revolution and a dome with a middle surface in the form of the surface of rotation of the z = -acosh(x/b) curve around the Oz axis have the better indices of stress-strain state. These domes work almost in the momentless state and it is very well for thin-walled shell structures. New criterion of optimality can be called "minimum normal stresses in shells of revolution with the same overall dimensions, boundary conditions, and external load".

Keywords: dome; shell of revolution; paraboloid of revolution; the forth order paraboloid of revolution; catenary line; variational-difference energy method of analysis; linear shell theory; geometrical modeling; optimal design

Article history:

Received: September 02, 2019 Revised: November 12, 2019 Accepted: December 06, 2019

Conflict of interest

The authors confirm that this article content has no conflict of interest.

For citation

Krivoshapko S.N., Ivanov V.N. (2019). Simplified selection of optimal shell of revolution. Structural Mechanics of Engineering Constructions and Buildings, 15(6), 438-448. http://dx.doi.org/10.22363/1815-5235-2019-15-6-438-448

Introduction

V.V. Novozhilov [1] was one of the first scientists who began to seek for a shell of revolution with the most advantageous indices of stress-strain state. In particular, examining four different domes (sphe-

Sergey N. Krivoshapko, DSc, Professor, Professor of the Department of Civil Engineering, Academy of Engineering; ORCID iD: 0000-0002-93853699, eLIBRARY SPIN-code: 2021-6966.

Vyacheslav N. Ivanov, DSc, Professor, Professor of the Department of Civil Engineering, Academy of Engineering; ORCID iD: 0000-0003-4023-156X, eLIBRARY SPIN-code: 3110-9909. © Krivoshapko S.N., Ivanov V.N., 2019

_ This work is licensed under a Creative Commons Attribution 4.0

© I International License

https://creativec0mm0ns.0rg/licenses/by/4.Q/

rical, parabolic, half-elliptical, and the lesser part of elliptical domes), he determined that a dome in the form of the lesser part of ellipsoid of revolution was the most advantageous one because it can work as momentless shell with comparatively slight rigidity of the support contour. Membrane strength theory of shells subjected to dead load was used.

Now, the protection of erections from the terrorist attacks and, thus, search of effective structural shapes to mitigate the blast energy is very important problem. The influence of inside blast pressure was studied for six shapes of domes of the same weight and thickness in a paper [2]. The study shows that the parabolic

and bowl shape of domes could withstand the blast load with the least top displacement.

It is necessary to pay attention to the investigation [3], carried out with five types of shells that are spherical, elliptical, parabolic, and hyperbolic shells of revolution as well as combined shells consisting of two shell fragments with middle hyperbolic and parabolic surfaces of revolution. The combined dome, put together from the lower hyperbolic dome and the upper paraboloid of revolution, recommended itself best of other four types of shells.

The determination of optimal geometrical parameters of a reinforced concrete elliptical shell, used as a covering of the round building with the diameter of the base equal to 27 m, is a purpose of a paper [4]. In general, well known domes of revolution are studied in great number of published works. Considerably less number of researches is devoted to shells of revolution of untypical forms, for instance, to egg-shaped shells [5] or to toroidal domes with elliptic cross section [6]. In papers [7; 8], stress-strain state of the well-known shells as well as the shells of negative Gaussian curvature with the opening at the top, that did not find application else, is examined with the help of finite difference energy method. Several shells of revolution of untypical forms are offered for the application in a manuscript [9] and a monography [10]. Thus, choosing the geometry of dome covering, it is necessary to take into account architectural, technological, technical, and economic demands.

Diversity of opinion of famous architects and civil engineers on the rank of shell structures in modern architecture is very broad, beginning from enthusiastic reviews and optimistic expectations in the 50-60th years of the last century until negation of progressive role of these structures at the end of the 20th century [11]. The well-known Portuguese architect Eduardo Elisio Machado Souto de Moura said: "I don't think that any global new forms will appear but new technologies and materials will be arisen". R. Buckminster Fuller answered about his architectural creations in such style: "Let architects tell about aesthetics... I shall prefer dome where stresses and strains are going away".

In a paper, the illustration of the simplified selection of optimal shell of revolution is carried out for domes of untypical forms. It should be noted that 24 criteria of optimality are known now [12]. The investigation of several untypical domes of revolution of positive and alternating Gaussian curvatures which did not find else the wide-spread application in architecture, construction, and machine-building is an aim of the presented paper too. Simplified selection of optimal shell of revolution begins with geometrical modelling of a necessary shell.

