Научная статья на тему 'Семь транспортных маршрутов для волоконно-оптических линий связи - особенности и характеристики'

Семь транспортных маршрутов для волоконно-оптических линий связи - особенности и характеристики Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
169
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТРАНСПОРТНЫЕ МАРШРУТЫ / ВОЛОКОННО-ОПТИЧЕСКАЯ ЛИНИЯ / ВОЛОКОННО-ОПТИЧЕСКИЙ КАБЕЛЬ / ДИЭЛЕКТРИЧЕСКИЕ КАБЕЛИ СВЯЗИ / ПРОКЛАДКА В ПОЛИМЕРНЫХ ТРУБАХ / ТРАНСПОРТНАЯ ИНФРАСТРУКТУРА

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Портнов Эдуард Львович

Pассматриваются семь транспортных маршрутов для волоконно-оптических линий связи России, их особенности и характеристики, доказывается, что в существующих транспортных маршрутах автомобильные маршруты занимают ведущее место, превышая все остальные маршруты вместе взятые. Учитывая то, что все транспортные маршруты проходят через города, все они могут быть использованы для прокладки по ним оптических кабелей связи. К пяти маршрутам(автомобильные дороги, высоковольтные линии передачи, железные дороги, нефтеи газопроводы) могут быть присоединены еще два: через моря и судоходные и несудоходные реки. Из последних двух только прокладка через моря используется в настоящее время и занимает незначительное место в установившихся транспортных маршрутах России.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Портнов Эдуард Львович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Семь транспортных маршрутов для волоконно-оптических линий связи - особенности и характеристики»

SEVEN TRANSPORT ROUTES FOR FIBER-OPTIC COMMUNICATION LINES - FEATURES AND CHARACTERISTICS

DOI 10.24411/2072-8735-2018-10069

Eduard L. Portnov,

Moscow technical University of communications and Informatics, Moscow, Russia, Lc@mtuci.ru

Keywords: transport routes, fiber-optic line, fiber-optic cable, dielectric communication cables, laying in polymer pipes, transport infrastructure.

the article discusses the seven transport routes for fiberoptic communication lines of Russia, their features and characteristics, proved that existing transport routes driving routes occupy a leading place, exceeding all other routes combined.

The cables are different as deepwater for protection against hydrostatic pressure, shallow water cables for protection against trawls and anchors, cables for coastal laying with increased mechanical protection and cables for laying in the ground in trenches for connection to the distribution point for connection to the ground network. Considering that all transport routes pass through the cities, all of them can be used for laying optical communication cables. The five routes (roads, high - voltage transmission lines, Railways, oil and gas pipelines) can be joined by two more: across the sea and navigable and non-navigable rivers. Of the last two, only laying across the sea is currently used and occupies a small place in the established transport routes of Russia.

Information about author:

Eduard L. Portnov, Moscow technical University of communications and Informatics, head of Department, chair of NTS, doctor of technical Sciences, Professor, Moscow, Russia

Для цитирования:

Портнов Э.Л. Семь транспортных маршрутов для волоконно-оптических линий связи - особенности и характеристики // T-Comm: Телекоммуникации и транспорт. 2018. Том 12. №4. С. 72-76.

For citation:

Portnov E.L. (2018). Seven transport routes for fiber-optic communication lines - features and characteristics . T-Comm, vol. 12, no.4, рр. 72-76.

The existing transport and technological infrastructure of Russia without taking into account its development and replacement of the cables that have served their tenn is presented below [1]:

Name of the infrastructure Length (in thousand km)

Roads 533

Railways 86

Main high - voltage

transmission lines (PL) 150

Oil trunk pipelines 47

Main gas pipelines 153

Total infrastructure 969

As of the end of 2012 the length of main pipelines amounted

to about 250 thousand km (Rosstal data), including: pipelines, 175 thousand km of oil pipelines 55 thousand km of pipelines and 20 thousand miles, the Loss on the linear facilities occur due to a manufacturing defect of the pipes, 14%, defccts in construction works-23%, the Outer and inner corrosion - 27%, the mechanical damage of 30%, other causes -6%.

