Научная статья на тему 'SCOPE OF UNMANNED AERIAL VEHICLES IN THE XXI CENTURY'

SCOPE OF UNMANNED AERIAL VEHICLES IN THE XXI CENTURY Текст научной статьи по специальности «Медицинские технологии»

CC BY
108
29
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
REMOTE SENSING OF THE EARTH / UNMANNED AERIAL VEHICLE / OPERATIONAL TECHNOLOGIES / ROBOTIC AIRCRAFT

Аннотация научной статьи по медицинским технологиям, автор научной работы — Yemelyev A., Moldamurat Kh., Yergaliyev D., Nurbyergen Y., Koshkarbay N.Zh.

The article describes the technical scope and relevance of an unmanned aerial vehicle, as well as provides a software system. We consider unmanned aerial vehicles and technologies for their use in the largest countries of the world that have been used to date . Unmanned aerial vehicle-refers to the classification of robot aircraft. Remote control of ground-based sensing , reconnaissance, and scanning of unmanned aerial vehicles is performed at the station by remote control. Mechatronic sensors are also used for these aircraft and for docking with both the supply ship and the new modules when performing maneuvers.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «SCOPE OF UNMANNED AERIAL VEHICLES IN THE XXI CENTURY»

Коэффициент корреляции, рассчитанный по отдельным полям между максимальными значениями NDVI и фактической урожайностью, составил 0,69, что примерно равно 12,5ц/га (рис.4). Отсюда примерный расчет показал, что прогнозируемая урожайность составила 3006,25 центнеров пшеницы с 2 4 0,5 га земли.

Таким образом, по результатам космического мониторинга в Павлодарской области, Железинского района была проведена оценка посевных площадей яровой пшеницы. Установлена граница землепользования, определена посевная площадь яровой

пшеницы. Применение оптических данных для мониторинга зернового производства позволила выявить прогнозируемую урожайность, которая составила 3006,25 центнеров пшеницы с 240,5 га земли. Вариации урожайности существенно зависят от агрохимического состава почвы, соблюдения оптимальных сроков сева и наличия локальных осадков над отдельными хозяйствами. Практика использования оперативного анализа спутниковых данных для мониторинга сельскохозяйственного производства показала высокую эффективность.

ЛИТЕРАТУРА

1. Журнал Космические исследования и технологии [электронный ресурс] - URL: http://www.unikaz.asia/ru/content/kosmicheskiy-monitoring-selhozproizvodstva-v-rk

2. Муратова Н.Р., Терехов А.Г. Опыт пятилетнего оперативного мониторинга сельскохозяйственных угодий Северного Казахстана с помощью спутниковых данных / Труды Всероссийской конференции «Современные проблемы дистанционного зондирования земли из космоса», Москва, 10-12 ноября 2003 г., Сборник научных статей, с.277-283.

3. Lur'ye I.S. Geoinformatsionnoe kartografirovanie. Metody geoinformatiki i tsifrovoy obrabotki kosmicheskikh snimkov // Uchebnoe posobie, 2011. S. 1-6.

4. В.Н. Антонов Л.А. Сладких Мониторинг состояния посевов и прогнозирование урожайности яровой пшеницы по данным ДЗЗ / Журнал «Геоматика» №4 2009 г., Сборник научных статей, с.50-53.

5. Закарин Э.А., Спивак Л.Ф., Архипкин О.П., Муратова Н.Р., Терехов А.Г. Методы дистанционного зондирования в сельском хозяйстве Казахстана, Алматы, 1999 г., с. 91-111.

6. Ашуров А.Е., Ермеков Ф.К., Ергалиев Д.С. Применение технологии высокоточной спутниковой навига-ции для мониторинга пространственно-протяженных объектов. Надежность и качество. Труды международного симпозиума. г.Пенза, РФ - 22 -31 мая 2017 г., №2, С. 38-41.

7. Moldamurat K., Kalmanova D., Beybithan T., Yergaliyev D.S. Intelligent mechanism of hinding cryptograp-hically protected communication channel. Надежность и качество. Труды международного симпозиума. г.Пенза, РФ - 21 -31 мая 2018 г., Т.2, С. 25-26.

УДК 517.91

Yemelyev А., Moldamurat Kh., Yergaliyev D., Nurbyergen Y., Koshkarbay N.Zh.

