Научная статья на тему 'ROLE OF AGEING METRICS TO ANALYSE THE SURVIVAL DATA OF TONGUE CANCER PATIENTS'

ROLE OF AGEING METRICS TO ANALYSE THE SURVIVAL DATA OF TONGUE CANCER PATIENTS Текст научной статьи по специальности «Математика»

CC BY
23
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
survival function / hazard rate / cumulative hazard rate / ageing intensity function. AMS 2020 Subject Classification: Primary 60E15 / Secondary 62N05 / 60E05

Аннотация научной статьи по математике, автор научной работы — B. Elina, Pulak Swain, Satya Kr. Misra, Subarna Bhattacharjee

The paper vividly describes the non-parametric estimation of basic quantities for right censored data of times to death for patients with tongue cancer. Here we compare patients with two different sets of DNA profile using several parameters like reliability function, cumulative hazard rate function, smoothed hazard rate function and ageing intensity function. With the help of graphical representations of these functions, we analyse which DNA profile patients have better prognosis.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ROLE OF AGEING METRICS TO ANALYSE THE SURVIVAL DATA OF TONGUE CANCER PATIENTS»

ROLE OF AGEING METRICS TO ANALYSE THE SURVIVAL DATA OF TONGUE CANCER PATIENTS

B. Elina1* Pulak Swain2" Satya Kr. Misra3, Subarna Bhattacharjee4

1,4 Department of Mathematics, Ravenshaw University, Cuttack-753003, Odisha, India 2 Department of Mathematics, ITER (SOA University), Bhubaneswar-751030, Odisha, India 3 Department of Mathematics, KIIT University, Bhubaneswar-751024, Odisha, India 1elina.2294@gmail.com, 2pulakswainl994@gmail.com, 3satyamisra05@gmail.com, 4subarna.bhatt@gmail.com

Abstract

The paper vividly describes the non-parametric estimation of basic quantities for right censored data of times to death for patients with tongue cancer. Here we compare patients with two different sets of DNA profile using several parameters like reliability function, cumulative hazard rate function, smoothed hazard rate function and ageing intensity function. With the help of graphical representations of these functions, we analyse which DNA profile patients have better prognosis.

Keywords: survival function, hazard rate, cumulative hazard rate, ageing intensity function. AMS 2020 Subject Classification: Primary 60E15, Secondary 62N05, 60E05.

1. Introduction

A quantitative analysis of failure data through various reliability functions such as, survival function, hazard (failure) rate, reversed hazard rate is known to researchers since a long time. These failure data are usually related to mechanical or a biological systems. In recent literature [4], [11], [5], [7], we also find the use of ageing intensity function along with other ageing metrics as discussed above to know about the ageing phenomena underlying a given failure data. In many biomedical applications the primary endpoint of interest is time to a certain event. Example include: time of deaths, time it takes for a patient to respond to a therapy, time from response until disease relapse (that is, disease returns), etc.

Two important issues arise when studying time-to-event data (we will assume the "event" to be death):

(i) Some individuals are still alive till the end of the study or at the time of analysis. So the event of interest, namely death, has not occurred. Therefore we have right censored data.

(ii) Length of follow-of varies due to staggered entry. So we cannot observe the event for those individuals with insufficient times.

Suppose the events occur at D distinct times ti < t2 < ■ ■ ■ < tD , and at time t there are di events. Let Yi be the number of individuals who are at risk at time ti. Y is a count of the number

Yi

conditional probability that an individual who survives to just prior to time ti experiences the

of individuals with a time on study of ti or more. The quantity Y provides an estimate of the

Yi

*The work was jointly done with the first author when she was in Ravenshaw University, Cuttack-753003, Odisha, India.

"Corresponding author : E-mail: pulakswainl994@gmail.com

event at time i,.

The ageing intensity function L(t) of any system at time i > 0, with probability density function f (i), survival function F(i), hazard rate h(i) = , and cumulative hazard rate

j^h(u)du

is given by [8]

H(t)

L(t) = tf(0 , where defined, w F(t) ln F(t)

_ th(t)

J0)h(u)du

= m.

H(t) •

Works on aforementioned functions can be found in [8], [17], [2], [6], [16], [12,13], [14], [18], [5], [19].

In the present work, we first make a review on the notion of commonly known Kaplan-Meier and Nelson-Aalen Estimator used in survival analysis. Further, we take up a right censored data of times to death for patients with tongue cancer to illustrate the significance of the ageing metrics. In particular, we examine through different ageing metrics for drawing an inference about the distribution of the time to some event X, based on sample of right censored survival data of "Times to Death for Patients with Tongue Cancer".