1. Geometrical modelling of shells with similar overall dimensions

In figure 1, six types of shells of revolution are shown:

- a paraboloid of revolution (figure 1, a);

- a shell in the form of the fourth order paraboloid of revolution with a x4 = cz meridian (figure 1, b);

- a shell with the middle surface called "Soucou-poid" which can be traced by a curve z = (b/a3)(a2 - x2)32 in the process of its rotation about an axis Oz (figure 1, c);

- a shell with a middle surface of rotation of a curve z = be~(ax)2 about an axis Oz (figure 1, d);

- a shell in the form of a surface of rotation of a curve z = -acosh(x/b) (figure 1, e);

- a shell in the form of "fairing of cycloidal type" (figure 1, f).

Let these shells with middle surfaces of revolution have three identical overall dimensions R, f and h, where R is the radius of a base, f is a shell rise (figure 2), h is the constant shell thickness.

All surfaces taken for consideration can be given by parametric equations

x = x(r, P) = rcosP, y = y(r,P) = rsinP, z = z(r), (1)

where the coordinate lines r and P (parallels and meridians) are the lines of principal curvatures, 0 < P < 2n, 0 < r < R. Hence, for paraboloid of revolution (figure 2, a),

z = z(r) = /(1 - r2/R2),

for the fourth order paraboloid of revolution (figure 2, b)

z = z(r) = /(1 - r4/R4),

for a surface of revolution "Soucoupoid" (figure 2, c)

z = z(r) = /(1 - r2/R2)3/2,

for a surface of rotation of a curve z = be~(ax)2 about an axis Oz (figure 2, d)

z = z(r) = b/exp{(r2/R2)ln[b/(b - f)]}, b > f,

for a surface of rotation of a curve

z = -acosh(r/b) (2)

about an axis Oz (figure 2, e)

z = z(r) = - acosh(r/b),

where b = R/Arcosh (1 + f/a), a is an arbitrary number.

A surface of revolution shown in figure 1, f can be expressed by parametric equations as [13]

x = x(t,y) = a(t + sin t) cos y,

y = y(t,Y) = a(t + sin t) sin y,

z = z(t) = c(1 + cos t), (3)

where y is the angle taken from the coordinate axis Ox into the direction of the Oy axis, 0 < j < 2k; 0 < t < K . The surface "fairing of cycloidal type" (figure 1, f figure 2, f) must have a given R radius of a base and

a given shell rise f, that is why it is necessary to take in formulas (3)

c = f/2, a = R/n.

b

Figure 1. Six types of surfaces of revolution: a - paraboloid of revolution; b - the fourth order paraboloid of revolution; c - a surface of revolution "Soucoupoid"; d - a surface of rotation of a curve z = bexp(-a2x2) about an axis Oz; e - a surface of rotation of a curve z = —acosh(x/b) about an axis Oz;

f- "fairing of cycloidal type"

Figure 2. Meridians of six surfaces of revolution with the same overall dimensions R = 2 m and f = 3 m: a - paraboloid of revolution; b — the fourth order paraboloid of revolution; c — a surface of revolution "Soucoupoid"; d - a surface of rotation of a curve z = bexp(-a2x2) about an axis Oz; e - a surface of rotation of a curve z = —acosh(x/b) about an axis Oz;

f- "fairing of cycloidal type"

The determination of stress-strain state of chosen shells of revolution is the next stage of simplified selection of an optimal shell of revolution.

2. Stress-strain state of shells of revolution with similar geometrical parameters

Find the parameters of stress-strain state of the selected shells (figure 2) subjected to a constant uniform over the surface load q = 1000 N/m2 directed along the Oz axis. Let f = 3 m, R = 2 m, 0<p<2-rr, 0< r < R (figure 3). The shells have a thickness equal to 0.05 m and the radius of the top opening equal to 0.25 m. Taking into account that the shells have the top opening, we can determine that the heights f of the shells will change slightly (figure 3).

If shells of revolution are subjected to axisym-metric loading, then the surface uniform load Y = 0, normal (membrane) forces Nr, Np, shearing forces Qr, bending moments Mr, Mp, strains Sr, sp, Kr, Kp, and displacements W = Uz, Ur are axisymmetric, i.e. they do not depend on an angle of longitude p and

S = Qp = Mrp = 0, up = Srp = Krp = 0.

