УДК [616.98:578]:612.112.95
РОЛЬ МОНОЦИТОВ/МАКРОФАГОВ В ПАТОГЕНЕЗЕ ВИРУСНЫХ ИНФЕКЦИЙ
Н.Г. Плехова, Л.М. Сомова
НИИ эпидемиологии и микробиологии СО РАМН (690087 г. Владивосток, ул. Сельская, 1) Ключевые слова: моноциты, макрофаги, вирусные инфекции, патогенез.
Обзор, посвященный актуальному вопросу - участию клеток моноцитарного ряда в развитии вирусных инфекций. Эти клетки могут осуществлять противовирусный эффект, который включает поглощение, обезвреживание и элиминацию вирусов и инфицированных ими клеток. При этом моноциты/макрофаги активизируются и продуцируют цитокины. Также эти клетки могут обладать и отрицательным воздействием, когда происходит диссеминация фагоцитированных ими вирусов в различные органы и тем самым образование местных очагов воспаления. При этом возникает как депрессия функциональной активности макрофагов, так и проявление нежелательных последствий их чрезмерной активации, что приводит к уничтожению здоровых клеток в месте воспаления за счет продукции активных радикалов кислорода и оксида азота.
Функциональные свойства клеток моноцитарного происхождения настолько многообразны, что их неполноценность, как следствие или причина патологического процесса, со временем неизбежно формирует системное поражение организма [5]. После выхода из костного мозга и циркуляции в крови в течение трех дней моноциты мигрируют в ткани и органы, где дифференцируются в тканевые (резидентные) макрофаги. При этом в процессе диффе-ренцировки из промиелоцита в моноцит на поверхности их плазматической мембраны образуются многочисленные рецепторы, принимающие участие в процессах адгезии, эндо- и фагоцитоза, межклеточном взаимодействии и восприятии регуляторных воздействий [5]. На мембране макрофага экспрессированы различные рецепторы, специфичные как для каждого класса иммуноглобулинов - FcR, так и для фракций активированного комплемента -CR1, CR3, CR4. При этом Fc-R опосредуют антителозависимую клеточную цитотоксичность, которая играет определенную роль при вирусных инфекциях [23]. Лектиноподобные рецепторы макрофагов идентифицируют и связывают сахаридные группы глюкозы, галактозы, фруктозы, маннозы фагоци-тируемогго объекта, играют определенную роль в процессе присоединения группы вирусов, имеющих гликопротеиновую оболочку. Триггерные рецепторы миелоидных клеток (TREM-1) образуются макрофагами в присутствии инфекционных агентов, в том числе вирусов. Соединение их с лигандами молекул на поверхности вирусных частиц активирует генерацию активных форм кислорода и продукцию про-
Плехова Наталья Геннадьевна - д-р биол. наук, заведующая лабораторией патоморфологии и электронной микроскопии НИИЭМ СО РАМН; тел.: 8 (4232) 44-24-34, e-mail: [email protected]
воспалительного цитокина - интерлейкина-8 (ИЛ-8). Toll-подобные рецепторы, соединяясь с липополисахаридными и другими лигандами патогена, индуцируют выработку цитокинов и устранение самого носителя [2].
С помощью специфических сывороток, включая моноклональные антитела гибридомного происхождения, на мембране моноцитов человека выявлены два антигена, названные Мо-1 и Мо-2, которые экспрессированы не только на 75% моноцитов, но и на макрофагах лимфатических узлов, селезенки и костного мозга [5]. При этом популяция моноцитов у человека идентифицируется по экспрессии специфичного для бактериального липополисахарида кластера дифференцировки (Claster of Differentiation - CD) -рецептора CD14. Но на настоящий момент классификация этой популяции клеток расширена за счет дифференцированного подхода к степени экспрессии CD14 и CD16 (FcyRIII) на мембране клеток [30]. Особую роль при вирусных инфекциях играют рецепторы - интегрины LFA-1, Mac-1 и в2 группы VLA, распознающие белки внеклеточного матрикса.