The rest of the paper is organized as follows. A brief literature on Kaplan-Meier and NelsonAalen estimation is given in Section 2. Consequently, Section 3 presents the kernel based estimation for the ageing intensity function. Further, the survival analysis of the tongue cancer patients is done in Section 4 with the help of several ageing metrics. Finally, the concluding

remarks are provided in Section 5.

2. Variance of Kaplan-Meier and Nelson-Aalen Estimators

The standard estimator of the survival function proposed by [9] called Product limit estimators defined as

( 1 if t < ti S(t)=(nt,4 if t > t1 (1)

The variance of the Product-Limit estimator is estimated by Greenwood's formula

V

S~(t)J =(S(t))2 . (2)

\2

ti <t

1

The standard error of the product-Limit estimator is given by j V[S(t)] j2. An estimator of the cumulative hazard rate, was first suggested by [15] and then rediscovered by [1] which is referred as Nelson-Aalen estimator of the cumulative hazard, defined as

( 0 if t < t1 H(t)= ( E„4 if t > ^ (3)

The estimated variance of the Nelson-Aalen estimator is given by

di

aH(t) = E TvV (4)

ti <t(Y)

The standard error of the Nelson-Aalen estimator is given by (&H(t))2.

t

3. Kernel BaseD Estimation Of The AgeiNg iNTeNsiTy Kernel-smoothed estimators of h(t) are based on the Nelson-Aalen estimator H(t) and its variance

V{H(t)J.

Let AH(ti) = H(ti) - H(k-i) and AV[H(t)] = V[H(ti)] - V[H(ti-1)] denote the magnitude of the jumps in H (ti) and V [H (ti-1)] at time ti. AH (ti) provides a crude estimator of h(t) at the death times. The Kernel smoothed estimator of h(t) is a weighted average of these crude estimates over event times close to t. Closeness is determined by a bandwidth b, so that event times in the range t - b to t + b are included in the weighted average which estimate h(t). The weights are controlled by the choice of a kernel function K(.), defined on the interval [—1,1], which determines how much weight is given to points at a distance from t. The kernel used in following estimation of hazard rate is uniform kernel with

1

K(x) = 2 for - 1 < x < 1, if b < t < tD - b (5)

Kq(X) = + 6?+^ f°r - 1 < x < ^ if t < b given q = ~b (6)

Kq(x) = f^ - 6r+-F for - 1 < x < q, if tD - b < t < tD given q = (7)

The kernel smoothed estimator of h(t) based on the kernel K() is given by

h(t) = b-1 tK^-r) AH(ti). (8)

The variance of h(t) is estimated by the quantity

[h(t)] = b-2 LKi^)2 AV[H(ti)]. (9)

Section 4 is based on the study of ageing phenomenon on the patients with cancer of the tongue.

4. Study on the Effects of Ploidy on the Prognosis of Patients with

Mouth Cancer

4.1. Background

Patients were selected who had a paraffin-embedded sample of the cancerous tissue taken at the time of surgery. The tissue samples were examined using a flow cytometer to determine if the tumor had an aneuploid or diploid DNA profile. The data in the Table 1 is on the patients with tongue cancer (c.f. [10]).

Data on 79 Patients with Cancer of the Tongue:

g: Tumor DNA profile - 1: Aneuploid, 2: Diploid T: Time (in weeks)to death or on study time Ô: Death indicator - 1: Dead, 0: Alive

4.2. Results

From the survival function graph given in Figure 1, it can be observed that the curve end at different points as the times on study are different for two DNA group patients (i.e., 400 weeks for aneuploid patients and 231 weeks for diploid patients). Secondly the figure suggests the aneuploid patients have the best and diploid patients the least favourable prognosis. The disease free survival probability are 0.2286 (SE = 0.0954) for aneuploid patients and 0.0833 (SE = 0.0716)

Table 1: Data on 79 patients with cancer of the tongue

g T S g T S

1 1 1 1 93 0

1 3 1 1 93 0

1 3 1 1 101 0

1 4 1 1 104 0

1 10 1 1 108 0

1 13 1 1 109 0

1 16 1 1 131 0

1 16 1 1 150 0

1 24 1 1 231 0

1 26 1 1 240 0

1 27 1 1 400 0

1 28 1 2 1 1

1 30 1 2 3 1

1 30 1 2 4 1

1 32 1 2 5 1

1 41 1 2 5 1

1 51 1 2 8 1

1 65 1 2 12 1

1 67 1 2 13 1

1 70 1 2 18 1

1 73 1 2 26 1

1 77 1 2 27 1

1 91 1 2 30 1

1 93 1 2 42 1

1 96 1 2 56 1

1 100 1 2 62 1

1 104 1 2 69 1

1 157 1 2 104 1

1 167 1 2 104 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 61 0 2 112 1

1 74 0 2 129 1

1 79 0 2 181 1

1 80 0 2 8 0

1 81 0 2 67 0

1 87 0 2 76 0

1 87 0 2 104 0

1 88 0 2 176 0

1 89 0 2 231 0

for diploid patients.

