Научная статья на тему 'Silicon Nanoparticles Fabricated by Laser Ablation and Fragmentation: Perspectives in Optical Bioimaging and Photohyperthermia'

Silicon Nanoparticles Fabricated by Laser Ablation and Fragmentation: Perspectives in Optical Bioimaging and Photohyperthermia Текст научной статьи по специальности «Медицинские технологии»

CC BY
55
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Silicon Nanoparticles Fabricated by Laser Ablation and Fragmentation: Perspectives in Optical Bioimaging and Photohyperthermia»

B-I-15

BIOMEDICAL PHOTONICS

Silicon Nanoparticles Fabricated by Laser Ablation and Fragmentation: Perspectives in Optical Bioimaging and Photohyperthermia

S. Zabotnov1, V. Nesterov1, O. Sokolovskaya1, D. Shuleiko1, L. Golovan1, P. Kashkarov1, A. Khilovu, D. Kurakina2, P. Agrba1'3, E. Sergeeva12, M. Kirillin23

1-M.V. Lomonosov Moscow State University, Faculty of Physics, 1/2 Leninskie Gory, Moscow, 119991, Russia

2- Institute of Applied Physics RAS, 46 Uljanov St., Nizhny Novgorod, 603950, Russia 3- N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod, 603950, Russia

zabotnov@physics.msu.ru

Biodegradability and low toxicity of silicon nanoparticles (Si-NPs) [1,2] allow considering them as diagnostics and therapeutic agents in such optical imaging modalities as fluorescence imaging [1-3] or optical coherence tomography (OCT) [3] as well as in tumor photohyperthermia [4]. To properly address the requirements raised by the biophotonics applications, appropriate nanotechnology approaches are required. Pulsed laser ablation and fragmentation in liquids are powerful tools to control the nanoparticles properties [2,3].

In our work to enhance the efficiency of Si-NPs production, we suggested using preliminary nano- or microstruc-tured silicon instead of usually used bulk crystalline silicon targets: porous silicon films, silicon nanowires arrays and mechanically grinded silicon microparticles (1-8 ^m in size) were used as targets at irradiation by picosecond laser pulses (1064 nm, 34 ps, 1-16 mJ). As a result, variation of the silicon-based targets morphology and buffer liquid (water or ethanol) allowed to fabricate Si-NPs with mean sizes from 25 to 200 nm and the high degree of crystallinity [3,5-7]. Additionally, we revealed that at pulsed laser fragmentation of the silicon microparticles in water, the Si-NPs size distributions strongly depend on their initial concentration. An appropriate simulation of propagation of a focused laser beam in a scattering suspension of silicon microparticles was performed for their different mass concentrations and allowed to explain the obtained results [7].

The crystallinity of the Si-NPs ensures fluorescence with a maximum in the red spectral range [3] that indicates the prospects of the fabricated nanoparticles as fluorescence markers in optical bioimaging. Another way to vizualize struc-tiral inhomogenities in biological tissuses is using effective Mie scattering in the red and near infrared spectral ranges when the fabricated suspensions may be applied as contrast agents in OCT techique. Experiments with suspensions drops administered on agar gel surfaces confirm such possibility [3].

Using the extracted scattering and absorption parameters of the Si-NPs suspensions, the heating of tumor tissue (basal-cell carcinoma) with embedded nanoparticles was numerically modelled [4]. It was demonstrated that irradiation by a laser beam with the wavelength 633 nm allows to obtain a temperature contrast between tumor and surrounding normal tissues about 5 K, which is suitable for photohyperthermia. Photoinduced heating of agar phantoms with embedded Si-NPs confirmed this tendency.

Thus, the obtained results allow to conclude that the Si-NPs fabricated via laser ablation and fragmentation are promising both optical bioimaging modalities and in photohyperthermia of tumors.

[1] J.-H. Park, L. Gu, G. von Maltzahn, et al., Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater., 8, 331-336, (2009).

[2] M.B. Gongalsky, L.A. Osminkina, A. Pereira, et al., Laser-synthesized oxide- passivated bright Si quantum dots for bioimaging, Sci. Rep., 6, 24732, (2016).

[3] S.V. Zabotnov, A.V. Skobelkina, E.A. Sergeeva, et al., Nanoparticles produced via laser ablation of porous silicon and silicon nanowires for optical bioimaging, Sensors, 20, 4874, (2020).

[4] O.I. Sokolovskaya, E.A. Sergeeva, L.A. Golovan, et al., Numerical simulation of enhancement of superficial tumor laser hyperthermia with silicon nanoparticles, Photonics, 8, 580, (2021).

[5] S.V. Zabotnov, A.V. Skobelkina, F.V. Kashaev, et al., Pulsed laser ablation of silicon nanowires in water and ethanol, Solid State Phenomena, 312, 200-205, (2020).

[6] A.V. Skobelkina, F.V. Kashaev, A.V. Kolchin, et al., Silicon nanoparticles formed via pulsed laser ablation of porous silicon in liquids, Tech. Phys. Lett., 46(7), 687-690, (2020).

[7] V.Yu. Nesterov, O.I. Sokolovskaya, L.A. Golovan, et al., Laser fragmentation of silicon microparticles in liquids for solution of biophotonics problems, Quantum Electron., 52(2), 160-170, (2022).

*

ALT'22

i Надоели баннеры? Вы всегда можете отключить рекламу.