In figure 3 the results of calculation of the given shells of revolution by a finite difference energy method are presented. Let the shells have the hinged immovable supports along the round lower edges r = R but the edges of the upper openings are free. Assume the modulus of elasticity of the shell material E = 3.5T04 MPa, Poisson's ratio v = 0.17. The special computer program was written by V.N. Ivanov for a finite difference energy method of calculation.

A finite difference energy method and a finite element method (FEM) are based on the Lagrange's principle. A principle of minimum of the total strain energy was assumed by Lagrange as a basis. In FEM, a shell is divided into the finite elements and displacements are approximated by the shape functions. In finite difference energy method, a difference lattice is marked on a shell structure and the derivatives in the total strain energy functional are substituted for difference relations. The functional of total strain energy becomes a function of node displacements. Having minimized this functional, one can derive a system of algebraic equations and after that the displacements in the nodes of the difference lattice. For the determination of strains and internal forces in the lattice nodes, difference derivatives are used again. In a program complex of a finite difference energy method worked out in the RUDN University, a library of curves and surfaces is used for the determination of geometrical characteristics of thin-walled shell. It gives the pos-

sibility to take into account a real geometry of thin-walled shells in a process of analysis of their stressstrain state.

A finite difference energy method demands the obligatory accurate satisfaction of kinematical boundary conditions only.

The total strain energy expression can be given by

F = U - T,

where U is internal work, T is external work,

U = - J J(N1e1 + N2s2 + 2Ss12) dQ +

2 n

+ 2J J(MiXi + M2X2 + 2HX12)dQ,

2 n

T = J J(Xu + Yv + Zw)dV +

V

+ J J(qu + q2u + qzw)dQ.,

n

where Q is an area of the middle surface of a shell; dQ = AAdrdp; Ai, A2 is the coefficients of the first fundamental form of the surface; X, Y, Z are volume external forces; q1, q2, qz are external surface loads; u, v, w are displacements in the direction of curvilinear coordinate r and p, and in the direction of the normal z; V is a volume of the body.

In our case, X = Y = Z = 0.

The geometrical and physical equations of a shell theory in the principal curvatures are well known and can be taken in [1].

Compile a table (see table) of maximum values of displacements ur = u, uz = w, bending moments Mr, Mp and normal stresses OMr, omp coming into existence from these moments, and normal (membrane) forces Nr, Np and normal stresses Or, op coming into existence from these forces.

It is obvious that almost all calculated parameters of stress-strain state of shells in the form of paraboloid of revolution and in the form of surface of rotation of a curve z = -acosh(x/b) about an axis Oz are nearly equal and they assume minimal values in comparison with other shapes of the shells with the same geometrical parameters. This can be by the final stage of selection of an optimal shell of revolution.

After the determination of the stress-strain state of chosen shells of revolution and selection of the shell with minimal normal stresses in comparison with other shapes of the shells with the same geometrical parameters, it would be useful to get to know about application and researches of the selected domes described in other published works. This can have an influence on final decision.

z u, mm 0 019

mc ™ 0.009

0.025

W, mm

2.95 m

a) The shell in the shape of paraboloid of revolution

111 w, mm

_ 0.055

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3 m

b) The shell in the shape of the fourth order paraboloid of revolution

2.93 m

0.049

0.021

U, mm 0.038

0.035

4.92

Nß, KN/m

Nr, KN/m 1.95

_ 0.39

Mr, Nm/m —i-1-1— 6.6, Mß, Nm/m

3.64

0

0.51 _

54.0

0.57

1.56

c) The shell in the shape of a surface of revolution "Soucoupoid"

Figure 3. Orthographic representation of displacements and internal force factors of the shells of revolution

d) The shell in the shape of a surface of rotation of a curve z = bexp(-a2x2) about an axis Oz

e) The shell in the shape of a surface of rotation of a curve z = -acosh(x/b) about an axis Oz

W, mm

U, mm

2.97 m

MP, Nm/m 3.2

5.37

f) The shell in the shape of a surface "fairing of cycloidal type"

Figure 3. Orthographic representation of displacements and internal force factors of the shells of revolution (continuation)