We also observe from Table 2 and Table 3 that the estimated survival function at 12 months after the transplant for aneuploid group is 0.6731 and diploid group is 0.4863 (that is, at 1 year (12 months), 67.31% of aneuploid patients were alive, whereas 48.63% of diploid patients were alive). The extended final plateau of the graph indicates that people are being cured. From the cumulative hazard rate graph (Figure 2), we interpreted that the estimate of the cumulative hazard rate function is steeper for first 100-110 weeks (i.e., in first 110 weeks the hazard rate is approximately constant). And the plot shows that the aneuploid group patients

Table 2: Product limit estimator and its estimated variance for aneuploid group patients

ti di Yt S(t) V \S(t)\ {V [S(t)]} 2

1 1 52 0.980769 0.000362711 0.01904496

3 2 51 0.942308 0.00104546 0.03233357

4 1 49 0.923077 0.001365498 0.03695265

10 1 48 0.903846 0.001671313 0.0408817

13 47 0.865385 0.002240271 0.0473315

16 45 0.826923 0.002752333 0.05246268

24 1 43 0.807692 0.002987028 0.05465371

26 1 42 0.788462 0.003207499 0.05663478

27 1 41 0.769231 0.003413746 0.05842727

28 1 40 0.75 0.003605769 0.06004806

30 39 0.711538 0.003947144 0.0628263

32 1 37 0.692308 0.004096495 0.06400387

41 1 36 0.673077 0.004231623 0.06505092

51 1 35 0.653846 0.004352526 0.06597368

65 1 33 0.634033 0.004473413 0.06688358

67 1 32 0.614219 0.004578501 0.06766462

70 1 31 0.594406 0.00466779 0.00466779

72 1 30 0.574592 0.00474128 0.06885695

73 1 29 0.554779 0.004798971 0.06927461

77 1 27 0.534231 0.004856632 0.06968954

91 1 19 0.506114 0.005107841 0.07146916

93 1 18 0.477996 0.005302736 0.07281989

96 1 16 0.448122 0.005497328 0.07414397

100 1 14 0.416113 0.005691417 0.07544148

104 1 12 0.381437 0.005884598 0.07671114

157 1 5 0.305149 0.008421952 0.0917712

167 1 4 0.228862 0.009102169 0.09540529

have the smallest death rate and the diploid group patients have the highest death rate. We also observe from Table 4a and Table 4b respectively that the estimated cumulative hazard function at 12 months after the transplant for aneuploid group is 0.3892 and diplod group is 0.6999 (i.e., at 1 year (12 months), 38.92% of aneuploid patients were dead whereas 69.99% of diploid patients were dead). Table 5a, Table 6a give a record of hazard rate and ageing intensity of aneuploid and diplod patients respectively. One can note that Table 5b to Table 5d depict the method to calculate hazard rate of aneuploid group at t = 4,30,167 respectively. On a similar line, the values of h(ti) at different fys for aneuploid group are obtained in Table 5a. Table 6b to Table 6d reflect the computation of hazard rate of diploid group at t = 8,27,181 respectively. The required values of h(ti) at other t's for diploid group are shown in Table 6a. Thus we get a crude estimate of hazard function.

Since Figure 2 shows a crude estimate of the hazard rate so as to provide a smoothed estimated hazard rate we used uniform kernel estimation which is shown in Figure 3. The figure indicates the risk of death or hazard rate decreases slowly but the initial peak is high for diploid group patients.

From the smoothed hazard rate graphs of two DNA group patients, we compare the hazard rate

of two graphs on various subintervals. These comparisons are given in Table 7.