Для прикрепления к адгезивным молекулам (Intercellular Adhesion Molecules - ICAMs) внешней поверхности мембраны клеток вирусы различных видов имеют различные рецепторы. Для проникновения в клетки-мишени хантавирус и вирусы семейства Picornaviridae - ECHO 1, Коксаки A21 и В3 - используют гликопротеины - интегрины, состоящие из различных комбинаций а- и в-цепей, а энтеровирусы 70 и ЕСНО 7 - рецептор CD55 (Decay-Accelerating Factor - DAF), наличие которых отмечается на поверхности моноцитов/макрофагов [8, 18, 19]. Флавивирусы могут связываться с гепарансуль-фатным протеогликаном - рецептором, обнаруженным на поверхности моноцитов/макрофагов [11]. Определена зависимость адгезии вирусов от стадии дифференцировки этих клеток. Так, при заражении хантавирусом перевиваемой линии клеток THP-1, являющейся предшественником моноцитов, и моноцитов/макрофагов первичной культуры цитокин- и хемокинпродуцирующая активность последних более выражена [22].
Необходимо отметить, что конкретные механизмы активации макрофагов при различных вирусных инфекциях неидентичны и на данный момент находятся в стадии интенсивного изучения. Для фагоцитов характерны два хорошо различаемых функциональных состояния: исходное, с низким
уровнем протекания метаболических процессов, и активированное, переход в которое обусловлен взаимодействием клеток с различными стимуляторами
[1]. Известно, что активация и процесс фагоцитоза сопровождаются выраженными изменениями клеточного метаболизма: возрастают потребление кислорода и продукция молочной кислоты, усиливается метаболизм глюкозы, активируется гексозомоно-фосфатный шунт, усиливается синтез липидов мембраны, снижается активность 5’-нуклеотидазы [17]. По современным представлениям, микробицидное и цитотоксическое действие профессиональных фагоцитов, в частности моноцитов/макрофагов, осуществляется двумя механизмами: кислородзависи-мым и кислороднезависимым [30]. Известно, что оптимальная защитная реакция этих клеток достигается путем комбинации конечных продуктов кис-лородзависимых и кислороднезависимых путей метаболизма. Мгновенная кислородзависимая реакция фагоцитов на внедрение агентов получила название «дыхательного или метаболического взрыва», в результате которого происходит быстрое образование больших количеств активных метаболитов кислорода (АМК или ROI) [1]. В состав активных метаболитов кислорода входят: молекулярный кислород
(02), супероксидный анион-радикал (О2), перекись водорода (Н2О2), пероксидный радикал (НО2), пе-роксидный ион (НО2), синглетный кислород (О2), гидроксильные радикалы (НО-) и их производные: HOCI, R-NCI.
В последнее десятилетие определено, что наряду с АМК в стимулированном макрофаге образуются оксид азота и его метаболиты [13]. Образование оксида азота происходит при участии фермента - ин-дуцибельной нитроксидсинтазы (iNOS). Этот фермент в макрофагах солокализован с мембранными структурами, его концентрация в норме очень низка, и его высокая активность индуцируется цито-кинами и другими биологически активными веществами [6]. Изучение роли нитроксидобразующей активности макрофагов при вирусных инфекциях начато относительно недавно. Определено, что эндогенный оксид азота может ограничивать репликацию вируса иммунодефицита человека и других вирусов [9]. В исследованиях T.R. Kreil и М.М. Eibl [20] было показано, что инфицированные вирусом клещевого энцефалита макрофаги мышей значительно снижают продукцию оксида азота. Введение в культуру инфицированных этим вирусом макрофагов ^-интерферона увеличивало нитроксидобра-зующую активность клеток, а комбинация интерферона с фактором некроза опухоли а приводила к ее угнетению, что, вероятно, осуществлялось через индукцию синтеза фагоцитами ß- и а-интерферона. Высокие уровни образования оксида азота in vitro не оказали ингибирующего воздействия на репликацию этого вируса, тогда как при заражении попу-
ляций моноцитов/макрофагов вирусом Западного Нила определено его стимулирующее воздействие на нитроксидпродуцирующую активность этих клеток [25]. Также под воздействием вируса японского энцефалита в макрофагальной культуре наблюдался внутри- и внеклеточный стимулирующий эффект Y-интерферона в отношении нитроксидобразующей активности клеток. Причем в этих фагоцитах установлено NO-опосредованное ингибирующее действие на репликацию данного вируса. Наряду с увеличением уровня оксида азота, выделяемого моноцитами крови больных, инфицированных вирусом Денге in vitro, в этих же клетках установлена экспрессия индуцибельной нитроксидсинтазы и доказано, что для полноценного антивирусного действия макрофагов необходима активация кислородзави-симой ферментной системы [24]. В этом случае при одномоментной продукции активных метаболитов кислорода и оксида азота происходит образование пероксинитрита, который в свою очередь усиливает цитотоксичность макрофагов в отношении вируса Денге [10].
