Научная статья на тему 'Risk management of unexploded ordnance in the Republic of Serbia for environmental protection Borovac case study'

Risk management of unexploded ordnance in the Republic of Serbia for environmental protection Borovac case study Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
11
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
UXO / risk management / environmental protection / security / geospatial analysis / Неразорвавшиеся боеприпасы / управление рисками в кризисных ситуациях / охрана окружающей среды / безопасность / геопространственный анализ

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Ivan М. Potić, Nenad М. Komazec, Ljiljana М. Mihajlović, Aleksandar М. Milić, Saša Т. Bakrač

Introduction/purpose: Decades of dealing with unexploded ordnance (UXO) in some areas of the Republic of Serbia have confirmed that it presents a substantial hazard to the security of people, property, and the environment. Even though the terrain has been cleaned, various threats from difficult-to-find UXO components remain serious. Inadequate systemic solutions for UXO management can have significant harmful consequences. Methods: Based on the spatial distribution analysis and different UXO types and quantities, this article studies the effects of dangerous components of unexploded ordnance on human lives and the environment. Two different geospatial analyses were performed including the guidelines for risk management through risk elimination based on multiple criteria, the GIS, and the Remote Sensing analysis. Results: Two different geospatial analyses resulted in the areas at high risk of remaining UXO. Conclusion: The article significantly contributes to creating an environmental risk management strategy for UXO-contaminated regions. It presents an effective technique for addressing risk assessment challenges in such sites. The analysis considers both risk analysis and environmental protection options. Using the multi-criteria analysis and the GIS, it estimates the exposure of built structures, people, soil types, and plant species to UXO dangers in key locations. This paper serves as a guideline for environmental risk assessment.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Управление рисками, связанными с неразорвавшимися боеприпасами, в Республике Сербия в целях защиты окружающей среды – исследование случая Боровац

Резюме: Введение/цель: После нескольких десятилетий борьбы с неразорвавшимися боеприпасами (НРБ) в некоторых районах Республики Сербия обнаружено, что они все еще представляют значительную опасность для населения, имущества и окружающей среды. Несмотря на то, что местность была разминирована, все еще стоит серьезная угроза от труднодоступных частей неразорвавшихся боеприпасов. Несоответствующие системные решения в управлении неразорвавшимися боеприпасами могут повлечь за собой серьезные негативные последствия. Методы: В данной статье изучается воздействие частей НРБ на население и окружающую среду на основании анализа пространственного распределения различных видов и количества НРБ. Были проведены два различных геопространственных анализа, а также разработаны рекомендации по управлению рисками с помощью многокритериального устранения рисков, анализа ГИС и дистанционного зондирования. Результаты: Было проведено два различных геопространственных анализа, в результате которых осуществлена классификация территории с высоким риском от неразорвавшихся боеприпасов. Выводы: Данная статья вносит значительный вклад в создание стратегии управления экологическими рисками на местности, загрязненной неразорвавшимися боеприпасами. Такой тип стратегии является эффективным методом для решения проблемы оценки риска на местности с неразорвавшимися боеприпасами. В статье также обсуждается анализ рисков и меры по охране окружающей среды. С помощью многокритериального анализа и ГИС оценивается степень риска для населения, имущества, типов почвы и растительности от воздействия НРБ. Данная статья представляет собой руководство по оценке экологических рисков.

Текст научной работы на тему «Risk management of unexploded ordnance in the Republic of Serbia for environmental protection Borovac case study»

Risk management of unexploded ordnance in the Republic of Serbia for environmental g protection - Borovac case study

Ivan M. Potica, Nenad M. Komazecb, Ljiljana M. Mihajlovicc, Aleksandar M. Milicd, Sasa T. Bakrace

a Military Geographical Institute "General Stevan Boskovic", Belgrade, Republic of Serbia, e-mail: ivan.potic@vs.rs,

ORCID iD: 1l https://orcid.org/0000-0002-0691-7675 b University of Defence in Belgrade, Military Academy, Belgrade, Republic of Serbia, e-mail: nenadkomazec@yahoo.com, ORCID iD: 1l https://orcid.org/0000-0001-9227-118X c University of Belgrade, Faculty of Geography, Belgrade, Republic of Serbia,

e-mail: ljiljana.mihajlovic@gef.bg.ac.rs, corresponding author, ORCID iD: 1l https://orcid.org/0000-0003-4022-8248 d University of Defence in Belgrade, Military Academy, Belgrade, Republic of Serbia, e-mail: milickm5@gmail.com, ORCID iD: 1l https://orcid.org/0000-0002-2642-0340 e Military Geographical Institute "General Stevan Boskovic", &