In transport routes automobile routes occupy the leading place, exceeding all oilier routes combined. Considering that all transport routes pass through the cities, all of them can be used for laying optical communication cables. Five routes can be joined by two more; across the sea and navigable and non-navigable rivers. The last two, only the strip across the seas is currently in use and occupies a small place in a steady-state transport routes.

Of the seven transport routes listed, four were widely used for copper cabling. Of these, the most common is the route along the roads, which pass in the same direction and have areas of convergence with power lines and electrified Railways.[2] symmetrical and coaxial cables were Laid directly into the ground of 70% and into the cable sewer of 30%. The causes of damage to copper cables laid in the ground and Sewerage are very diverse and are shown in table 1[3].

Table 1

Assessment of damage to underground long-distance copper cablc lines

Causes of damage to the number of injuries % of total

Manufacturing defects 5-6

Defects of installation 8-10

Mechanical effects 50-60

Improper use 3-4

Corrosion 5-8

Breakdown of high voltage, including lightning currents 7-8

Soil displacement and pressure 5-6

The shaking ( vibration) 2-4

Damage by rodents 2-3

Aging 2-3

Other 2-4

Taking into account the service life of copper cables , aging takes place in 2-3% of all injuries. This speaks to the timely adoption of measures for the replacement of cables in excess of the terms of the operation and competent technical operation for over 25 years.

Consider the vulnerability of established transport routes. In detail vulnerability on laying of optical cables in the ground and in polymeric pipes is considered in detail in work [4]. It is shown

that the mechanical damage of cables laid in the ground is three times greater than that of copper cables, and all other damage is less than that of copper cables. Laying of optical cables in a protective polymer pipes reduce the damage of optical cables more than doubled |4|.

When laying along the roads is proposed, the value obtained in the operation 2 network fiber-optic cable(FOC), 0.5 injuries per 100 km per year subject to mechanical damage in 5-6 years of operation [4]. Laying in the ground in this case does not take into account the possibility of laying in the asphalt of roads of micro cables and suspension along the road of self-supporting structures of optical cables as an additional opportunity to expand the range of use of the road transport route. The vulnerability in the considered solutions is similar to the solutions obtained by copper cables.

The second transport route is high-voltage transmission lines 35-500 kV. From the declared levels 110-220-330-500kV are widely used [5].

Availability and mean time between failures under other equal conditions with the underground laying of fiber-optic cable line(FOCL) is 5 times or more higher compared FOCL with an underground strip FOC [2]. At the same time, the most promising and used design of FOC is the design in the lightning-proof cable (90%). 10% refers to the self-supporting structure FOC. The vulnerability of the route is the damage associated with electromagnetic effects of external electromagnetic fields and thunderstorms, which lead to changes in the characteristics of transmission of FOC, natural disasters and difficulties in the use of other ministries and agencies, except power.

Currently, the following technologies are widely used suspension FOC on supports of various telecommunication and electrical networks:

- self-supporting suspension FOC;

- suspension is FOC with built-in cable;

- cable suspension with fastening to external load-bearing elements;

- suspension of ground wire with integrated FOC;

- wrapped FOC on phase wires.

The third route, connected with the electrified Railways, is used effectively in three variants: FOC suspension on the railway supports, FOC laying in the polymer pipes along the edge of the railway embankment, laying in the ground in the exclusion zone parallel to the railway track.. The vulnerability of overhead cables is due to vandalism and damage to supports. Damage to the supports of the railway twice more than on power transmission lines of 110 kV [6].

Interpreting the data of table 1 we obtain table 2.

Table 2

The probable reasons of damage FOC on the Railways

Causes of cable breakage in the ground and outboard FOC amount % of total

Mechanical damage 172 80

Rodents 11 5

Viol aliens o Toon si ruction 2

and operation technology 5

Natural disasters 4 2

Atmospheric electricity 4 2

Other factors 20 9

Total 216 100

7TT

Power intermediate amplifiers is carried out offline on the first four transport routes. At the same time, the first transport route can also use remote power supply of amplifiers over copper cores, which reduces the efficiency of cable protection and transmission system from external electromagnetic fields.