Table

The comparison of maximum results obtained by the calculation with the help of a variational-difference energy method

Figure 3 Ur = u, Uz = W, Nr, Or, Np, Oß, Mr, OMr, Mß, OMß,

mm mm KN/m KPa KN/m KPa KNm/m KPa KNm/m KPa

a 0.019 0.025 -2.37 -47.4 -0.66 -13.2 0.363 0.87 0.096 0.23

b 0.024 0.111 -2.77 -55.4 -3.43 -68.6 8.01 1.92 23.0 55.2

c 0.035 0.049 -4.92 -98.4 -3.64 -72.8 -54 -129.6 10.8 25.92

d 0.039 0.058 -2.64 -52.8 -3.90 -78 34.22 82.13 7.54 18.1

e 0.019 0.027 -2.41 -48.2 -0.77 -15.4 0.24 0.58 0.104 0.25

f 0.021 0.033 -2.6 -52 -1.08 -21.6 20.76 49.8 3.2 7.68

3. Recommendations for the application of

six types of the selected domes of revolution in construction and machine-building

In this paper, six types of the shells of revolution are submitted for consideration and only paraboloids of revolution obtained a widespread recognition [14]. A surface "fairing of cycloidal type" which found application in machine-building, in particular, in aircraft industry [13] is known much less. Z.V. Belya-eva [15] offers to use catenary line z = -acosh(r/a) as a generatrix curve of the surface of revolution (1) with an Oz axis. She noted that it is not possible to connect a rise and a diameter of the dome in explicit form and that is why it is necessary to introduce the additional parameter b into a formula (2). Firstly, Antonio Gaudi used catenary line in his projects, in particular, for the design of the form of the church dome [16].

The rest of the surfaces of revolution (figure 1, b, c, d) are known to mathematicians only [17]. For example, geometrical modeling being one of direction of mathematical modeling is used for solution of complex problems of design of different objects and processes by the descriptive geometry methods. In a work [18], the 4th order paraboloid of revolution is employed for these aims (figure 1, b).

4. Results and discussions

In this paper, parametrical equations of the middle surfaces of shells of revolution containing two constant geometrical parameters f and R are presented. So, designers can realize six shapes for one object and can choose the most attractive shape for their object (figure 1).

The domes on round plan, shown in figure 1, c, d, the upper part of the middle surface of which is the surface of positive Gaussian curvature (K > 0) but the lower part is the surface of negative Gaussian curvature (K < 0), are studied in this paper for the first time.

The behavior of the shell in the shape of the fourth order paraboloid of revolution (figure 3, b) under loading can be explained by a low stiffness of its middle surface [19]. The upper part of this shell is very similar to a plate rested upon an elastic support of large rigidity

and that is why we have significant bending moment Mr quite far from the upper edge of the shell.

The emergence of circular tensile normal forces Np near the lower support in the shell "fairing of cycloidal type" compels to use designed reinforcement in reinforced concrete shells.

If to change geometrical parameters f R, h in proportion to each other, then the character of the diagrams shown in figure 3 will not change. Hence, conclusions and recommendations remain valid.

Figure 4. The paraboloid of revolution (the normal stresses Or and the normal forces Nr)

-2,433 lEto

Figure 5. The shell in the shape of a surface of rotation of a curve z = -ach(x/b) about an axis Oz (the normal stresses Or and the normal forces Nr)

Designers can use the results of static strength analysis of six types of the shells of revolution in question, given in this paper, and can choose the suitable shape for their objects with point of view of a shell stress-state state. The normal stresses Or and normal forces Nr for two types of the shells is shown in figures 4 and 5.

It should be noted that comparison of results of strength analyses of six domes showed that a paraboloid of revolution (figure 1, a) and a dome with a middle surface in the form of the surface of revolution of the z = -acosh(x/b) curve about the Oz axis (figure 1, e) have the better indices of the stress-strain state. These domes work almost in the momentless state and it is very well for thin-walled shell structures.

For control of the obtained results of calculation, test analyses of the shells, presented in figure 1, a, e, were fulfilled with the help of the standard computer program SCAD that uses a FEM. Practically identical results were derived. For instance, the orthographic representation of normal stresses Or and normal forces Nr for two types of the shells is shown in figures 4 and 5.