Belgrade, Republic of Serbia, e-mail: sasa.bakrac@vs.rs,

ORCID iD: 1l https://orcid.org/0000-0003-0211-3765

DOI: 10.5937/vojtehg71-44656; https://doi.org/10.5937/vojtehg71-44656

FIELD: geographic information systems, environmental management,

risk management ARTICLE TYPE: original scientific paper

Abstract:

Introduction/purpose: Decades of dealing with unexploded ordnance (UXO) in some areas of the Republic of Serbia have confirmed that it presents a substantial hazard to the security of people, property, and the environment. Even though the terrain has been cleaned, various threats from difficult-to-find UXO components remain serious. Inadequate systemic solutions for UXO management can have significant harmful consequences.

ACKNOWLEDGMENT: The research reported in this paper was supported by Project 45103-47/2023-01/200091 (Ministry of Science, Technological Development and Innovation of the Republic of Serbia) and written as part of Project 1.23/2023 (Ministry of Defence of the Republic of Serbia).

<1>

0 >

co

01

0

01

c¿

UJ Cd ZD

O O

_j

<

O 2:

X

o

LU

I—

>-

a: <

<

_1

(D

■O

x

LU I—

O

O >

&

Methods: Based on the spatial distribution analysis and different UXO types and quantities, this article studies the effects of dangerous components of unexploded ordnance on human lives and the environment. Two different geospatial analyses were performed including the guidelines for risk management through risk elimination based on multiple criteria, the GIS, and the Remote Sensing analysis.

Results: Two different geospatial analyses resulted in the areas at high risk of remaining UXO.

Conclusion: The article significantly contributes to creating an environmental risk management strategy for UXO-contaminated regions. It presents an effective technique for addressing risk assessment challenges in such sites. The analysis considers both risk analysis and environmental protection options. Using the multi-criteria analysis and the GIS, it estimates the exposure of built structures, people, soil types, and plant species to UXO dangers in key locations. This paper serves as a guideline for environmental risk assessment.

Keywords: UXO, risk management, environmental protection, security, geospatial analysis.

Introduction

The Republic of Serbia has been facing the problem of unexploded ordnance (UXO)1 remaining on its territory as a legacy of modern armed conflicts. Removing and destroying UXO should be considered a practical security task, as it entails reducing explosive ordnance and devices to a form in which they can no longer perform their intended lethal function. The detection and removal of UXO have become an increasingly urgent problem.

On the one hand, there is a need to reduce risks to the population and the environment from the explosion. On the other hand, the likelihood of unwanted accidents increase over time due to various physical and chemical processes in UXO, increasing the risk and possibility of extremely negative consequences on the environment and humans. The effects of UXO containing depleted uranium are not territorially or temporally limited; they cause far-reaching impacts on both friendly and hostile military and civilian targets, contaminating the air, land, and water, thus indirectly entering the food chain of living beings. Contamination extends to places that have not been directly impacted by armed conflicts. U-234, U-235, and U-238 are three isotopes of natural uranium that differ

1 The widely established term unexploded ordnance (UXO) will continue to be used further on.

only in nuclear properties. Since uranium is a radioactive element, it emits atomic radiation when it decomposes in the environment. The chemical properties of depleted uranium (DU) are identical to those of natural ° uranium; however, it has much fewer isotopes than U-235 (0.2%) (McLaughlin et al, 2003). It is a low-level radioactive waste element as a by-product of uranium processing for nuclear reactors and weapons.

UXO does not contain only depleted uranium which was used during the bombing campaign against the Republic of Serbia in 1999 (Orlic, 2000). First and foremost, the impact of explosive charges (certain types of explosives) must be considered during detonation (explosion). The explosive charge compositions vary depending on the UXO manufacturer although they mainly contain highly destructive explosives (high explosives). TNT is the most common one; smaller charges may use more powerful explosives (such as tetryl) or other types (Cauderay, 1993). Explosive charges come in various weights depending on the type and function of a projectile (Orlic, 2000). Ammunition with higher explosive content harms technical equipment and results in more human resource losses. It does not only harm human health by inflicting physical damage (loss of limbs, loss of sight and hearing, etc.), but it also damages the environment by destroying pedological and geological substrates, causing ecological damage, and alike.