Let hi(t) be the hazard rate function of the aneuploid patients and h2(t) be the hazard rate

Table 3: Product limit estimator and its estimated variance for diploid group patients

ti di Y S(t) V \s(t)} {V [S(t)]} 2

1 1 28 0.964286 0.001229956 0.035070732

3 1 27 0.928571 0.002368805 0.048670367

4 1 26 0.892857 0.003416545 0.058451221

5 25 0.821429 0.005238703 0.072378882

8 1 23 0.785714 0.00601312 0.077544307

12 1 21 0.748299 0.006787295 0.082385044

13 1 20 0.710884 0.00745542 0.086344773

18 1 19 0.673469 0.008017493 0.089540453

23 1 18 0.636054 0.008473514 0.092051693

26 1 17 0.598639 0.008823484 0.093933402

27 1 16 0.561224 0.009067402 0.095222909

30 1 15 0.52381 0.009205269 0.095944095

42 1 14 0.486395 0.009237085 0.096109754

56 1 13 0.44898 0.009162849 0.095722771

62 1 12 0.411565 0.008982561 0.094776375

69 1 10 0.370408 0.008800344 0.093810147

104 8 0.277806 0.00816587 0.090365204

112 1 5 0.222245 0.007695797 0.087725689

129 1 4 0.166684 0.006644173 0.081511795

181 1 2 0.083342 0.005133974 0.071651756

Comparison of Survival Function

1.2 -|-

0 50 100 150 200

Time

Figure 1: Comparison of survival function between aneuploid and diploid patients. function of diploid patients.

On the basis of the above analysis we can clearly observe at interval [1,5), [5,13), [13,23), [23,41) and [41,42), the hazard rate for aneuploid patients is less than the diploid patients where as at the subintervals [42,51), the hazard rate for diploid patients is less than the aneuploid patients. Similarly we can compare the hazard rates on remaining subintervals and on an overall we

Table 4: Construction of the Nelson-Aalen estimator and its estimated variance for aneuploid and diploid tumor

ti H (ti ) 4 (t) Standard Error

1 0.019230769 0.00036982 0.01923077

3 0.058446456 0.00113876 0.03374548

4 0.078854619 0.00155525 0.03943667

10 0.099687952 0.00198928 0.04460133

13 0.142241144 0.00289467 0.0538021

16 0.186685588 0.00388232 0.06230826

24 0.209941402 0.00442315 0.06650679

26 0.233750926 0.00499005 0.07064026

27 0.25814117 0.00558493 0.07473239

28 0.28314117 0.00620993 0.07880311

30 0.334423221 0.00752485 0.08674592

32 0.361450248 0.00825531 0.09085876

41 0.389228026 0.00902692 0.0950101

51 0.417799454 0.00984325 0.09921313

65 0.448102485 0.01076152 0.10373775

67 0.479352485 0.01173808 0.10834243

70 0.511610549 0.01277867 0.11304276

72 0.544943883 0.01388978 0.11785489

73 0.579426641 0.01507884 0.12279592

77 0.616463678 0.01645058 0.12825981

91 0.669095257 0.01922066 0.1386386

93 0.724650813 0.02230708 0.14935555

96 0.787150813 0.02621333 0.16190532

100 0.858579384 0.03131537 0.1769615

104 0.941912717 0.03825982 0.19560117

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

157 1.141912717 0.07825982 0.27974956

167 1.391912717 0.14075982 0.37517971

ti H (ti ) 4 (t) Standard Error

1 0.035714286 0.00127551 0.03571429

3 0.072751323 0.002647252 0.05145146

4 0.111212861 0.004126542 0.06423817

5 0.191212861 0.007326542 0.08559522

8 0.234691122 0.009216901 0.09600469

12 0.28231017 0.011484475 0.10716564

13 0.33231017 0.013984475 0.11825597

18 0.384941749 0.016754558 0.1294394

23 0.440497304 0.019840978 0.14085801

26 0.499320834 0.023301186 0.15264726

27 0.561820834 0.027207436 0.16494677

30 0.6284875 0.03165188 0.17790975

42 0.699916072 0.036753921 0.19171312

56 0.776839149 0.042671081 0.2065698

62 0.860172482 0.049615525 0.22274543

69 0.960172482 0.059615525 0.24416291

104 1.210172482 0.090865525 0.30143909

112 1.410172482 0.130865525 0.3617534

129 1.660172482 0.193365525 0.43973347

181 2.160172482 0.443365525 0.66585699

(b) Diploid

(a) Aneuploid

Figure 2: Comparison of cumulative hazard rate between aneuploid and diploid patients.

can again confirm the impression that aneuploid group patients have the lowest rate of death. From the ageing intensity graphs of two DNA group patients Figure 4, we compare the ageing intensities of two graphs at different intervals of time. These comparisons are given in Table 8.