The additional information on other twelve shapes of domes of revolution is given in the papers [7; 8]. Influence of the geometrical researches of surfaces of revolution on design of unique structures was studied in a paper [20].

Conclusion

A great quantity of published works was devoted to geometrical modeling of surfaces of revolution, to determination of stress-strain state of shells of revolution subjected to static and dynamic loads, to investigation of buckling problems but in spite of it, in recent years, these shells attract attention of geometricians [15], architects [21], civil engineers [22], and machine builder [23].

Designers continue to search for optimal forms of meridians for given load using both the membrane theory [21] and the moment shell theory of the analysis [24]. They search for a meridian shape that secures the constant meridional and circular normal forces in the shell [22]. Domes on round, elliptical, oval, and rectangular plans are studied. In general, numerical methods are used for the determination of stress-strain state of the shells. For instance, in a paper [25], a finite element analysis is applied for the examination of a shell in the form of paraboloid of revolution.

The famous architect and engineer E. Torroja has told that the best erection is such one the reliability of which is ensured, mainly, by its shape but not at the expense of strength of its material [12]. Agreeing with this conclusion, the authors go on with the search of the most optimal shape of a shell of revolution the

middle surface of which should be given by analytical formulae, because form finding and optimization presents contemporary design methods for shell and grid-shell structures [26]. The simplified method of selection of optimal dome can be called "minimum normal stresses in shells of revolution with the same overall dimensions, boundary conditions, and external load".

It should be repeated that under results of this new research the shape of a paraboloid of revolution (figure 1, a) and a dome with a middle surface in the form of the surface of revolution of the z = -acosh(x/b) curve about the Oz axis (figure 1, e) have the most optimal shape from six selected domes with the given geometrical parameters which subjected to axisymmet-ric uniformly distributed constant surface load acting in the direction of an axis of rotation of the meridians. These two types of meridians have the rather like form. Probably, these meridians are the most rational curves with rational distribution of curvatures.

The obtained results of calculations show the conflicting properties of shells of alternating total curvature (figure 1, c, d). Being geometrically invariable structures, they show features peculiar to geometrically variable shells [27], i.e. they have low rigidity (a small flexible stiffness) and heightened part of factors of bending (figure 3, c, d; the curves of Mr). A moment-less shell theory is unacceptable for such shells.

Another approach was used in a work [28] where a dome is analyzed for different external loads and for different supports. As a result, optimal type of loading of a considered dome is chosen.

References

1. Novozhilov V.V., Chernykh K.F., Mikhaylovskiy E.I. (1991). Lineynaya Teoriya Tonkich obolochek [Linear Theory of Thin Shells]. Leningrad, Politehnika Publ. (In Russ.)

2. Ram Ranjan Sahu, Pramod Kumar Gupta. (2015). Blast diffusion by different shapes of domes. Defense Science Journal, 65(1), 77-82.

3. Nick B. (2017). Search for dome. 3D Warehouse. Trimble Inc., Nederland.

4. Gmirach K.M., Kozlov A.V., Proskurov R.A. (2017). Selection of optimal parameters of elliptical reinforced concrete shell of revolution. International Research Journal, (2(56)-3), 100-104. https://doi.org/10.23670/IRJ.2017.56.049. (In Russ.)

5. Zingoni A. (2002). Parametric stress distribution in shell-of-revolution sludge digesters of parabolic ogival form. Thin-Walled Structures, 40, 691-702.

6. Zingoni A., Enoma N. (2018). Strength and stability of toroidal domes of prolate elliptic section. Proc. of the IASS Annual Symposia, IASS 2018 Boston Symposium: Shell Structures, 1-8.

7. Krivoshapko S.N., Ivanov V.N. (2018). Pseudo-spherical shells in building industry. Building and Reconstruction, 2(76), 32-40. (In Russ.)

8. Krivoshapko S.N., Ivanov V.N. (2018). Catenoidal shells. Promyshlennoe i grazhdanskoe stroitel 'stvo, (12), 7-13. (In Russ.)

9. Krivoshapko S.N. (2018). Shells of revolution of non-canonical forms. Izvestiya vuzov. Stroitelstvo, 7(715), 66-79. (In Russ.)

10. Zingoni A. (2018). Shell Structures in Civil and Mechanical Engineering: Theory and Analysis. ICE Publishing, London.