As a by-product of nuclear technology, depleted uranium is classified as low-level radioactive waste (Sahoo et al, 2004) and is mainly disposed of in specialized landfills. Since DU is increasingly used for military and civilian purposes, there is a significant increase in radiotoxicity and chemotoxicity to humans and the environment. Evaluating the depleted uranium impact implications on the environment and individuals is contentious (Orlic, 2000).

Representatives of Western countries' official military and state institutions reduce the potential for damage, stating that uranium is already present in the natural environment and that its increase due to weapons with depleted uranium is insignificant and geographically variable (Popovic | et al, 2008). In contrast, non-official organizations, such as US military veterans' associations or environmental movements, often draw harsh conclusions (Popovic et al, 2008). One of the purposes of this research is to show possible acute and subsequent geospatial consequences for the environment using the multi-criteria GIS analysis.

Considering the time that has passed and the fact that the contaminated sites have been cleared for years, it is not likely that the national radioactivity monitoring would reveal substantial quantities of depleted uranium in the environment. Estimating the risk of unexploded

<u

<1>

O >

CO CM

0

01

of

UJ

a:

ZD O O

_J

<

o

X

o

LU

I—

>-

Ql <

I—

< -J

CD >Q

X LU I—

O

o >

O

ordnance to the environment, contamination, mobility, and the possibility of depleted uranium being absorbed into diverse inorganic or organic substrates is crucial for future research.

Several research groups in Serbia have examined depleted uranium contamination, primarily through the Ministry of Education, Science, and Technological Development - funded scientific research programs, and, during remediation initiatives in southern Serbia, international cooperation has been achieved (Popovic et al, 2008). Since 2011, radioactivity management (owing to the environmental samples from the places where depleted uranium ammunition was used) has been mandated as part of the national monitoring program for radioactivity. Depending on needs, additional research should consider analytical techniques with higher sensitivity, such as high-resolution mass spectrometry and other more advanced physicochemical methods. Past analyses do not indicate significant deviations from natural variations in the uranium isotope content and ratios. The research might lead to a better understanding of the speciation and mobility of depleted uranium in the environment. Results that show the current or permanent threat of UXO can be obtained using the multi-criteria data analysis and GIS techniques. The effects of the endangerment of subsurface and surface water sources, soil, and other resources were derived based on the geo-ecological features of the studied area. The number of endangered residents can be estimated based on the facilities in the analyzed region at a specified distance from the contaminated sites (Popovic et al, 2008).

The term 'unexploded ordnance' is defined by the majority of experts in the field as "means equipped with military explosives that did not explode or function as intended, which includes military ammunition, antitank and anti-personnel mines, water mines, bombs, rockets, mortar shells, artillery shells, hand grenades or rocket-propelled grenades, and missiles or rocket-propelled grenades" (Landmine Action, 2002; The Geneva International Centre for Humanitarian Demining, 2019; Martin et al, 2019; Australian Government, Defence, 2020; Government of Canada, 2021).

Remote sensing is becoming an increasingly necessary and inescapable means of space data collection for military purposes. Along with monitoring and documenting the condition of diverse natural and social phenomena, all satellite primary missions and programs can effectively complete increasingly complex duties associated with military actions (Regodic, 2008). The GIS is critical for data management concerning geographic areas (environmental changes) and is one of the most promising research methodologies and information technologies.

Evelyn Pruit's (1960) definition of remote sensing was: "Remote sensing is a technique for acquiring data via systems that are not in direct physical touch with the event or item being studied" (Salomonson, 2014). GIS maps enable the integration and updating of vast volumes of data. This procedure is critical for safety purposes while testing for possible UXO.

CD О

Materials and methods

According to the research by the Demining Center of Serbia, it is estimated that the territory of the Republic of Serbia contaminated by UXO covers approximately 25 km2 (Republika Srbija, Centar za Razminiranje, 2022). The area cleared of cluster bombs following international standards has grown to 11.6 km2. Using the data on the sites effectively cleaned in the areas of Bujanovac (Table 1), Presevo (Table 2), and the airport complexes in the vicinity of Sjenica (Table 3), researchers may estimate the level of contamination and the probability of severe environmental impacts.