Table 5: Analysis of uniform smoothed hazard rate for aneuploid group patients

ti di Yi H(ti) h(ti) L(ti)

1 1 52 0.019230769 0.013989484 0.727453187

3 2 51 0.058446456 0.009881253 0.169065048

4 1 49 0.078854619 0.010365443 0.131450046

10 1 48 0.099687952 0.009334279 0.093634980

13 47 0.142241144 0.008372741 0.058863004

16 45 0.186685588 0.007744815 0.041485877

24 1 43 0.209941402 0.010960455 0.052207212

26 1 42 0.233750926 0.010960455 0.046889462

27 1 41 0.258141170 0.008738233 0.033850598

28 1 40 0.283141170 0.008738233 0.030861754

30 39 0.334423221 0.008738233 0.026129265

32 1 37 0.361450248 0.010127122 0.028018024

41 1 36 0.389228026 0.004168812 0.010710461

51 1 35 0.417799454 0.002817460 0.006743571

65 1 33 0.448102485 0.008081359 0.018034623

67 1 32 0.479352485 0.009933211 0.020722144

70 1 31 0.511610549 0.009933211 0.019415571

72 1 30 0.544943883 0.009933211 0.018227952

73 1 29 0.579426641 0.009933211 0.017143173

77 1 27 0.616463678 0.009933211 0.016113214

91 1 19 0.669095257 0.012105785 0.018092768

93 1 18 0.724650813 0.012105785 0.016705681

96 1 16 0.787150813 0.016272452 0.020672598

100 1 14 0.858579384 0.085857938 0.100000000

104 1 12 0.941912717 0.010863095 0.011533017

157 1 5 1.141912717 0.022500000 0.019703783

167 1 4 1.391912717 0.100000000 0.071843585

(a)

ti AH(ti) x Kq (x) Kq(x)&H(ti)

1 0.019231 0.3 1.501458 0.02887419

3 0.039216 0.1 1.239067 0.048590875

4 0.020408 0 1.107872 0.022609633

10 0.020833 -0.6 0.3207 0.006681254

13 0.042553 -0.9 -0.07289 -0.003101519

16 0.044444 -1.2 0 0

24 0.023256 -2 0 0

26 0.02381 -2.2 0 0

27 0.02439 -2.3 0 0

28 0.025 -2.4 0 0

30 0.051282 -2.6 0 0

32 0.027027 -2.8 0 0

41 0.027778 -3.7 0 0

51 0.028571 -4.7 0 0

65 0.030303 -6.1 0 0

67 0.03125 -6.3 0 0

70 0.032258 -6.6 0 0

72 0.033333 -6.8 0 0

73 0.034483 -6.9 0 0

77 0.037037 -7.3 0 0

91 0.052632 -8.7 0 0

93 0.055556 -8.9 0 0

96 0.0625 -9.2 0 0

100 0.071429 -9.6 0 0

104 0.083333 -10 0 0

157 0.2 -15.3 0 0

167 0.25 -16.3 0 0

h(4) = 0.010365443

(b) Att = 4 < b(= 10), Kq (x) = 4- t,

4(1 + q3) + 6(1 - q)

+ '-q)3

10

(i + q)4 ' (1-

i(8) = (10)-1 TiiKq (x)AH (ti)

ti AH(ti) x Kq (x) Kq (x)AH(ti)

1 0.019231 2.9 0 0

3 0.039216 2.7 0 0

4 0.020408 2.6 0 0

10 0.020833 2 0 0

13 0.042553 1.7 0 0

16 0.044444 1.4 0 0

24 0.023256 0.6 0.5 0.011627907

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

26 0.02381 0.4 0.5 0.011904762

27 0.02439 0.3 0.5 0.012195122

28 0.025 0.2 0.5 0.0125

30 0.051282 0 0.5 0.025641026

32 0.027027 -0.2 0.5 0.013513514

41 0.027778 -1.1 0 0

51 0.028571 -2.1 0 0

65 0.030303 -3.5 0 0

67 0.03125 -3.7 0 0

70 0.032258 -4 0 0

72 0.033333 -4.2 0 0

73 0.034483 -4.3 0 0

77 0.037037 -4.7 0 0

91 0.052632 -6.1 0 0

93 0.055556 -6.3 0 0

96 0.0625 -6.6 0 0

100 0.071429 -7 0 0

104 0.083333 -7.4 0 0

157 0.2 -12.7 0 0

167 0.25 -13.7 0 0

h(30) = 0.008738233

(c) At t = 30, (10 =)b < t < tD - b(= 157), Kq (x) = 30 - h

ti AH(ti) x Kq (x) Kq (x)AH(ti)