11. Krivoshapko S.N. (2015). History of Development of Architecture of Spatial Structures and Shells with the Bases of Strength Analysis. Moscow: RUDN University. (In Russ.)

12. Krivoshapko S.N. (2019). Optimal shells of revolution and main optimizations. Structural Mechanics of Engineering Constructions and Buildings, 15(3), 201-209. http://dx.doi.org/10.22363/1815-5235-2019-15-3-201-209

13. Krutov A.V. (2002). Forming curves of fairing. Izv. vuzov. Mashinostroenie, (5), 78-80. (In Russ.)

14. Krivoshapko S.N. (2017). On application of parabolic shells of revolution in civil engineering in 2000-2017. Structural Mechanics of Engineering Constructions and Buildings, (4), 4-14. http://dx.doi.org/10.22363/1815-5235-2017-4-4-14. (In Russ.)

15. Belyaeva Z.V. (2015). Geometrical Modeling of Spatial Structures (PhD Diss.). Ekaterinburg. (In Russ.)

16. Belyaeva Z.V., Mityushov E.A. (2008). Mathematical modeling of vaults and domes. Building and Education, 11. Ekaterinburg: UGTU-UPI Publ. (In Russ.)

17. Encyclopédie Des Formes Mathematiques Remarquables Surfaces. http://mathcuive.com/surfaces/surfaces.shtml

18. Vertinskaya N.D. (2009). The bases of geometric modeling technological processes. Uspehi sovremennogo es-testvoznaniya, (5), 84-87. http://www.natural-sciences.ru/ ru/article/view?id=15691. (In Russ.)

19. Sabitov I.H. (1986). The research of stiffness and non-bending of analytical surfaces of revolution with a flattening at the pole. VestnikMGU. Matematika. Mehanika, (5), 29-36. (In Russ.)

20. Gbaguidi Aïssè G.L. (2019). Influence of the geometrical researches of surfaces of revolution and transla-

tion surfaces on design of unique structures. Structural Mechanics of Engineering Constructions and Buildings, 15(4), 308-314. http://dx.doi.org/10.22363/1815-5235-2019-15-4-308-314

21. Diaz-Severiano J.A., Gomez-Jauregui V., Manchado C., Otero C. (2018). Symmetry in Regular Polyhe-dra Seen as 2D Möbius Transformations: Geodesic and Panel Domes Arising from 2D Diagrams. Symmetry, (10), 356. DOI: 0.3390/sym10090356

22. Rabello F.T., Marcellino N.A., Loriggio D.D. (2016). Automatic procedure for analysis and geometry definition of axisymmetric domes by the membrane theory with constant normal stress. Rev. IBRACON Estrut. Mater., 9(4), Säo Paulo, July/Aug.

23. Abdessalem J., Fakhreddine D., Said A., Mohamed H. (2014). Shape optimization for a hyperelastic axisymmetric structure. Journal of Engineering, Design and Technology, 12(2), 177-194. https://doi.org/10.1108/JEDT-10-2011-0072.

24. Jasion P., Magnucki K. (2016). Buckling and post-buckling analysis of untypical shells of revolution. Insights and Innovations in Structural Engineering, Mechanics and Computation: Proc. of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016, 766-771. DOI: 10.1201/9781315641645-125

25. Gureeva N.A., Klochkov Yu.V., Nikolaev A.P. (2011). Analysis of shells of revolution on the base of a mixed FEM with using of tensor approximation of design variables. Fundamentalnie issledovaniya, (8-2), 356-362. http://www.fundamental-research.ru/ru/article/view?id=27962. (In Russ.)

26. Adriaenssens S., Veenendaal D., Williams Chris J.K. (2014). Shell Structures for Architecture: Form Finding and Optimization. Routledge, 323.

27. Bulygin A.V. (1977). On one class of shells of alternating total curvature. Mehanika tvyordogo tela (MTT), 5, 97-104. (In Russ.)