Таким образом, очевидно, что способность моноцитов/макрофагов к продукции оксида азота имеет определенное значение в патогенезе вирусных инфекций. Представляет интерес, каким образом это соединение может подавлять репродукцию вируса, -либо оказывая действие на процесс его синтеза, либо опосредованно через активацию защитных механизмов клетки. Действительно, на различных клеточных культурах было продемонстрировано, что оксид азота в равной степени влияет как на репликацию вируса, так и на инфицированные клетки. На модели макрофагальной культуры, зараженной вакцинным ДНК-содержащим вирусом, выявлено, что индуцируемый под влиянием ^-интерферона оксид азота через инактивацию рибонуклеиновой редуктазы клеток воздействует на поздние стадии репликации вируса, включая ДНК-синтез, синтез белков и созревание ви-рионов [10].
Моноциты/макрофаги относятся к одним из главных клеток иммунной системы, способных к усиленной продукции провоспалительных (ИЛ-1а, ИЛ-1в, ИЛ-6, ИЛ-8, gro-а, фактор некроза опухоли а, колониестимулирующие факторы), а также противовоспалительных (ИЛ-10, трансформирующий фактор роста в) цитокинов [2]. Установлено, что многие вирусы, в частности филовирусы Марбург и Эбола, вызывают повышенную продукцию макрофагами провоспали-тельных цитокинов ИЛ-1, ФНОа и ИЛ-6, хемокинов ИЛ-8 и gro-а, а также противоспалительного цито-кина ИЛ-10, который оказывает влияние на проникновение вируса в эндотелиоциты [14]. Значительное увеличение уровня ИЛ-10, продуцируемого под влиянием вируса иммунодефицита человека моноцитами, коррелирует с повышением в них уровня белка, оказывающего влияние на миелоидную дифференциров-
ку клеток, тем самым обеспечивая возрастание пула зрелых моноцитарных клеток [12].
Известно, что клетками в стадии некроза и моноцитами/макрофагами, активированными различными инфекционными агентами, продуцируется высокомобильная группа ядерных белков 1 (Nuclear Protein High Mobility Group Box 1 - HMGB1). Эти протеины оказывают влияние на экспрессию макро-фагальными клетками провоспалительных цитоки-нов, хемокинов и молекул адгезии. Многие вирусы, в том числе вирус Западного Нила, индуцируют пассивную реализацию ядерных белков, что указывает на определенную роль этой группы соединений в патогенезе вирусных инфекций. По мнению некоторых авторов, данные протеины можно отнести к группе цитокинов, способных воздействовать на клетки врожденного иммунитета, тем самым инициируя усиление иммунного ответа организма при вирусных инфекциях, что было показано у больных вирусным гепатитом [28].
Помимо цитокинов, макрофаги активно синтезируют группу секреторных гликопротеинов - ин-терфероны (ИФН). Известно более 20 интерферонов, различающихся по структуре и функциональной активности, которые объединены в два типа: I (ИФНа, ИФНР) и II (ИФНу) [2]. Моноцитами/макрофагами синтезируются 24 подтипа, различающиеся по структуре ИФНа, а в стимулированном состоянии они начинают продуцировать ИФНу. Стимуляторами образования последнего могут выступать вирусы, поэтому это соединение относят к первой линии противовирусной защиты организма.