1 0.019231 16.6 0 0

3 0.039216 16.4 0 0

4 0.020408 16.3 0 0

10 0.020833 15.7 0 0

13 0.042553 15.4 0 0

16 0.044444 15.1 0 0

24 0.023256 14.3 0 0

26 0.02381 14.1 0 0

27 0.02439 14 0 0

28 0.025 13.9 0 0

30 0.051282 13.7 0 0

32 0.027027 13.5 0 0

41 0.027778 12.6 0 0

51 0.028571 11.6 0 0

65 0.030303 10.2 0 0

67 0.03125 10 0 0

70 0.032258 9.7 0 0

72 0.033333 9.5 0 0

73 0.034483 9.4 0 0

77 0.037037 9 0 0

91 0.052632 7.6 0 0

93 0.055556 7.4 0 0

96 0.0625 7.1 0 0

100 0.071429 6.7 0 0

104 0.083333 6.3 0 0

157 0.2 1 0 0

167 0.25 0 4 1

h(167) = 0.1

10

'-, h(27) = (10)-1 EiKq(x)AH(ti)

(d) At t = 167, (157 =)tD

4(1 + q3) 6(1 - q)

(1 + q)4 (1 +q)3, (10)-1 EiK, (x)AH(ti)

b < t < tD(= 167), Kq(x) x = 16^, h(167)

x

1

x=

Table 6: Analysis of uniform smoothed hazard rate for diploid group patients

ti di Yi H(ti) h(ti) L(ti)

1 1 28 0.035714286 0.031166063 0.872649778

3 1 27 0.072751323 0.023461182 0.322484609

4 1 26 0.111212861 0.024474361 0.220067724

5 2 25 0.191212861 0.024130904 0.126199167

8 1 23 0.234691122 0.021894230 0.093289553

12 1 21 0.282310170 0.017461373 0.061851733

13 1 20 0.332310170 0.020239151 0.060904398

18 1 19 0.384941749 0.018530399 0.048138189

23 1 18 0.440497304 0.017308867 0.039293922

26 1 17 0.499320834 0.014808867 0.029658019

27 1 16 0.561820834 0.014808867 0.026358700

30 1 15 0.628487500 0.012177288 0.019375545

42 1 14 0.699916072 0.003571429 0.005102653

56 1 13 0.776839149 0.008012821 0.010314646

62 1 12 0.860172482 0.008012821 0.009315365

69 1 10 0.960172482 0.009166667 0.009546896

104 2 8 1.210172482 0.022500000 0.018592391

112 1 5 1.410172482 0.022500000 0.015955495

129 1 4 1.660172482 0.012500000 0.007529338

181 1 2 2.160172482 0.200000000 0.092585199

(a)

ti AH(ti) x Kq (x) Kq (x)AH(ti)

1 0.03571429 0.7 0.720164 0.025720132

3 0.03703704 0.5 0.679012 0.025148574

4 0.03846154 0.4 0.658435 0.025324438

5 0.08000000 0.3 0.637859 0.051028744

8 0.04347826 0 0.576131 0.025049174

12 0.04761905 -0.4 0.493827 0.023515552

13 0.05000000 -0.5 0.473251 0.023662525

18 0.05263158 -1 0.37037 0.019493158

23 0.05555556 -1.5 0 0

26 0.05882353 -1.8 0 0

27 0.06250000 -1.9 0 0

30 0.06666667 -2.2 0 0

42 0.07142857 -3.4 0 0

56 0.07692308 -4.8 0 0

62 0.08333333 -5.4 0 0

69 0.10000000 -6.1 0 0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

104 0.25000000 -9.6 0 0

112 0.20000000 -10.4 0 0

129 0.25000000 -12.1 0 0

181 0.50000000 -17.3 0 0

h(8) = 0.02189423

(b) Att = 8 < b( = 8 - \ h(8)

10

10), Kq = (10)

= 4(1 + q3) + 6(1 - q)

(x) (1 + q)4 +(1 + q)3'

-1 TiiKq (x)A H (ti)

ti AH(ti) x Kq (x) Kq (x)AH(ti)