Table 1 - Overview of the UXO removed from the Bujanovac Municipality (Republika Srbija, Centar za Razminiranje, 2022) Таблица 1 - Осмотр неразорвавшихся боеприпасов, вывезенных из муниципалитета Буяновац (Республика Сербия, Центр разминирования, 2022

год)

Табела 1 - Преглед неексплодираних убоjних средстава уклоъених са територ^е општине Буановац (Republika Srbija, Centar za razminiranje, 2022)

<D

cc

S.No. Locality name Area (km2) Type and quantity of means

1 „Borovac-3" Bujanovac 0.102 BLU 97 -1 pc

2 „Borovac-4" Bujanovac 0.109 BLU 97 -1 pc UXO (missile) -1 pc Fragment of KM -1 pc

3 „Turijska brda" -Bujanovac 0.389 TMA -10 pcs Artillery shell fuzes-3 pcs RB - 1 pc 155 mm artillery shell -1 pc

4 „Bujanovac sever" Bujanovac 0.276 PMA-2 -3 pcs Hand grenade M52P3 -1 pc

5 „Bujanovac sever" Bujanovac 0.145 PMA-2 -5 pcs

6 „Bujanovac sever" Bujanovac 0.071 PMA-1 -3 pcs PMR-2A -1 pc

<1>

O >

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CO CM o CM

of

UJ

a:

ZD O o

_J

<

O 2:

X

o

LU

I—

>-

a: <

< -j

CD >Q

x

LU I—

O

z —>

O >

0

7 „Bujanovac sever" Bujanovac 0.114 PMA-2 -5 pcs RB -1 pc Mb bomb -1pc RB -1 pc

8 „Dobrosin" Bujanovac 0.220 PMA-2 -6 RB -1 pc PMR-2A -3 pcs RB -1 pc

9 „Lucane" Bujanovac 0.073 UXO -10 RB -1 pc 762 mm rounds -1.341 RB -1 pc

10 „TS Bujanovac - TS Berivojce" Bujanovac 0.018 PMA -2 RB -1 pc

11 „Konculj-Singerit" Bujanovac 0.199 PMA -20 RB -1 pc

12 „TS Bujanovac - TS Berivojce" Bujanovac 0.002 ////

13 „Konculj-Singerit 1" Bujanovac 0.269 TMA-5 -1 pc RB 1 pc Projectiles for RRB M79 -9 RB 1 pc Ammunition -1.577 RB -1 pc

14 Turijsko brdo 0.076 Anti-personnel mines -4 RB -1 pc

15 Bogdanovac 1 0.113 MK-4 -12 RB -1 pc

16 Bogdanovac 2 0.146 MK-4 -14 RB -1 pc

17 Jastrebac 1 0.114 MK-4 -13 RB -1 pc

18 Jastrebac 2 0.155 MK-4 -8 RB -1 pc

19 Karadnik 0.123 BLU97A/B -10 RB -1 pc UXO -5 RB -1 pc

20 Sebrat 0.176 MK-4 -36 RB -1 pc UXO -1 pc RB -1 pc

21 Borovac 1 0.060 BLU97A/B -68 RB -1 pc UXO -15 RB -1 pc

22 Borovac 2 0.088 BLU97A/B - 28 RB -1 pc UXO -56 RB -1 pc

23 Bujanovac 1.179 PMA2 -14 RB -1 pc RB -1 pc RB -1 pc

24 Rafatova cesma 0.092 Fragments of AB-6 RB -1 pc Fragments of UXO -5 RB -1 pc

CD O

Note: KM - cluster munition; types of cluster bombs, AB -

RB, PMA2, BLU97A/B, MK -4, TMA, PMR-2A - different air bomb, MbM - mortar shell, UXO - unexploded ordnance

Over two decades after the bombing of Serbia, the issue of explosive remnants of war still exists. Even in the cleared areas, there is a chance that UXO will be detected. Such a situation presents an exceptional danger to both residents and employees (in construction of roads, housing, tourism, industrial and other infrastructure, etc.). Serbia faces numerous demining issues, and the pace at which they are resolved is contingent on the availability of financial funds for demining, among other things. Since 2002, the Demining Center has performed these functions primarily as an autonomous governmental entity but with significant assistance from foreign organizations and funders. Besides that, reconnaissance of areas suspected of being contaminated with cluster bombs, mines, and other UXO is being carried out to reduce the environmental threat. Additionally, demining projects are being created, and funds are being supplied for their execution. The quality of demining is monitored, international cooperation is conducted, international standards and agreements are implemented, etc. (Republika Srbija, Centar za razminiranje, 2022).