The fourth and fifth routes associated one technological solution: they pass through the undeveloped road along this route should undergo liber-optic and power line(PL). All damages considered in table 1 for copper cables shall be taken into account in matters related to vulnerability and the addition of fire and vandalism to these routes. Main gas and oil pipelines zone of responsible consumers. Accidents involving pipelines cause great harm to the environment.

Power supply of linear consumers of main gas and oil pipelines is carried out from long-distance route PL 10 kV passing through uninhabited territories with undeveloped infrastructure in areas with cold climate. Therefore, the most promising solution is the use of suspended structures of optical cables oil the PL lOkV and laying in the ground parallel to the track at a distance of 9 meters from the pipeline. Options suspension FOC along the route of the pipeline have a number of advantages over other methods of construction:

- no need for land allotment and coordination with interested organizations;

- reduction of construction time;

- reduction of possible damage in urban areas and industrial zones;

- reduction of capital and operating costs in areas with heavy soils.

Pendant wok is done on an already installed support and requires careful pre-eourse preparation of the strip, therefore more technologically advanced and easier, than laying in the ground. A special feature of the use of FOCs for suspension on supports is its ability to elastic longitudinal stretching up to 1.5% without loads in optical libers[7|.

Currently, the following technologies are widely used suspension FOC on supports of various telecommunication and electrical networks:

- self-supporting suspension FOC;

-suspension is FOC with built-in cable;

- cable suspension with fastening to external load-bearing elements;

- For construction of FOCL by method of a suspension of a cable on support of high-voltage power lines and railway transport only dielectric self-supporting FOC which during operation experiences considerable fluctuations of temperature, wind speed, precipitation and the vibrations imposing certain restrictions on technology of a suspension is used. One of the main is the principle of limiting the mechanical effects on the shell itself, stretching the FOCs, compressing loads and angles of rotation of the route FOCs.

Wok suspension technology should ensure the safety of the thin coating of the cable sheath from damage during pulling. These damages are causcd by friction on various subjects located along the route. The damaged outer protective sheath of the cable becomes the source and the place of the concentrated load at ice, high humidity and wind load. If at the same time there are also pollution of the shell, then under the influence of the sun rays heating of contaminated areas of the shell to temperatures at

which the cable is not designed can occur, which can lead to its rapid aging |7|.

If transport routes through the seas and oceans and navigable rivers were laid for many centuries, the information cable systems across the seas and oceans began to he laid from the end of the 19th century and those difficulties experienced by cable technologies in laying land lines were not comparable with the difficulties Of laying on the bottom of seas and oceans [8]. Rivers have traditionally played a huge role not only as transport routes, but also as routes of settlement and economic development of new territories. All large cities and settlements of Russia were built on the rivers. The length of shipping lanes in Russia is currently 101.6 thousand km, including 16.7 thousand km of artificial waterways. The number of rivers in Western Siberia 2100 with a total length of 250 thousand km with navigation 63 rivers with a total length of 42 thousand km the Creation and implementation of fiber-optic communication lines and development of new technologies has allowed to dramatically increase the volume of information transmitted in the implementation of new fiber optic cables on land and under water. In Russia there are 78 routes that can be used for laying underwater optical cables. Possible FOCL laying and in non-navigable rivers |8|.

The main differences between underwater fiber optic links between the continents and the continental FOCL following [9|:

1. More complex cable design that requires high reliability for many years.

2. Lxlended service life of more than 25 years.

3. Large voltage of the remote power supply-up to 10 kV.

4. Large building lengths that make up the length of the amplifying section.

5. The smallest attenuation coefficient of fiber optic.

6. The average optical fiber losses in underwater systems should be less (0.21 dB/km) than for terrestrial systems (0.25 dB/km), so specially designed optical fibers are used.

7. In underwater systems, one type of optical fiber is used, whereas in terrestrial systems, different types of optical fibers can be used in the same cable design.

