Научная статья на тему 'Роевой алгоритм в задачах оптимизации'

Роевой алгоритм в задачах оптимизации Текст научной статьи по специальности «Математика»

CC BY
1343
219
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РОЕВОЙ АЛГОРИТМ / МАТЕМАТИЧЕСКАЯ МОДЕЛЬ / ОПТИМИЗАЦИОННАЯ ЗАДАЧА / SWARM ALGORITHM / MATHEMATICAL MODEL / AN OPTIMISING PROBLEM

Аннотация научной статьи по математике, автор научной работы — Курейчик Владимир Викторович, Запорожец Дмитрий Юрьевич

Описывается вероятностный алгоритм решения оптимизационных задач проектирования, основанный на модели поведения колонии медоносных пчел. В основе алгоритма лежит разбиение поискового пространства на области с высоким значением целевой функции. В алгоритме используется механизмы динамического изменения параметров каждой области, а также количества агентов. Это позволяет получать наборы оптимальных и квазиоптимальных решений за полиномиальное время.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SWARM ALGORITHM IN OPTIMISATION PROMLEMS

In this article probabilistic algorithm for optimisation problems, based on model of behaviour of a melliferous bees colony is described. At the base of algorithm splitting of search space into areas with high value of criterion function lies. In algorithm it is used mechanisms of dynamic change of parametres of each area, and also quantity of agents. It allows to receive sets of optimum and quasioptimum decisions for полиномиальное time.

Текст научной работы на тему «Роевой алгоритм в задачах оптимизации»

решении практических задач, таких как распознавание объектов. При решении таких специальных задач целесообразно находить эффективный предметноориентированный набор значений параметров настройки МДР в связи с относительной примитивностью его эвристических механизмов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Деревянкина А.А., Нейдорф Р.А. Модификация и структурно-параметрическая оптимизация метода роящихся частиц для решения экстремальных задач // Математические методы в технике и технологиях - ММТТ-22: Сб. тр. XXII Междунар. науч. конф. и IV Междунар. науч. - метод. симп. - Ростов-на-Дону, 2009. - Т. 11.

2. Нейдорф Р.А., Деревянкина А.А. Методы и задачи S-аппроксимации полутоновых изображений при распознавании графических образов // Математические методы в технике и технологиях - ММТТ - 22: Сб. тр. ХХП Междунар. науч. конф.: в 10 т. - Псков, 2009. - Т. 6.

Нейдорф Рудольф Анатольевич

Донской государственный технический университет.

E-mail: [email protected].

344114, г. Ростов-на-Дону, ул. Беляева, 22а, кв. 57.

Тел.: 88632910764.

Деревянкина Анна Анатольевна

E-mail: [email protected].

344068, г. Ростов-на-Дону, пер. Краснокамский, д.23.

Тел.: 88632910764.

Neydorf Rudolf Anatolievich

Don State Technical University.

E-mail: [email protected].

22a, ap. 57, Belyaeva street, Rostov-on-Don, 344114, Russia.

Phone: 88632910764.

Derevaynkina Anna Anatolievna

E-mail: [email protected].

23, Krasnokamskei lane, Rostov-on-Don, 344068, Russia.

Phone: 88632910764.

УДК 321.3

В.В. Курейчик, Д.Ю. Запорожец РОЕВОЙ АЛГОРИТМ В ЗАДАЧАХ ОПТИМИЗАЦИИ*

Описывается вероятностный алгоритм решения оптимизационных задач проектирования, основанный на модели поведения колонии медоносных пчел. В основе алгоритма лежит разбиение поискового пространства на области с высоким значением целевой функции. В алгоритме используется механизмы динамического изменения параметров каждой области, а также количества агентов. Это позволяет получать наборы оптимальных и квазиоптимальных решений за полиномиальное время.

Роевой алгоритм; математическая модель; оптимизационная задача.

*

Работа выполнена при поддержке: РФФИ (гранты № 09-01-00509, № 10-01-00115), г/б № 2.1.2.1652.

V.V. Kureichik, D.U. Zaporoghetz SWARM ALGORITHM IN OPTIMISATION PROMLEMS

In this article probabilistic algorithm for optimisation problems, based on model of behaviour of a melliferous bees' colony is described. At the base of algorithm splitting of search space into areas with high value of criterion function lies. In algorithm it is used mechanisms of dynamic change of parametres of each area, and also quantity of agents. It allows to receive sets of optimum and quasioptimum decisions for полиномиальное time.