However, the repeated reference to war remnants must not obscure the reality that some areas are also contaminated with ammunition dispersed and buried after explosions in manufacturing units and warehouses or burglaries into ammunition depots. Quantities of unexploded ordnance (whether in warehouses or dispersed) are not the data that may be made widely accessible. The given data is accessible to selected structures to carry out important projects for the clearance of UXO from the

<u m

ф

о >

со см о см

of

Ш

а:

ZD О О

_J

с о 2: х о ш

I—

>-

а: С

(Л С

о >о

X ш I—

о —>

О >

ф

designated sites. As a result of these findings, there is a reasonable assumption that different forms of UXO are, after fires and explosions at military storage and manufacturing units (in the cities of Paracin, Kraljevo, Vranje, and Cacak), currently being discovered outside military facilities over an area of about 13.5 km2.

Table 2 - Overview of the UXO removed from the Presevo Municipality (Republika Srbija,

Centar za Razminiranje, 2022) Таблица 2 - Осмотр неразорвавшихся боеприпасов, вывезенных из муниципалитета Прешево (Республика Сербия, Центр разминирования, 2022 год) Табела 2 - Преглед неексплодираних убогих средстава уклоъених са територи]е општине Прешево (Republika Srbija, Centar za razminiranje, 2022)

No. Locality name Area (in km2) Type and quantity of means

1 Bustranje 0.205 KM -48 pcs

2 Bustranje - Beren 0.148 KM-9 pcs

3 Satkin Vir 0.129 fragments of KM

4 Satkin Vir 1 0.100 KM-2 pcs

5 Satkin Vir 2 0.032 KM-1 pc AB -1 pc

6 Reljan Brezovcani 0.244 KM-25 pcs UXO -6 pcs

7 Satkin Vir 3 0.118 fragments of KM

8 Peceno - school 0.088 ///

9 Cerevajka 1 0.165 MbM -1 pc

10 Cerevajka 2 0.106 MbM -2 pcs Fragments of KM-4 pcs

Note: KM - cluster munition, AB - air bomb, MbM - mortar shell, UXO - unexploded ordnance

Table 1, Table 2, and Table 3 list the UXO types reported in the Presevo, Sjenica, and Bujanovac zones. A total of 4.232 km2 was cleaned in the Bujanovac area. In the municipality of Presevo, the demining procedure covered 1.334 km2 of the territory. In the municipality of Sjenica, the region around the airport complex was cleaned during the last four years.

NATO forces launched approximately 15,000 large projectiles on the territory of the former Yugoslavia (Bozanic et al, 2018). Unguided and guided air bombs and missiles from various combat systems amounted to approximately 25,000 tons, with 1,660 cluster bombs, dispensaries containing about 330,000 cluster bombs and more than 50,000 pieces of depleted uranium ammunition (Pamucar et al, 2011). Depleted uranium is radioactive, a health hazard, and a persistent contaminant of the

environment. Several hundred locations were bombed during the NATO air raids in 16 municipalities in Serbia, not including Kosovo and Metohija (City of Nis - Mediana and Crveni Krst, Kraljevo, Brus, Presevo, Bujanovac, Kursumlija, Raska, Gadzin Han, Tutin, Sjenica, Cacak, Vladimirci, Knic, Stara Pazova, and Sopot) (Pamucar et al, 2011; Bozanic et al, 2018).

Table 3 - Overview of the UXO removed from the areas of the airport complex in the

Sjenica region (Republika Srbija, Centar za Razminiranje, 2022) Таблица 3 - Осмотр неразорвавшихся боеприпасов, вывезенных с территории аэродромного комплекса в регионе Сьеница (Республика Сербия, Центр разминирования, 2022 год) Табела 3 - Преглед неексплодираних убогих средстава уклоъених са подручна аеродромског комплекса у региону С'еница (Republika Srbija, Centar za razminiranje,

2022)

No. Locality name Year Type and quantity of means

1 2018. Cluster bomb-29 pcs

Cluster bomb-71 pcs

2 The airport in the region of Sjenica 2019. Cluster bomb booster-3 pcs 88 mm artillery shell -1 pc

Cluster bomb-72 pcs

3 2020. Air bomb MK-82 -1 pc 80 mm artillery shell -1 pc

00 о

Table 4 - Remaining cluster ammunition in the Bujanovac Municipality (Republika Srbija,

Centar za Razminiranje, 2022) Таблица 4 - Оставшиеся кассетные боеприпасы в муниципалитете Буяновац

(Республика Сербия, Центр разминирования, 2022 год) Табела 4 - Преостала касетна муници'а у општини Буановац (Republika Srbija,

Centar za razminiranje, 2022)

<D

cc

No. District Municipality Populated place Name of the suspected area Number of suspected areas Size of the suspected area (km2)