Eurasian national university. L.N. Gumilyov, Nur-Sultan, Kazakhstan

SCOPE OF UNMANNED AERIAL VEHICLES IN THE XXI CENTURY

The article describes the technical scope and relevance of an unmanned aerial vehicle, as well as provides a software system. We consider unmanned aerial vehicles and technologies for their use in the largest countries of the world that have been used to date .

Unmanned aerial vehicle-refers to the classification of robot aircraft. Remote control ofground-based sensing, reconnaissance, and scanning of unmanned aerial vehicles is performed at the station by remote control. Mechatronic sensors are also used for these aircraft and for docking with both the supply ship and the new modules when performing maneuvers.

Keywords:

REMOTE SENSING OF THE EARTH, UNMANNED AERIAL VEHICLE; OPERATIONAL TECHNOLOGIES; ROBOTIC AIRCRAFT

INTRODUCTION

Unmanned aerial vehicles with remote control and operations performed by the automatic control system are specially programmed and provided with neural and robotic functions. Unmanned aerial vehicles are the cheapest and most affordable to use, as well as the safest among spacecraft [1].

Due to the development of space robotics, unmanned aerial vehicles are very effective for ground reconnaissance. Because there are no harmful emissions in nature.

At present, many types are found in connection with the calculation of the development of electronics and radio communications. But for automation all UAVs are considered by 2 types:

- Remote control;

- Fully automated

And by design, we use the considered UAVs of the Ski King type of aircraft. Earth exploration is 10 times larger , but the image quality will be high. You can fix this problem by reducing the speed.

Currently, the scope of UAVs is growing . This device, originally used for military purposes, allows it to be used in agriculture under the influence of the development of GPS and radio communication systems.

Agriculture, in turn, is divided into two major parts, crop production and livestock grazing. UAVs used in the field of crop production are of great importance in the market, but they do not correspond to horse breeding.

MAIN PART

An aircraft with an unmanned aerial vehicle " for itself " is equipped with an artificial intelligence system. Researchers provide an oppor-

tunity to independently solve the work of artificial intelligence in the block camera of an aircraft with the choice of object and other conditions. That is the results of the work of aircraft in neural-robotic unmanned flights are effective [2].

Robotic aircraft are used in scientific research, defense control, aerovisual research, and so on, and photos in the space zoning of pilots become more vivid and high- quality. Probing involves an image conversion algorithm to explain data about the Earth and identify a specific object.

The intelligent robotic aircraft effectively performs hazard monitoring and trajectory correction in real time to avoid danger. For this purpose, an intelligent robotic aircraft must clearly know where the aircraft is relative to the Earth's surface (localization), which may pose a danger to the Earth, and the flying vessel must be operating at the present time. To do this, an intelligent robotic spacecraft must be able to assess its condition in order to reliably observe itself and ensure its good maneuverabil-ity[3].

Providing intelligent UAV programming: controlling the UAV's servo drive using the AT-Mega328p microcontroller and controlling signals from the aircraft's servo drive via the I/o port.

In AVR Studio 5.1, tracking the software nature of on-board system parameters from the 8xLEDBoard panel using the ATMegaAVR32 8P. microcontroller.

For intelligent orientation of UAVs, it is necessary to provide neneral rules: adjust the signals coming from the microcontrollers AT-Mega328P in the header under the servo control

of the unmanned aerial vehicle, type the opera tor's readings and / or sound signals.

а)

Figure 1 - a) and b). Working picture of the prototype (unmanned manned aircraft), prepared by the laboratory in the 212 classroom of the L. N. Gumilyov Eurasian National University

To develop a visual signal from the sensor on the servo drive, only device B and C of the ATMega328F microcontroller is used with the addition of the 8xLEDBoard panel to the I /o port.

To simulate the start of sensors (position, angle, pressure, etc. ), use the Keypad Matrix, the vertical 4-bit bus continues horizontally in the b - RB0-RB3 port terminals and RB4-RB7 terminals .

To configure the pressing of any of the 16 buttons, you must select the RB0-RB3 wires as the digital output, as well as the inputs with the RB4-RB7 DDRB direction register:

LDI R16,0x0F

OUT DDRB,R16

Port B setting the single signal RB0-RB3 «1», when the button is pressed, this signal is transmitted to the corresponding input RB4-RB7 .

ATМega328Р microcontrollers internal structural block diagram of the destination and applied circuit conclusion.