28. Ramm E. (1992). Shape finding methods of shells. In F.G. Rammerstorfer (ed.), Nonlinear Analysis of Shells by Finite Elements. Springer - Verlag, Wien. DOI: 10.1007/ 978-3-7091-2604-2

НАУЧНАЯ СТАТЬЯ

Упрощенный выбор оптимальной оболочки вращения С.Н. Кривошапко*, В.Н. Иванов

Российский университет дружбы народов, Российская Федерация, Москва, ул. Миклухо-Маклая, 6 *кпуо$Ьарко_£п@таП.ги

История статьи:

Поступила в редакцию: 02 сентября 2019 г. Доработана: 12 ноября 2019 г. Принята к публикации: 06 декабря 2019 г.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Аннотация

Актуальность. Архитекторы и инженеры, работающие с оболочками вращения, используют в своих проектах в основном хорошо зарекомендовавшие себя сферические оболочки, параболоиды, гиперболоиды и эллипсоиды вращения, хотя известны около сотни поверхностей вращения, которые могут быть с успехом применены в строительстве и машиностроении.

Кривошапко Сергей Николаевич, доктор технических наук, профессор департамента строительства Инженерной академии; ORCID iD: 0000-0002-93853699, eLIBRARY SPIN-код: 2021-6966.

Иванов Вячеслав Николаевич, доктор технических наук, профессор департамента строительства Инженерной академии; ORCID iD: 0000-0003-4023-156Х, eLIBRARY SPIN-код: 3110-9909.

Конфликт интересов

Авторы подтверждают, что данная статья

не содержит конфликта интересов.

Для цитирования

Krivoshapko S.N., Ivanov V.N. Simplified selection of optimal shell of revolution (Упрощенный выбор оптимальной оболочки вращения) // Строительная механика инженерных конструкций и сооружений. 2019. Т. 15. № 6. С. 438-448. http://dx.doi.org/ 10.22363/1815-5235-2019-15-6-438-448

Методы. Рассматривается оптимизационная задача в проектировании осе-симметричной оболочки, подверженной действию внешней нагрузки. Обычно решение этой проблемы заключается в нахождении формы меридиана и в распределении толщины оболочки вдоль меридиана. В статье исследуется более узкая задача, которая заключается в выборе формы оболочки вращения из нескольких известных подклассов, срединные поверхности которых могут быть заданы параметрическими уравнениями. Приводятся результаты статических расчетов куполов различной гауссовой кривизны с одинаковыми габаритными размерами на осесимметричную поверхностную распределенную нагрузку типа собственного веса. Используется вариационно-разностный метод. Результаты. Сравнительный анализ результатов расчета шести куполов показал, что с точки зрения напряженно-деформированного состояния лучшие результаты у параболоида вращения и у оболочки вращения кривой г = -асЫх/Ь) вокруг оси Ог. Эти оболочки работают почти в безмоментном состоянии, к чему стремятся проектировщики тонкостенных оболочечных структур. Предложенный критерий оптимальности предлагается назвать «минимальные нормальные напряжения в оболочках вращения с одинаковыми базовыми размерами, граничными условиями и внешними нагрузками».

Ключевые слова: купол; оболочка вращения; параболоид вращения; параболоид вращения четвертого порядка; цепная линия; вариационно-разностный метод расчета; линейная теория оболочек; геометрическое моделирование; оптимальное проектирование

Список литературы

1. Новожилов В.В., Черных К.Ф., Михайловский Е.И. Линейная теория тонких оболочек. Ленинград: Политехника, 1991. 656 с.

2. Ram Ranjan Sahu, Pramod Kumar Gupta. Blast Diffusion by Different Shapes of Domes // Defense Science Journal. 2015. Vol. 65. No. 1. Pp. 77-82.

3. Nick B. Search for dome // 3D Warehouse. Neder-land: Trimble Inc., 2017.

4. Гмирач К.М., Козлов А.В., Проскуров Р.А. Подбор оптимальных параметров эллипсоидной железобетонной оболочки вращения // Международный научно-исследовательский журнал. 2017. Вып. № 2 (56). Ч. 3. C. 100-104.

5. Zingoni A. Parametric stress distribution in shell-of-revolution sludge digesters of parabolic ogival form // Thin-Walled Structures. 2002. Vol. 40. Pp. 691-702.

6. Zingoni A., Enoma N. Strength and stability of toroidal domes of prolate elliptic section // Proc. of the IASS Annual Symposia, IASS 2018 Boston Symposium: Shell Structures. 2018. Pp. 1-8.

7. Кривошапко С.Н., Иванов В.Н. Псевдосферические оболочки в строительной индустрии // Строительство и реконструкция. 2018. № 2 (76). С. 32-40.