1 Pcinjski Bujanovac Borovac Borovac 5 1 0.281

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

IN TOTAL 1 0.281

The remaining mine problems in Bujanovac

No. District Municipality Populated place Name of the suspected area Number of tsuspected areas Size of the suspected area (km2)

1 Pcinjski Bujanovac Dobrosin Dobrosin 1 1 0.028

2 Pcinjski Bujanovac Konculj Tustica 1 0.144

3 Pcinjski Bujanovac Ravno Bucje Dordevac 1 0.390

IN TOTAL 3 0.562

m га

<1>

0 >

CO

01

0

01

of

UJ

a:

ZD O O

_J

<

o

X

o

LU

I—

>-

Ql <

I—

< -J

CD >Q

X LU I—

O

o >

O

The study emphasizes the municipality of Bujanovac since it is an area that, according to the most recent official data from the Serbian Demining Center, is primarily contaminated with UXO and demands special attention (Table 4).

Research area

The research area is in the Bujanovac municipality near Borovac, the regional Juzna Morava River and the JUG military base. The area encompasses 87.05 km2 and is located within UTM 34n 555335.402, 4690210.743 and 564706.827, 4699481.616 coordinates. Three analyses have been performed within this area (Fig. 1). Borovac is a settlement in Serbia in the municipality of Bujanovac in the Pcinja district. According to the 2011 census, its population was 166 people (Republika Srbija, Republicki zavod za statistiku Srbije, 2023). In 2002, there were 214 inhabitants. According to the 1991 census (before the bombing), the population was 267. It is essentially an adult population. Only 44 homes have remained in the community, fewer than in the previous census (61 in 2002), and the average number of people per household is 3.77 (Republika Srbija, Republicki zavod za statistiku Srbije, 2023). Serbs predominantly populate this village, and a reduction in the number of residents was seen in the past three censuses. During the air raids on Serbia in 1999, Borovac was heavily bombed. In certain instances, using depleted uranium led to the relocation of the inhabitants on a large scale, and some were directly or indirectly killed.

Input data

The current situation with UXO (types and quantities) in the Republic of Serbia can be discovered through the multi-criteria data analysis. The content of the documents was examined based on national and international legal regulations concerning UXO risk management. The comparison method demonstrates the crucial distinction in comprehending the need for protection and adequate risk management of residual UXO containing depleted uranium. The GIS analysis is fundamental in the areas with such a significant time and space framework in which this study is conducted. The spatial dispersion of harmful consequences on environmental and human health is not depicted.

Different sets of geospatial data were used to perform a spatial analysis of the potential diffusion of the extension of the UXO impact on the environment:

• Digital Elevation Model (DEM): A DEM with 4.4 m vertical accuracy (Tadono et al, 2016) and 22.45 m spatial resolution was chosen as elevation

data. The initial data for completing a hydrographic analysis to extract watersheds and watercourses was the JAXA ALOS Global Digital Surface Model AW3D30 (Eorc.Jaxa, 2019). TauDEM 5.3 (Tarboton et al, 2015) was used for a terrain analysis to delineate watersheds and extract watercourses.

• Land Cover is created using multispectral satellite imagery: Sentinel 2 satellite imagery was downloaded from Copernicus Sci-Hub (Copernicus, 2020) to create a land cover map using the Dzetsaka classification plugin (Karasiak, 2016) in QGis (QGIS, 2022). The research used Sentinel 2 S2B MSIL2A 20210913T093029 N0301 R136 T34TEN 20210913T114013 cloud-free imagery collected on September 13th, 2021. Satellite data was analyzed and classified using 10m red, green, blue, and near-infrared bands. The Random Forest machine learning algorithm classified five classes from satellite imagery: developed, barren, forest, pastures, and planted/cultivated areas. The Random Forest supervised classification necessitates the creation of a comprehensive and precise training zone selection for each class (Mas & Flores, 2008; Duro et al, 2012; PotiC & PotiC, 2017; Potic et al, 2017). Regression is used as a pixel-based supervised learning task to model and predict variables where numerical true ground values are provided for the research area. Regression trees (decision trees) are used to classify satellite data, iteratively separating the dataset into distinct branches and maximizing the information gained to understand nonlinear correlations. The Random Forest classifier classifies data with high accuracy using classification trees. The accuracy assessment is performed by generating the error matrix in the Semi-Automatic Classification Plugin (Congedo, 2021) in QGis (QGIS, 2022), which is provided as a table that compares reference data (i.e., ground truth data) with map information for several sample areas to ensure the quality of the classification (Congalton & Green, 2019). Twenty randomly selected points are obtained for each class to finalize the accuracy assessment. Overall accuracy is the ratio of correctly classified samples to total sample units (Congalton & Green, 2019). The Kappa analysis is a discrete multivariate | technique for detecting whether two error matrices differ statistically (Plackett, 1976; Congalton & Green, 2019). High-resolution imagery from Google Earth Pro (Google Earth, 2020) and downloadable Sentinel 2 colour and false-colour composites were used to ensure the quality of the accuracy evaluation points.