Механизмы противовирусного действия интер-феронов многогранны. Если ИФН II типа блокируют проникновение и депротеинизацию вирусных частиц путем угнетения процесса трансляции их мРНК, то ИФН I типа а и в воздействуют на синтез вирусных белков, включая отпочковывание на поверхности клеток дочерних популяций вируса. При этом интерфероны не влияют на ранние этапы репликативного цикла (адсорбцию, пенетрацию и «раздевание»), их противовирусное действие проявляется даже при заражении клеток инфекционными РНК. В результате связывания ИФН со специфическими для них рецепторами на поверхности клетки внутри нее происходит активация генов, локализованных в 21-й хромосоме. Некоторые из этих генов кодируют образование ферментов, оказывающих прямое антивирусное воздействие, - протеиназы и олигоаденилатсинтетазы. Эти соединения принимают участие в расщеплении белков и РНК как клеток, так и вирусов. Также ИФН индуцируют образование серинтреониновой киназы Р1, которая принимает участие в процессе фосфорилирования фактора elF, тем самым подавляя транскрипцию клеточных и вирусных белков. ИФН способны активировать и фосфодиэстеразу, которая расщепляет тРНК, ре-
зультатом чего является нарушение процесса сборки белковых молекул вируса [2].
Противовирусная активность интерферонов может реализоваться через повышение устойчивости клеток. Так, а-интерферон стимулирует синтез Мх-белков, которые, взаимодействуя с компонентами РНК-полимеразного комплекса, повышают устойчивость клеток к инфицированию РНК-содержащими вирусами. ИФНу активирует нитроксидсинтазу, тем самым повышая внутриклеточное содержание метаболитов оксида азота, ингибирующего синтез вирусов, а также стимулирует эффекторные функции натуральных киллеров, Т-лимфоцитов, моноцитов, тканевых макрофагов и гранулоцитов, проявляющих антителозависимую и независимую цитотоксичность. Кроме того, ^-интерферон способен индуцировать апоптоз нормальных, инфицированных и трансформированных клеток.
В современной литературе потенциальные антивирусные функции макрофагов классифицируются как прямые и опосредованные [6]. Прямая антивирусная активность определяется способностью макрофагов нарушать вирусную репликацию, и в таком случае макрофаг является невосприимчивой для вирусной репликации клеткой. Опосредованная антивирусная активность определяется способностью макрофага внеклеточно влиять на вирус, что препятствует его репликации в окружающих восприимчивых клетках. При этом отмечается, что при развитии некоторых вирусных инфекций активированный макрофаг приобретает способность различать инфицированные и интактные клетки [10]. Таким образом, значение моноцитов/макрофагов при вирусных инфекциях определяется их функциональным состоянием. С одной стороны, зараженные вирусом моноциты, взаимодействующие в первую очередь с инфекционным агентом, при их преобразовании в макрофаги могут служить для проникновения данного возбудителя в различные органы, а с другой стороны, для вирусов, инактивируемых макрофагами, эти клетки являются биологическим барьером, препятствующим распространению возбудителя из первичного очага инфекции. Особенное значение приобретает вопрос моноцитарно-макрофагального воздействия именно в первые часы и сутки после заражения, причем необходимо учитывать, что конкретные механизмы активации этих клеток при различных вирусных инфекциях неидентичны и на данный момент находятся в стадии интенсивного изучения.