8. Limitation on the number of amplifiers and the number of fibers in the underwater cables, as one built-in amplifier with remote power accounts for four optical fibers.

9. Amplifiers for underwater systems must be designed for variable lengths.

10. Repair of underwater cables is more complex and takes more time than for terrestrial systems.

11. The problem of energy consumption is important in both underwater and terrestrial networks, in fact, the upper limit of the number of optical amplifiers in underwater repeaters and, therefore, the number of fiber pairs inside the underwater cable.

12. It also limits the type of active components that can be used under water.

13. There must be a higher reliability of the entire underwater system.

14. Underwater networks also employ more sophisticated and expensive advanced routing techniques to optimize the physical protection of the cable by selecting armor and laying in order to minimize the impact of a physically aggressive environment.

15. Ground cables suffer from a very high number of fiber breaks during system operation, but more importantly, ground cabling involves the splicing of numerous cable sections of

limited length (e.g. 2-5 km), since the weight and volume of transport on the roads are subject to restrictions.

16. The number of damage to submarine cables is mainly due to mechanical damage (trawls, anchors, earthquakes, landslides and collapses). Whereas terrestrial systems are also mechanical and listed natural phenomena, improper use, corrosion, high voltage breakdown high-voltage lines, and storm damage by rodents, faulty installation, aging and others. Mechanical damage can be in the ground systems 2-3 times mechanical damage to submarine cables, the value of which is about 75% of all injuries [10].

17. The main method of protection of underwater and terrestrial fiber-optic cables from mechanical influences is the booking of external covers. The second method of FOC protection from mechanical influences for underwater and surfacc cable lines is to bury the cable in the ground to a depth of 1 meter.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

18. Power supply of optical amplifiers in underwater systems, laid across the sea, is carried out by the system wire - water direct current (current flowing through the cable does not exceed 1.5 A).

19. The design of underwater fiber optic systems should take into account such requirements as flexibility, resistance to storm, necessary for laying on the bottom and removing from the bottom and from the trench, suspension to the booms during repair, simplicity and speed of repair. It should be borne in mind that the cost of the optical amplifier itself is a significant part of the entire system [11].

The cables are different as deepwater for protection against hydrostatic pressure, shallow water cables for protection against trawls and anchors, cables for coastal laying with increased mechanical protection and cables for laying in the ground in trenches for connection to the distribution point for connection to the ground network. The optimum cable size for effective mechanical protection shall be 25 mm [ 12].

- with auxiliary power supply from shore requires protection of the supply input from external electromagnetic fields, grounding, protection from lightning,

- in the underwater river is FOCas well as in the sea FOC apply basic measure of protection from mechanical damage, armoured shell, and burying in the ground.

- in remote on "wire to water" appears external metal elements,

- at a high rate of underwater currents, rapid aging of the outer polymer shells is possible,

- in the case of joint laying with power cables, metal elements of the optical cablc may be affcctcd and the breakdown in relation to water.

The considered established transport routes allow to estimate their vulnerability on advantages and disadvantages and to choose one of the optimum variants satisfying the required conditions of construction in the given region and to choose the required design of an optical cable.

1. Kalmykov V.V., Meckel A.M., Sokolov N., Shinakov Yu.S. Transport and access to information and communication networks. Moscow: International telecommunication Academy. 2006. 264 p.

2. Portnov E,L. Principles of construction ofprimary networks and optical cable lines. Moscow, hotline-Telecom, 2009. 544 c.

3. Parfenov Yu.A. Copper cables to live! LLC "communication technology". St. Petersburg. 2011. 528 p.

4. Andreev V.A., Rurdin V.A., Voronkov A.A. Analysis of the damage of underground optical communication cables. Electrosvyaz. No. 12, 2014, pp. 34-36,

5. Shmalko A.V. Digital communication networks in the electric power industry. Moscow: Tnergoizdat, 2002, 367 p.

6. Ksenofontov S.N., Portnov E.L. Influence of external electromagnetic fields on a communication line and protection. Educational aid. Moscow: MTUCI. 2000. 67 p.