• Google Earth Pro (Google Earth, 2020) was used to collect additional data, with all watercourses enclosed by a 1-kilometer buffer zone around four UXO locations corrected and updated. Furthermore, the same software is used for digitizing topographic labels and all buildings within a 1-

<u

ф

kilometer buffer zone. The buffer zone for building collection was created as a 1-kilometer 3D distance from the main four UXO drainage streams.

о >

CO CM о CM

of

Ш Cd ZD О О

_J

<

О 2:

X

о ш

I—

>-

Ql <

Results

The first analysis for the entire research area consists of delineating watersheds, creating streams and drainage paths from four UXO locations (Fig. 1), and performing a land cover (LC) classification (Fig. 2). When of adequate quality, groundwater is a resource initially considered in all water supply evaluations to settlements. However, subsurface waters have a very tight relationship with surface waters, and they most commonly share their fate in quantity and quality. Significantly, when soil is contaminated with UXO and drainage systems contain contaminating particles (for example, depleted uranium), they affect groundwater quality and, belonging to multiple catchments, go to other watersheds. Therefore, risk assessment and environmental management (land and water) are crucial. Groundwater and surface water contamination are long-term concerns, mainly if we are talking about increasing water radioactivity.

(Л <

-J

CD >Q

x

Ш I—

О

z —>

О >

Figure 1 - Research area (source: Sentinel 2 (ESA, 2020) and Google Earth Pro (Google Earth, 2020) Рис. 1 - Область обледования (источник: Sentinel 2 (ESA, 2020) и Google Earth Pro (Google Earth, 2020) Слика 1 - Подруч]е истражива^а (извор: Sentinel 2 (ESA, 2020) и (Google Earth, 2020)

Figure 2 - Land cover of the research area Рис. 2 - Земляной покров области обследования Слика 2 - Зем^ишни покривач подручна истражива^а

The land cover analysis (Fig. 2) results (Table 5) revealed that planted/cultivated areas dominate the research area, accounting for more than 33% of the total area, followed by forest and barren classes, each accounting for more than 20%. Both the developed class and the pasture class account for less than 10% of the total area (Table 5).

CD О

Table 5 - Land cover report for the entire research area Таблица 5 - Отчет о земляном покрове по всей территории обследования Табела 5 - Извешmаj о зем^ишном покривачу за целокупно подручjе

истражива^а

Class Pixel Sum Percentage % Area (km2)

1 developed 67094 7.71 6.71

2 barren 183244 21.05 18.32

3 forest 247794 28.47 24.78

4 pastures 79705 9.15 7.97

5 planted/cultivated 292627 33.62 29.26

Total 870464 100 87.05

The classification data's reliability is assessed by calculating the confusion matrix, followed by an overall accuracy and a discrete multivariate technique - Kappa analysis (Congalton & Green, 2019) (Table 6). The forest class is the only one which is 100% accurately classified. All other classes have some misclassifications, which leads to an overall accuracy of 84.28% and a Kappa hat classification of 0.79, which is a substantial result (Table 6).

Table 6 - Confusion matrix (pixel count) Таблица 6 - Матрица путаницы (количество пикселей) Табела 6 - Матрица конфузи'е (броj пиксела)

ш СЕ

Value\Classified 1 2 3 4 5 Total ground truth points to the class

1 developed 18 1 0 0 2 21

2 barren 2 16 0 0 3 21

3 forest 0 0 20 0 0 20

4 pastures 0 0 0 17 0 17

5 planted/cultivated 0 3 0 3 15 21

Total 20 20 20 20 20 100

Overall accuracy [%] = 84.28 Kappa hat classification = 0.79

All drainage paths belong to the Juzna Morava River watershed, a regional drainage network. Therefore, the second performed analysis was to determine the number of buildings within a 1-kilometer 3D distance buffer

4 e

o V

со

2 0 2

of

Ш

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

a:

ZD

O C

_J

A

О 2:

X

C

Ш

T

^ a:

A

(Л <

-j

CD >Q

x

Ш I—

О

О >

zone (19.13 km2) from four UXO locations with drainage paths directly connected to the drainage network (Fig. 1). The total number of 801 buildings is collected in the second analysis in the broader zone of UXO impact.