Visual alarm program on the servo drive sensor

Based on the following steps:

- Run the IDE simulator in AVR Studio;;

- click to the Options / Select Microcontroller ;

+5 volts Ot

reset C 1 * IT D analog 5

pin 0 rx C 2 27 ] analog 4

pin 1 tx C 3 26 : analog 3

pin 2 [ 4 25 ] analog 2

pin 3 pwm C 5 24 ] analog 1

pin 4 C 6 23 D analog 0

+5 volts C 7 22 D ground

ground C 8 21 ] not connected

crystal : 9 20 D +5 volts

crystal C 10 19 D pin 13

pin 5 pwm [ 11 18 1 pin 12

pin 6 pwm : 12 17 D pin 11 pwm

pin 7 C 13 16 D pin 10 pwm

pin 8 : 14 15 3 pin 9 pwm

Figure 2 - АТМеgа328Р represented by an internal structural block diagram

System simulation of signals from the UAV

Oground

Figure 3 - Purpose of the final indicator of the АТМеgа328Р microcontroller

- select ATmega328Р and press the button Select;

- press File / Load Program;

- select sig-avr.hex file, and press the Open button. The program starts loading into memory.

- press Tools/Keypad Matrix - the keyboard opens (default port B);

- press Tools/8xLED Board panel - LED panels opens (port C will download);

- To change the port, you can select the LKM key alternately PORTB, you must press with 0;

- A Select Pin window will appear where you can select the desired port, for example, 0, PORTC; then PORTB, 1, and so on.

- choose Rate / Fast;

- press Simulation / Start button - the simulation starts.

By default, all LEDs will be green. To change the 8xLEDBoard panel, click the green window located opposite the selected outgoing port the AVR Simulater IDE-register window will appear, displaying the possible colors: Green, Red, Yellow, Blue.

Figure 4 - AVR Studio 5.1 screen representation of the program

f.u Q □ Bt

metal

canister for

drip

irrigation

sick plants

the multispectral image with a 4m resolution

Figure 5 - Remote sensing multispectral image

2. «Signals of sensors for determining the state of the servo drive» program..

Based on the following steps:

- Run the AVR IDE simulator;

- click to the Options / Select Microcontroller;

- select ATmega328P and press the button Select;

- press File / Load Program;

- select beg-avr.hex file, and press the Open button. The program starts loading into memory.

- press Tools / 8xLED Board panel - LED panels open;

- to adjust the position of the window for a better vision;

- choose Rate / Fast;

- press Simulation / Start button - the simulation starts [4].

PRACTICAL PART

UAV capabilities

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Currently, the UAV has great potential in agriculture, the defense sector and in the field of scientific research. This is due to the onboard and target installations installed on

the UAV. Depending on the target hardware, in which area and for what purpose you can disable work. As an example: shooting with a multispec-tral camera in the air can determine: determining the nitrogen content of the Earth, monitoring the state of the crop, forecasting the harvest, monitoring the humidity level, etc.

The above multispectral survey is not necessary in horse breeding , and we adapt the finished design to the horse farm. In this work, we provide a heat-sensitive UAV camera( thermal im-ager), a GPS system , and an audio signal.

The basic principle of a UAV adapted to a horse farm is that first the owner of the horse will install a GPS search sensor to find their location. When the herd was detected, the horse owner was exposed to the same page using the UAV's remote control. After detection of the herd, the counting of the population begins . At night and in hard-to-reach places, you can work through a heat- sensitive camera. After that, we predict the future activities of the circle and, if necessary, you can use a powerful sound signal to turn head in the right place for us.

Figure 6 - Displaying the process of performing work through the UAV

CONCLUSION

Unmanned manned aircraft is very effective. Economic losses from all aircraft are cheaper and do not require any costs due to unmanned flight, and the performance of work on the task will be fast and high-quality. When remote earth exploration (OSO) provides high -quality shooting. In accordance with the task of the work, a large role is assigned in scientific research,

in the field of defense, in the field of weather, archiological history, as well as in the exploration of emergency situations in nature Because you can load more space on Board where a person is sitting. Restrictions on the volume of unmanned vehicles are not allowed. And the most important advantage is that you can fly up to a distance that a where person can't move.

REFERENCES

1. Rusakov К. Transport cargo ship "Progress-M1" (рус.) // Space news. — 2000. — Т. 10, release 207, № 4. — С. 16. — ISSN 1561-1078.