1 0.03571429 2.6 0 0

3 0.03703704 2.4 0 0

4 0.03846154 2.3 0 0

5 0.08000000 2.2 0 0

8 0.04347826 1.9 0 0

12 0.04761905 1.5 0 0

13 0.05000000 1.4 0 0

18 0.05263158 0.9 0.5 0.026315789

23 0.05555556 0.4 0.5 0.027777778

26 0.05882353 0.1 0.5 0.029411765

27 0.06250000 0 0.5 0.03125

30 0.06666667 -0.3 0.5 0.033333333

42 0.07142857 -1.5 0 0

56 0.07692308 -2.9 0 0

62 0.08333333 -3.5 0 0

69 0.10000000 -4.2 0 0

104 0.25000000 -7.7 0 0

112 0.20000000 -8.5 0 0

129 0.25000000 -10.2 0 0

181 0.50000000 -15.4 0 0

h(27) = 0.014808867

(c) At t = 27, (10 =)b < t < tD - b(= 171), Kq(x) = 27 - ti

x =

fe(27) = (10)-1 E,.Kq(x)AH(ti)

ti AH(ti) x Kq (x) Kq (x)AH(ti)

1 0.03571429 1.8 0 0

3 0.03703704 1.78 0 0

4 0.03846154 1.77 0 0

5 0.08000000 1.76 0 0

8 0.04347826 1.73 0 0

12 0.04761905 1.69 0 0

13 0.05000000 1.68 0 0

18 0.05263158 1.63 0 0

23 0.05555556 1.58 0 0

26 0.05882353 1.55 0 0

27 0.06250000 1.54 0 0

30 0.06666667 1.51 0 0

42 0.07142857 1.39 0 0

56 0.07692308 1.25 0 0

62 0.08333333 1.19 0 0

69 0.10000000 1.12 0 0

104 0.25000000 -7.7 0.77 0

112 0.20000000 0.69 0 0

129 0.25000000 0.52 0 0

181 0.50000000 0 4 2

h(181) = 0.2

(d) At t = 181, (171 =)tD - b < t < tD( = 181), Kq(x) 4(1 + q3) 6(1 - q) _ 181 - t,-

(1 + q)4 (1 +q)3' (10)-1 E ¡Kq (x)AH (ti) = 0.2

10

h(181) =

1

Let Li(t) be the ageing intensity of the aneuploid patients and L2(t) be the ageing intensity of diploid patients.

From the Table 8 we get, at interval [1,5), the ageing intensity for aneuploid patients is less than the diploid patients where as at the subintervals [5,13), the ageing intensity for aneuploid patients is more than the diploid patients. But as we proceed, we observe that there is an alternate sign for the rest of the subintervals. Thus we cannot get a concluding remark. To obtain the desired result, we now calculate the total time for which aneuploid patients have less ageing intensity than diploid patients and vice versa.

After calculations, we get to know that the aneuploid patients have low ageing intensity than the diploid patients for a time of 101 weeks, whereas the diploid patients have less ageing intensity than aneuploid patients for a time of 79 weeks.

Figure 3: Comparison of smoothed hazard rate between aneuploid and diploid patients.

Figure 4: Comparison of ageing intensity between aneuploid and diploid patients.

On the basis of the above analysis we can clearly observe that the cancer patients with aneuploid DNA have less ageing intensity than the patients with diploid DNA profile.

5. Conclusion

There are several factors which are the majors of prognosis for the death (failure) of a man in case of the transplant among the patients with tongue cancer. Nonetheless, the study is confined to the effect of ploidy on the survival of patients with tongue cancer. Based on the failure data available for the patients with tongue cancer with aneuploid and diploid DNA profile, statistical analyses were made and graphical interpretation was studied from the curves obtained with several parameters like reliability function cumulative hazard rate function, smoothed hazard

Table 7: Interval-wise comparison of hazard rates between aneuploid and diploid patients

Interval Comparison of h(t)

[1,5) h1 (t) < h2 (t)

[5,13) hx (t) < h2 (t)

[13,23) hx (t) < h2 (t)

[23,41) h1 (t) < h2 (t)

[41,42) h1 (t) < h2 (t)

[42,51) h1 (t) > h2 (t)

[51,65) h1 (t) < h2 (t)

[65,104) h1 (t) > h2 (t)

[104,157) h1 (t) < h2 (t)

[157,181) h1 (t) > h2 (t)

Table 8: Interval-wise comparison of ageing intensities between aneuploid and diploid patients

Interval Comparison of L(t)

[1,5) L1 (t) < L2(t)

[5,13) L1 (t) > L2(t)

[13,23) L1 (t) < L2(t)

[23,41) L1 (t) > L2(t)

[41,42) L1 (t) < L2(t)

[42,51) L1 (t) > L2(t)

[51,65) L1 (t) < L2(t)

[65,104) L1 (t) > L2(t)

[104,157) L1 (t) < L2(t)

[157,181) L1 (t) < L2(t)

rate function and ageing intensity. It is analysed from the graph in all the cases that patients with aneuploid DNA profile ought to be one of the basis for prognosis for the patients with tongue cancer. Hence it is inferred that patients with aneuploid tumors may get benefit significantly from a prolonged tumor free period. Here we discuss about the analysis of the censored and uncensored failure data through various measures of ageing phenomenon. Moreover, we summarize various ageing concepts of the lifetimes that have been widely studied in the field of reliability.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Acknowledgements

Subarna Bhattacharjee would like to thank Odisha State Higher Education Council for providing support to carry out the research project under OURIIP, Odisha, India (Grant No. 22-SF-MT-073).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

References

[1] Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 701-726.