7. Fiber-optic systems for monitoring the condition of infrastructure facilities. Edited by Dmiiriev S.A., Slepov N.N. Moscow: CJSC "Laser solutions". 2015. 304 p.

8. Portnov E.L. Fiber optics in telecommunications. Textbook for higher educational institutions. Moscow: Hotline-Telecom. 2018. 392 p.

9. Mallin S.A. The Laying of submarine FOL riverbeds in the Northern regions of Russia telecommunications, Electrosvyaz". No. II. 2017,pp. 73-76.

10. Charle D.L. Around the globe. Moscow: Radio and communication. 1985.320 p.

11. Portnov E.L. Optic cables Design and features. Moscow: Hot line-Telecom. 2002. 231 p.

References

( i ■N

СЕМЬ ТРАНСПОРТНЫХ МАРШРУТОВ ДЛЯ ВОЛОКОННО-ОПТИчЕСКИХ ЛИНИЙ СВЯЗИ -

ОСОБЕННОСТИ И ХАРАКТЕРИСТИКИ

Портнов Эдуард Львович, Московский технический университет связи и информатики, Москва, Россия, Lc@mtuci.ru Аннотация

Рассматриваются семь транспортных маршрутов для волоконно-оптических линий связи России, их особенности и характеристики, доказывается, что в существующих транспортных маршрутах автомобильные маршруты занимают ведущее место, превышая все остальные маршруты вместе взятые. Учитывая то, что все транспортные маршруты проходят через города, все они могут быть использованы для прокладки по ним оптических кабелей связи. К пяти маршрутам(автомобильные дороги, высоковольтные линии передачи, железные дороги, нефте- и газопроводы) могут быть присоединены еще два: через моря и судоходные и несудоходные реки. Из последних двух только прокладка через моря используется в настоящее время и занимает незначительное место в установившихся транспортных маршрутах России.

Ключевые слова: транспортные маршруты, волоконно-оптическая линия, волоконно-оптический кабель, диэлектрические кабели связи, прокладка в полимерных трубах, транспортная инфраструктура.

Литература

1. Калмыков В.В., Меккель А.М., Соколов Н.А., Шинаков Ю.С. Транспорт и доступ в инфокоммуникационных сетях. Международная академия связи, Москва, 2006. 264 с.

2. Портнов Э.Л. Принципы построения первичных сетей и оптические кабельные линии. М.: Горячая линия-Телеком, 2009. 544 с.

3. Парфенов Ю.А. Медным кабелям жить! ООО "Техника связи", Санкт-Петербург 2011, 528 с.

4. Андреев В.А., Бурдин В.А., Воронков А.А. Анализ повреждаемости подземных оптических кабелей связи // Электросвязь. №12. 2014. С. 34-36.

5. Шмалько А.В. Цифровые сети связи в электроэнергетике. М.: Энергоиздат, 2002. 367 с.

6. Ксенофонтов С.Н., Портнов Э.Л. Влияния внешних электромагнитных полей на линии связи и меры защиты. Учебное пособие, МТУСИ. Москва. 2000. 67 с.

7. Волоконно-оптические системы мониторинга состояния инфраструктурных объектов. Под ред. Дмитриева С.А. и Слепова Н.Н. М.: ЗАО "Лазер солюшенс". 2015. 304 с.

8. Портнов Э.Л. Волоконная оптика в телекоммуникациях. Учебное пособие для высших учебных заведений. М.: Горячая линия-Телеком, 2018. 392 с.

9. Мамлин С.А. Прокладка подводных ВОЛП по руслам рек в северных регионах России // Электросвязь. №11. 2017. С. 73-76.

10. Шарле ДЛ. По всему земному шару. М.: Радио и связь, 1985. 320 с.

11. Портнов Э.Л. Оптические кабели. Дизайн и функции. M.: Горячая линия-Телеком, 2002. 231с.

Информация об авторе:

Портнов Эдуард Львович, Московский технический университет связи и информатики, зав. кафедрой НТС, д.т.н., профессор, Москва, Россия

T-Comm Том 12. #4-2018

i Надоели баннеры? Вы всегда можете отключить рекламу.