Swarm algorithm; mathematical model; an optimising problem.

Введение. На сегодняшний день эффективным направлением в эволюционном моделировании являются вероятностные алгоритмы, основанные на процессах, происходящих в живой природе. Проецируя закономерности окружающего мира на определенные сферы деятельности человека, такие как социальные, технические, политические, мы получаем эффективный инструмент для решения задач в различных направлениях деятельности человека. Свою эффективность уже доказали, например, метод моделирования отжига, алгоритмы «Ant Colony» и алгоритмы, основанные на эволюционном моделировании [1-4].

В работе предлагается вероятностный алгоритм решения оптимизационных задач проектирования, основанный на поведении колонии пчел [3] и позволяющий получать наборы оптимальных и квазиоптимальных решений. Алгоритм реализован на ЭВМ IBM PC на базе процессора Intel Core 2 Duo с тактовой частотой ядра 2500 МГц. Проведен вычислительный эксперимент. При этом временная сложность алгоритма не выходит из области полиноминальной сложности.

1. Математическая модель алгоритма, основанного на поведении колонии пчел. Поведение насекомых в живой природе заключается в том, что сначала из улья вылетает в случайном направлении какое-то количество пчел-разведчиков, которые пытаются отыскать участки, где есть нектар (рис. 1). Через какое-то время пчелы возвращаются в улей и особым образом сообщают остальным, где и сколько они нашли нектара. После этого на найденные участки отправляются другие пчелы, причем, чем больше на данном участке предполагается найти нектара, тем больше пчел летит в этом направлении [2].

На рис. 2 приведена модель, основанная на поведении колонии пчел. Здесь В является вершиной звездного графа. Остальные вершины - разведанные области со значениями целевой функции: вершина А - ЦФ 100, вершина Г - ЦФ 80, вершина Е - ЦФ 40, вершина С - ЦФ 5, вершина Б - ЦФ 0. Информацию о значениях целевой функции в этих вершинах пчелы-разведчики (агенты-разведчики) передают рабочим пчелам (агентам). После этого из вершины В направляется некоторое количество агентов в остальные вершины для исследования их окрестностей. Количество агентов в каждом направлении пропорционально значению целевой функции каждой вершины графа.

Рис. 2. Модель, основанная на поведении колонии пчел

Применительно к задачам оптимизации (задачам нахождения минимума или максимума) формализуем некоторые понятия. Стоит отметить, что поиск производится не на бесконечности, а на заранее заданном отрезке [a,b]. Обозначим N - число участков (блоков). Для упрощения возьмем количество блоков N = const, однако количество участков может меняться динамически в процессе работы алгоритма. Представим расположение участков поля в виде множества Х = {x1, x2, ..., Xj, ... xN}, а значение целевой функции на каждом участке в виде множества F(X) = {f(x1), f(x2), ... , f(Xj), ... , f(xN)}. Зафиксируем общее количество пчел B = const. Это позволит сократить нам объем вычислительных ресурсов. Таким образом, всегда есть возможность точно назначить определенное количество пчел в определенный блок, пропорционально значению целевой функции. Для задачи минимизации количество пчел в i-ом определяется по формуле:

Ь = R * (л — f(xi)~min (F(X)) >\ ,п

1 I max(F(X))- min (F(X))/' ()

Для задачи максимизации:

b -B* ( f(xi)-min (F(X)) \

1 \max(F(X))-min(F(X))/ ( )

где max(F(X)) - максимальное значение из множества F(X), min(F(X)) - минимальное значение из множества F(X). Для формирования поиска в ширину в каждом блоке необходимо определить окрестность этого блока. Определим окрестность точки xi следующим образом:

[xj-pi,xj+qi], (3)

где pi - отклонение влево, qi - отклонение вправо. Параметры окрестности рассчитываются следующим образом:

, |Xj-Xj_.,|

p -b * Tivrpy <4>

/(bj+bj+i)\

(5)

V 2 )

Так как N = const, то не целесообразно расширять отрезок поиска [a,b]. Поэтому введем ограничения на p и q. po=0, qN=0.

2. Описание алгоритма, основанного на поведении колонии пчел. Приведем алгоритм нахождения оптимума целевой функции [2,4]:

1. Задаем отрезок [a,b]. Выбираем на исходном отрезке N значений аргумента и считаем значения функции f для каждого из значений их множества Х. Таким образом формируем множества X и F(X).