[2] Barlow, R. E., and Proschan, F. (1975). Statistical theory of reliability and life testing: probability models. Florida State Univ Tallahassee.

[3] Bhattacharjee, S., Nanda, A. K., and Misra, S. K. (2013). Reliability analysis using ageing intensity function. Statistics & Probability Letters, 83(5): 1364-1371, DOI: 10.1016/j.spl.2013.01.016.

[4] Bhattacharjee, S., and Misra, S. K. (2016). Some aging properties of Weibull models. Electronic Journal of Applied Statistical Analysis, 9(2): 297-307, DOI: 10.1285/i20705948v9n2p297.

[5] Bhattacharjee, S., Mohanty, I., Szymkowiak, M., and Nanda, A. K. (2022). Properties of aging functions and their means. Communications in Statistics-Simulation and Computation, 1-20, DOI: 10.1080/03610918.2022.2141257.

[6] Ebeling, C. E. (2004). An introduction to reliability and maintainability engineering. Tata McGraw-Hill Education.

[7] Giri, R. L., Nanda, A. K., Dasgupta, M., Misra, S. K., and Bhattacharjee, S. (2023). On ageing intensity function of some Weibull models. Communications in Statistics-Theory and Methods, 52(1): 227-262, DOI: 10.1080/03610926.2021.1910845.

[8] Jiang, R., Ji, P., and Xiao, X. (2003). Aging property of unimodal failure rate models. Reliability Engineering & System Safety, 79(1): 113-116, DOI: 10.1016/S0951-8320(02)00175-8.

[9] Kaplan, E. L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282): 457-481, DOI: 10.1080/01621459.1958.10501452.

[10] Klein, J. P., and Moeschberger, M. L. (2003). Survival analysis: techniques for censored and truncated data, 1230, New York: Springer, DOI: 10.1007/b97377.

[11] Misra, S. K., and Bhattacharjee, S. (2018). A case study of aging intensity function on censored data. Alexandria Engineering Journal, 57(4): 3931-3952, DOI: 10.1016/j.aej.2018.03.009.

[12] Nanda, A. K., Bhattacharjee, S., and Alam, S. S. (2006). On upshifted reversed mean residual life order. Communications in Statistics-Theory and Methods, 35(8): 1513-1523, DOI: 10.1080/03610920600637271.

[13] Nanda, A. K., Bhattacharjee, S., and Alam, S. S. (2007). Properties of aging intensity function. Statistics & Probability Letters, 77(4): 365-373, DOI: 10.1016/j.spl.2006.08.002.

[14] Nanda, A. K., Bhattacharjee, S., and Balakrishnan, N. (2009). Mean residual life function, associated orderings and properties. IEEE Transactions on Reliability, 59(1): 55-65, DOI: 10.1109/TR.2009.2035791.

[15] Nelson, W. (1972). Theory and applications of hazard plotting for censored failure data. Technometrics, 14(4): 945-966, DOI: 10.1080/00401706.1972.10488991.

[16] Shaked, M., and Shanthikumar, J. G. (Eds.). (2007). Stochastic orders. New York, NY: Springer New York, DOI: 10.1007/978-0-387-34675-5.

[17] Shooman, M. L. (1968). Probabilistic reliability: an engineering approach.

[18] Swain, P., Bhattacharjee, S., and Misra, S. K. (2021). A Case Study to Analyze Ageing Phenomenon in Reliability Theory. Reliability: Theory & Applications, 16(4 (65)): 275-285, DOI: 10.24412/1932-2321-2021-465-275-285.

[19] Szymkowiak, M., Roychowdhury, A., Misra, S. K., Giri, R. L., and Bhattacharjee, S. (2023). A study of a survival data using kernel estimates of hazard rate and aging intensity functions. Statistics in Transition new series, 24(5): 109-127, DOI: 10.59170/stattrans-2023-066.

i Надоели баннеры? Вы всегда можете отключить рекламу.