С другой стороны, определено, что не все вирусы в одинаковой степени чувствительны к действию ферментных систем фагоцитов [28]. Одни легко инактивируются макрофагами (группа I), а другие резистентны к действию макрофагов (группа II). Многие представители последней группы способны к активной и нередко длительной репродукции в организме,
тогда как для вирусов, легко инактивируемых макрофагами, эти клетки являются препятствием для распространения в организме и защищают от заражения высокочувствительные клетки центральной нервной системы и паренхиматозных органов. В случае, если размножающийся в макрофагах вирус обладает ци-топатической активностью в отношении клеток жизненно важных органов (мозг, печень), обычно развивается острая инфекция, как правило, с летальным исходом. При отсутствии деструктивной активности вирусов в отношении макрофагов и других клеток формируется персистентный тип инфекции. Результаты опытов, выполненных in vitro, свидетельствуют о том, что вирусы одинаково легко проникают в нативные и стимулированные макрофаги, и доказано, что источником инфекции в организме могут становиться и те макрофаги, которые являются непер-миссивной системой для вируса. Так, показано, что в макрофагах крыс in vitro вирус гриппа А быстро обезвреживается [20]. Этот процесс связывают с нарушением синтеза вирусных полипептидов. В то же время, по данным E. Li et al. [21], перитонеальные макрофаги крыс, адсорбировавшие на своей мембране этот вирус, приобретали способность инфицировать монослой чувствительных к нему клеток конъюнктивы человека. Также немаловажно, что при размножении различных вирусов в макрофагах (в частности, вируса иммунодефицита человека) их цитопатиче-ское воздействие морфологически не выявляется, но определяется снижение бактерицидного потенциала и синтезирующей активности клетки. Это в последующем может выражаться в реализации потенциала макрофагов как инициаторов иммунного ответа организма.
В настоящее время различными исследователями определено, что многие вирусы способны инфицировать моноциты/макрофаги, в том числе возбудители геморрагических лихорадок, такие как вирусы Денге, Хунин, Хантаан, а также вирус клещевого энцефалита. При этом функциональное состояние клеток макро-фагального ряда влияет на развитие резистентности организма [4]. При использовании различных популяций моноцитов/макрофагов человека и животных было доказано, что эти клетки являются мишенями для инфицирования многими флавивирусами. Причем к одному из уникальных свойств этих вирусов относится способность заражать популяции моноцитов/макрофагов вне зависимости от стадии их дифференцировки. К таким вирусам принадлежат вирусы Денге, Хунин, японского и клещевого энцефалитов [29], притом, что скорость размножения других вирусов, например вируса иммунодефицита человека и цитомегаловируса, коррелирует со степенью зрелости фагоцитов [26]. Необходимо отметить данные о подавлении функциональной активности моноцитов крови у больных клещевым энцефалитом при длительной и стабильной виремии [3].
Сообщалось, что из общей популяции мононукле-арных клеток периферической крови больных энте-ровирусными инфекциями, включающей лимфоциты, гранулоциты и моноциты, изолируются возбудители этих заболеваний, при этом некоторые энтеровирусы способны размножаться в данных клетках [15]. Так, выход вирусных частиц из мононуклеарных клеток крови был установлен в отношении вирусов ECHO 5 и 11, при этом титр вируса в зараженных вирусом ECHO 9 клетках выявлялся на постоянном уровне в течение всего наблюдаемого периода [26]. Молекулярная основа такого различия до конца неясна. В экспериментах in vitro после заражения вирусом Coxsackie 3 мононуклеарных лейкоцитов периферической крови человека, клеток костного мозга и отдельно -популяции гранулоцитов выявлен внутриклеточный синтез вирусных белков, но образования инфекционного вируса не обнаружено. При этом отмечалось различие в чувствительности популяций гемопоэти-ческих клеток к инфицированию этим вирусом, что предполагает зависимость его распространения от стадий созревания и дифференцировки иммуноком-петентных клеток [27].
Несмотря на то, что для полиовируса определен специфический рецептор CD155, механизм, с помощью которого вирус вызывает развитие паралитического заболевания, до конца не установлен. Ранее было показано, что CD155 экспрессирован на первичных человеческих моноцитах и эти клетки способны поддерживать низкий, но статистически значимый уровень репликации полиовируса ex vivo без предшествующего культивирования. Тем не менее на настоящий момент известно, что полиовирус инфицирует клетки гемопо-этических линий, а также клетки лимфоидных, моно-цитарных и гранулоцитарных линий [26].