2. Назначаем пчел в окрестности точек xi пропорционально значениям целевой функции f(x) используя формулу (1) или (2) в соответствии с типом искомого экстремума. Для более перспективных точек количество пчел в окрестности окажется больше чем в менее перспективных.

3. Разбиваем поисковое пространство на области (рис. 3).

4. Рассчитываем величины окрестности i-ой точки по формулам (3), (4) и (5).

5. В каждой окрестности точки xi, принадлежащей интервалу (xi-pi,xi+qi) выбираем bi произвольных точек с дискретностью не более, чем

Получается множество Т1 = {х’ь... ,х^, ... х’Ь1}, где х’е [х^р^х^^

6. Если для множества Т1 существует, такой член х’р что /(^') < /(Х)> то во множестве X проводим замену = X].

7. Если условия остановки алгоритма не выполнены, то переходим к пункту 2. Иначе к пункту 8. Условиями остановки могут являться:

♦ достижение заданного числа итераций;

♦ выработка установленного времени работы алгоритма;

♦ достижение приемлемого значения целевой функции.

8. Конец работы алгоритма.

Отметим, что отличительной особенностью разработанного алгоритма является способность динамически разбивать поисковое пространство на области, что уменьшает время работы алгоритма. Данный алгоритм иллюстрирует стратегию поиска «Разделяй и властвуй», т.е. производится разбиение сложных оптимизационных задач на подзадачи. Главным преимуществом является тот факт, что, благодаря поиску по всей длине отрезка, резко снижается вероятность попадания в ло-

F(x)

а

Рис. 3. Разбиение поискового пространства на области

кальный оптимум, а за счет распараллеливания уменьшается время. На каждой итерации оно равно времени поиска в самом перспективном блоке.

Заключение. Данный алгоритм позволяет распараллеливать процесс размещения элементов, эффективно управлять поиском, получать оптимальные и квазиопти-мальные решения. Проведен вычислительный эксперимент. Проведенные серии тестов и экспериментов позволили уточнить теоретические оценки временной сложности алгоритмов проектирования и их поведение для схем различной структуры. В лучшем случае временная сложность алгоритма »O(n-log(n)), в худшем случае - 0(n3).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Биоинспированные методы в оптимизации / Гладков Л. А., Курейчик В.В., Курейчик В.М., Сороколетов П.В. - Биоинспирированные методы в оптимизации. - М.: ФИЗМАТЛИТ, 2009. - 384 с.

2. The Bees Algorithm - A Novel Tool for Complex Optimization Problems / D.T. Pham, A. Ghanbarzadeh, E. Kof, S. Otri , S. Rahim, M. Zaidi - Manufacturing Engineering Centre, Cardiff University, Cardiff CF24 3AA, UK.

3. Муравьиный алгоритм разбиения / О.Б. Лебедев. Эволюционная адаптация на основе колонии пчел / В.В. Курейчик, Е.Е. Полупанова.

4. Курейчик В.В., Курейчик В.М., Родзин С.И. Концепция эволюционных вычислений, инспирированных природными системами // Известия ЮФУ. Технические науки. - 2009. - № 4 (93). - С. 16-24.

Курейчик Владимир Викторович

Технологический институт федерального государственного автономного образовательного учреждения высшего профессионального образования «Южный федеральный университет» в г. Таганроге.

E-mail: [email protected].

347928, г. Таганрог, пер. Некрасовский, 44.

Тел.: 88634383451.

Запорожец Дмитрий Юрьевич

E-mail: [email protected].

Тел.: 88634371651.

Kureichik Vladimir Viktorovich

Taganrog Institute of Technology - Federal State-Owned Educational Establishment of Higher Vocational Education «Southern Federal University».

E-mail: [email protected].

44, Nekrasovskiy, Taganrog, 347928, Russia.

Phone: +78634383451.

Zaporoghetz Dmitri Urievich

E-mail: [email protected].

Phone: +78634371651.

УДК 681.3.001.63

Б.К. Лебедев, В.Б. Лебедев ГЛОБАЛЬНАЯ ТРАССИРОВКА НА ОСНОВЕ РОЕВОГО ИНТЕЛЛЕКТА*

Излагается метод решения задачи глобальной трассировки на основе роевого интеллекта и генетической эволюции. Связующим звеном такого подхода является структура данных, описывающая в виде хромосомы решение задачи. Это позволило организовать про-

*

Работа выполнена при поддержке: РФФИ (гранты № 09-01-00509, № 10-07-00055), г/б № 2.1.2.1652.

i Надоели баннеры? Вы всегда можете отключить рекламу.