8. Кривошапко С.Н., Иванов В.Н. Катеноидные оболочки // Промышленное и гражданское строительство. 2018. № 12 . С. 7-13.

9. Кривошапко С.Н. Оболочки вращения неканонических форм // Известия высших учебных заведений. Строительство. 2018. № 7 (715). С. 66-79.

10. Zingoni A. Shell Structures in Civil and Mechanical Engineering: Theory and Analysis. London: ICE Publishing, 2018.

11. Кривошапко С.Н. История развития архитектуры пространственных структур и оболочек с элемен-

тами расчета: учебно-методический комплекс. М.: РУДН, 2015. 156 с.

12. Krivoshapko S.N. Optimal shells of revolution and main optimizations // Строительная механика инженерных конструкций и сооружений. 2019. Т. 15. № 3. С. 201-209. http://dx.doi.org/ 10.22363/1815-5235-201915-3-201-209

13. Крутов А.В. Формообразующие кривые обтекателей // Известия вузов. Машиностроение. 2002. № 5. С. 78-80.

14. Кривошапко С.Н. К вопросу о применении параболических оболочек вращения в строительстве в 2000-2017 годах // Строительная механика инженерных конструкций и сооружений. 2017. № 4. C. 4-14.

15. Беляева З.В. Геометрическое моделирование пространственных конструкций: дис. ... к. т. н. Екатеринбург, 2015. 175 с.

16. Беляева З.В., Митюшов Е.А. Математическое моделирование сводов и куполов // Строительство и образование: сб. науч. тр. № 11. Екатеринбург: УГТУ-УПИ, 2008. 235 с.

17. Encyclopédie Des Formes Mathématiques Remarquables Surfaces. URL: http://mathcurve.com/surfaces/ surfaces.shtml

18. Вертинская Н.Д. Основания геометрического моделирования технологических процессов // Успехи современного естествознания. 2009. № 5. С. 84-87.

19. Сабитов ИХ. Исследование жесткости и неизгибаемости аналитических поверхностей вращения // Вестник МГУ. Математика. Механика. 1986. № 5. С. 29-36.

20. Gbaguidi Aïssè G.L. Influence of the geometrical researches of surfaces of revolution and translation surfaces on design of unique structures // Строительная механика инженерных конструкций и сооружений. 2019. Т. 15. № 4. С. 308-314. http://dx.doi.org/10.22363/1815-5235-2019-15-4-308-314.

21. Diaz-Severiano J.A., Gomez-Jauregui V., Manchado C., Otero C. Symmetry in Regular Polyhedra Seen as 2D Möbius Transformations: Geodesic and Panel Domes Arising from 2D Diagrams // Symmetry. 2018. № 10. С. 356. DOI: 10.3390/sym10090356

22. Rabello F.T., Marcellino N.A., Loriggio D.D. Automatic procedure for analysis and geometry definition of axisymmetric domes by the membrane theory with constant normal stress // Rev. IBRACON Estrut. Mater. 2016, July/Aug. Vol. 9. No. 4. Säo Paulo.

23. Abdessalem J., Fakhreddine D., Said A., Mohamed H. Shape optimization for a hyperelastic axisymmet-ric structure // Journal of Engineering, Design and Technology. 2014. Vol. 12. No. 2. Pp. 177-194.

24. Jasion P., Magnucki K. Buckling and post-buckling analysis of untypical shells of revolution // Insights and Innovations in Structural Engineering, Mechanics and Com-

putation: Proc. of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016. 2016. Pp. 766-771.

25. Гуреева НА., Клочков Ю.В., Николаев А.П. Расчет оболочек вращения на основе смешанного МКЭ при тензорной аппроксимации расчетных величин // Фундаментальные исследования. 2011. № 8-2. С. 356-362.

26. Adriaenssens S., Veenendaal D., Williams C.J.K. Shell Structures for Architecture: Form Finding and Optimization. Routledge, 2014. 323 p.

27. Булыгин А.В. Об одном классе оболочек переменной полной кривизны // Механика твердого тела (МП). 1977. № 5. С. 97-104.

28. Ramm E. Shape finding methods of shells // Nonlinear Analysis of Shells by Finite Elements / ed. by F.G. Ram-merstorfer. Wien: Springer - Verlag, 1992. DOI: 10.1007/ 978-3-7091-2604-2

i Надоели баннеры? Вы всегда можете отключить рекламу.