2. Asif Siddiqui, Sputnik and the Soviet space challenge, University press of Florida, 2003,ISBN 081302627X, P. 96.

3. Berger, Brian. NASA passes the x-37 project to DARPA // Space.com, September 15, 2004.

4. K.Moldamurat.,U.C. Kolbay., A. Y. Zhakupova., «Model of ATMega328P microcontroller software under server control of unmanned manned aircraft» № 588, November 19, 2018.

5. U.C. Kolbay., A. Y. Zhakupova., «Relevance of unmanned spacecraft» Kostanai named after academician Zulkarnai Aldamzhar social and technical University Bulletin of technical Sciences Registration No. 15806-Zh, Kostanay, 2018, no. 4. 3-5 S.

6. Dmitriev A., Panas A., Starkov S. Experiments on speech and music signals transmission using chaos // Int. Journal of Bifurcation and Chaos, 1995, v. 5. - P. 371.

7. Cuomo K.M., Oppenheim A.V. Circuit implementation of synchronized chaos with applications to communications //Phys. Rew. Lett. 1993. 71. 1. P. 65-68.

8. Lorenz E.N. Deterministic Nonperiodic Flow. J. Athmos.Sci.2 0, 130.

9. Schneier B. Applied cryptography. Protocols, algorithms, and source code in C. - М.: TRIUMPH, 2011. - 816 P.

10. Boev N. M. Analysis of the command and telemetry radio link with unmanned aerial vehicles // Bulletin of the Siberian state aerospace University named after academician M. F. Reshetnev. Release 2 (42) / editor-in-chief, doctor of technical Sciences, I. V. Kovalev. - Krasnoyarsk: SibGAU, 2012. - P.86-91.

11. Fedorov L: P: Approximate methods for optimizing the characteristics of aircraft climb sections / / Proceedings of the TSAGI. - 1987. - Vol. Two 2366

12. https://bitly.su/7og1Ye

13. https://pandia.ru/text/77/416/94 994.php

14. Tulegulov A.D., Yergaliyev D.S., Ongarkyzy A., Artykbayev K.S. The importance of researching the satelittes with the purpose of solving problems. Reliability and quality-2 013: international Symposium.- Penza, 2013., volume 1. - Pp. 135-138.

15. Moldamurat K., Yergaliyev D., Moldamurat A., Moldan A. Use of the mode-RN microcontro-LLERS in radio engineering devices. Reliability and quality. Proceedings of the international Symposium. Penza, Russia-may 22 -31, 2017, no. 2, P. 32-34.

УДК 621.396.98.004.1 Затучный Д.А., Головина Д.П.

ФГОУ ВО «Московский государственный технический университет гражданской авиации», Москва, Россия РАЗРАБОТКА ВЫЧИСЛИТЕЛЬНЫХ АЛГОРИТМОВ ДЛЯ ОБЕСПЕЧЕНИЯ ДВИЖЕНИЯ ВОЗДУШНЫХ СУДОВ В АРКТИЧЕСКОЙ ЗОНЕ

В данной статье были приведены алгоритмы выбора наилучших вычислительных блоков, используемых для полётов воздушных судов в зоне Крайнего Севера. Введён показатель, характеризующий надёжность вычислительного блока с учётом выполнения им нескольких функций. При этом учитывается степень угрозы от невыполнения той или иной задачи. Разработан алгоритм выбора наилучшего вычислительного блока и приведена его блок-схема. Разработан алгоритм выбора наилучшего вычислительного блока для моделирования пространственного движения вертолёта, которые часто используются для перевозок людей и грузов в арктической зоне. При этом был предложен критерий выбора, учитывающий объём вычислительного блока (количество вычислительных машин), параметры надёжности и максимально возможное количество операционных усилителей в вычислительной машине.

Ключевые слова:

ВЫЧИСЛИТЕЛЬНЫЙ БЛОК, ПОКАЗАТЕЛЬ НАДЁЖНОСТИ, ВЕРТОЛЁТ, ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

Введение

Выполнение требований к точности и надёжности вычислительных операций в технических системах вообще и, в гражданской авиации в частности, являются одной из основных задач настоящего времени. С учётом тенденции перехода основных навигационных, связных и радиолокационных комплексов, используемых для обеспечения безопасности

полётов воздушных судов гражданской авиации, на автоматизированный режим работы, т.е. предусматривающий минимальное вмешательство человека, любая ошибка или перерыв в работе вычислительных комплексов может привести к тяжёлым последствиям. Повышение надёжности вычислительных систем известными методами, связанными, например,

i Надоели баннеры? Вы всегда можете отключить рекламу.