Таким образом, исходя из вышеизложенного, необходимо отметить важность клеток моноцитарного ряда в развитии вирусных инфекций. Так, моноциты/макрофаги могут осуществлять положительный противовирусный эффект путем поглощения, обезвреживания и элиминации вирусов и инфицированных ими клеток, что ведет к их активации, системной и локальной продукции цитокинов. Наряду с этим данные клетки могут обладать и отрицательным воздействием. В первичном иммунном ответе оно выражается в том, что при репродукции фагоцитированных вирусов посредством макрофагов происходит диссеминация их в различные периферийные органы. В таком случае данные фагоциты выступают в роли своеобразного троянского коня, тем самым опосредуя образование локальных очагов воспаления. При этом возникает как депрессия функциональной активности клеток, так и проявление нежелательных последствий их изменений, приводящих к уничтожению здоровых клеток в месте воспаления за счет чрезмерной продукции активных радикалов кислорода и оксида азота.
В свою очередь, способность вирусов инфицировать моноциты/макрофаги и размножаться значительно зависит от их вида. Преимущественно РНК-содержащие вирусы резистентны к действию макрофагов и способны к внутриклеточной репродукции в их цитоплазме. Такая репродукция вирусов в макрофагах может заканчиваться в случае продуктивной инфекции образованием полноценных вирионов, а в случае абортивной - формированием вирусных компонентов. И в том, и в другом случае реакция макрофагов оказывает влияние на защитный ответ организма.
Литература
1. Гамалей И.Ф., Клюбин И.В. Перекись водорода как сигнальная молекула // Цитология. 1996. Т. 38, № 12. С. 1223-1247.
2. Литвитский П.Ф., Синельникова Т.Г. Врожденный иммунитет: механизмы реализации и патологические синдромы // Вопросы современной педиатрии. 2009. Т. 8. С. 95-101.
3. Пирогова Н.П., Михайлова О.В., Карпова М.Р. и др. Особенности фагоцитарной активности лейкоцитов в периферической крови у больных клещевым энцефалитом // Бюллетень экспериментальной биологии и медицины. 2002. Прил. 1. С. 82-85.
4. Плехова Н.Г. Ультраструктурная и цитохимическая характеристика макрофагов, инфицированных РНК-содержащими вирусами: дис. ... д-ра биол. наук, 2009. 350 с.
5. Тотолян А.А., Фрейдлин И.С. Клетки иммунной системы. СПб: Наука, 2000. 220 с.
6. Baskin H.S. Herpes simplex virus type 2 synergizes with interfer-on-y in the induction of nitric oxide production in mouse macrophages through autocrine secretion of tumour necrosis factor-a // Gen. Virol. 1997. Vol. 78. P. 195-203.
7. Belge K.U., Dayyani F., Horelt A. et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF // J. Immunol. 2002. Vol. 168. P. 3536-3542.
8. Bergelson J.M., Cunningham J.A., Droguett G. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 // Science. 1997. Vol. 275. P. 1320-1323.
9. Blond D., Raoul H., Grand R., Dormont D. Nitric oxide synthesis enhances human immunodeficiency virus replication in primary human macrophages // J. Virol. 2000. Vol. 74, No. 19. Р. 8904-8912.
10. Chaturvedi U.C., NagarR., Shrivastava R. Macrophage & Dengue virus: Friend or foe? // Ind. J. Med. Res. 2006. Vol. 124. P. 23-40.
11. Chen Y.-C., Wang S.-Y. Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide // J. Virol. 2002. Vol. 76. P. 9877-9887.
12. Coleman C.M., Wu L. HIV interactions with monocytes and dendritic cells: viral latency and reservoirs // Retrovirology. 2009. Vol. 6. P. 51-62.
13. Fang F.C., Vazquez-Torres A. Nitric oxide production by human macrophages: there>s NO doubt about it // Am. J. Physiol. Lung Cell. Mol. Physiol. 2002. Vol.282, No. 5. Р 941-943.
14. Feldmann H., Bugany H., Mahner F et al. Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages // J. Virol. 1996. Vol. 70, No. 4. P. 2208-2214.
15. Freistadt M.S., Eberle K.E. Poliovirus receptor on human blood cells: a possible extraneural site of poliovirus replication J. Virol. 1996. Vol. 70. P. 6486-6492.
16. Gavrilovskaya I.N., E.J. Brown, M.H. Ginsberg et al. Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins // J. Virol. 1999. Vol. 73, No. 5. P. 3951-3959.
17. Greenberg S., Grinstein S. Phagocytosis and innate immunity // Curr. Opin. Immunol. 2002. Vol. 14. P.136 145.
18. Helmy K.Y., Katschke K.J. Jr., Gorgani N.N. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens // Cell. 2006. Vol. 124. P. 915-927.
19. Jin M., Park J., Lee S. et al. Hantaan virus enters cells by clath-rindependent receptor-mediated endocytosis // Virol. 2002. Vol. 294, No. 1. P. 60-69.
20. Kreil T.R., Eible M.M. Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo // Virol. 1996. Vol. 219. P. 304-306.
21. Li E., Stupack D., Bokoch G.M., Nemerow G.R. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases // J. Virol. 1998. Vol. 72. P. 8806-8812.
22. Markotic A., Hensley L., Daddario K. et al. Pathogenic hantaviruses elicit different immunoreactions in THP-1 cells and primary monocytes and induce differentiation of human monocytes to dendritic-like cell // Coll. Antropol. 2007. Vol. 31, No. 4. P. 1159-1167.
23. Nauwynck H.J., Duan X., Favoreel H.W. et al. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis // J. General. Virol. 1999. Vol. 80. P. 297-305.
24. Neves-Souza P.C., Azeredo E.L., Zagne S.M. et al. Kubelka Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection // BMC Infect. Dis. 2005. Vol. 18, No. 5. P. 64-67.
25. Shen J., Devery J.M., King N.J. Adherence status regulates the primary cellular activation responses to the flavivirus West Nile // Immunol. 1995. Vol. 84. P. 254-264.
26. Tuthill T.J., D. Bubeck, D.J. Rowlands, J.M. Hogle Characterization of early steps in the Poliovirus infection process: receptordeco-rated liposomes induce conversion of the virus to membranean-chored entryintermediate particles // Virol. 2006. Vol. 80, No. 1. P. 172-180.
27. Vuorinen T., Vainionpa R., Heino J., Hyypia T. Coxsackievirus B3 infection in human leukocytes and lymphoid cell lines // J. Gener. Virol. 1999. Vol. 80. P. 921-927
28. Wang H., Ward M. F., Fan X.-G. et al. Potential role of high mobility group box 1 in viral infectious diseases // Viral. Immunol. 2006. Vol.19, No. 1. P. 3-9.
29. Yang K.D., Yeh W.-T., Chen R.-F. et al. Macrophages and other nonspecific defenses: role in modulating resistance against herpes simplex virus // J. Gen. Virol. 2004. Vol. 85. P. 635-642.
30. Ziegler-Heitbrock H.W. Definition of human blood monocytes // J. Leukoc. Biol. 2000. Vol. 67. P. 603-606.
Поступила в редакцию 01.03.2010.
THE ROLE OF MONOCYTES/MACROPHAGES IN PATHOGENESIS OF VIRAL INFECTION
N.G. Plekhova, L.M. Somova
Institute of Epidemiology and Microbiology, SB RAMS (1 Selskaya St. Vladivostok 690087 Russia)
Summary - Review is dedicated to actual question of the mono-cyting derivative cells participation in development of viral infection. These cells can realize positive antiviral effect, which include the ingesting, killing and elimination of viruses and infecting cells. Herewith monocytes/macrophages are actuated and produced of cytokine. Aside from this, these cells can possess and negative influence, when are occur the dissemination of phagocyting these viruses in different organs and, hereunder, the formation of new local inflammation foci. For this reason appears as depression of cells functional activity, so and manifestation of undesirable consequence their overweening activation, as follows, they can destroy the sound cells in inflammation foci, produced the active radicals of the oxygen and nitric oxide.
Keywords: monocytes, macrophages, viral infections, pathogenesis.
Pacific Medical Journal, 2010, No. 3, p. 5-9.