The third, more focused analysis spans 3.62 km2 by encircling a 1-kilometer 3D distance buffer zone around four UXO locations (Figs. 1- 8). The total number of buildings within this 3D distance buffer zone is 168 (Fig. 3).

Figure 3 - Four UXO areas with a 1 km buffer zone, source: Sentinel 2 (Copernicus,

2020)

Рис. 3 - Четыре местности под неразорвавшимися боеприпасами с буферной

зоной протяженностью 1 км, источник: Sentinel 2 (Copernicus, 2020) Слика 3 - Четири подручjа под неексплодираним убоjним средствима са бафер зоном од 1 km (Copernicus, 2020)

The first selected UXO location is within a 1 km 3D distance buffer zone encompassing 79 buildings. The minimum building distance from UXO is 355.44 m, while the maximum distance from UXO is 980.56 m. The mean distance from UXO is 637.26 m (Fig. 4).

The second selected UXO location is within a 1 km 3D distance buffer zone and counts 86 buildings, where the closest one is 309.98 m from UXO. The farthest building is 982.96 m away. The mean building's distance from UXO is 683.89 m (Fig. 5).

The third selected UXO location is within a 1 km 3D distance buffer zone that counts 79 buildings, where the closest one is 258.61 m away from UXO. The farthest building is 978.79 m away. The mean building's distance from UXO is 665.97 m (Fig. 6).

Figure 4 - UXO area 1 with a 1 km buffer zone and buildings within the zone Рис. 4 - Местность 1 под неразорвавшимися боеприпасами с буферной зоной протяженностью 1 км и сооружениями внутри зоны Слика 4 - Подруч]е 1 под неексплодираним убогим средствима са бафер зоном од 1 km и об]ектима унутар зоне

Figure 5 - UXO area 2 with a 1 km buffer zone and buildings within the zone Рис. 5 - Местность 2 под неразорвавшимися боеприпасами с буферной зоной протяженностью 1 км и сооружениями внутри зоны Слика 5 - Подруч]е 2 под неексплодираним убогим средствима са бафер зоном од 1 km и об]ектима унутар зоне

со о

ш СЕ

Figure 6 - UXO point 3 with a 1 km buffer zone and buildings within the zone Рис. 6 - Местность 3 под неразорвавшимися боеприпасами с буферной зоной протяженностью 1 км и сооружениями внутри зоны Слика 6 - Подруч]е 3 под неексплодираним убогим средствима са бафер зоном од 1 km и об]ектима унутар зоне

Figure 7 - UXO point 4 with a 1 km buffer zone and buildings within the zone Рис. 7 - Местность 4 под неразорвавшимися боеприпасами с буферной зоной протяженностью 1 км и сооружениями внутри зоны Слика 7 - Подруч]е 4 под неексплодираним убогим средствима са бафер зоном од 1 km и об]ектима унутар зоне

ф

о >

со см о см

of

Ш

а:

ZD О О

_J

с о 2: х о ш

I—

>-

а: С

(Л С

о >о

X ш I—

о

о >

There are 131 buildings in a 1 km 3D distance buffer zone, the closest of which is 469.38 m from UXO in the fourth UXO location. The farthest building is located 996.43 m away. The mean distance between buildings and UXO is 843.24 m (Fig. 7).

The land cover (Fig. 8) report (Table 7) for the area within four UXO 1 km buffer zones reveals that the dominant class in the area is the barren land with 43.5 % area coverage, followed by the planted/cultivated area (~ 23%) and forests (17.5%).

Figure 8 - Land cover of four UXO areas within a 1 km buffer zone Рис. 8 - Земляной покров четырех местностей под неразорвавшимися боеприпасами в пределах 1-километровой буферной зоны Слика 8 - Зем^ишни покривач четири подручна под неексплодираним убогим средствима у оквиру бафер зоне од 1 km

Table 7 - Land cover report for four UXO areas within a 1 km buffer zone Таблица 7 - Отчет о земляном покрове четырех местностей под неразорвавшимися боеприпасами в пределах 1 -километровой буферной зоны Табела 7 - Извешта] о зем^ишном покривачу за четири подручна са неексплодираним убогим средствима у оквиру бафер зоне од 1 km

Class Pixel Sum Percentage % Area (km2)

1 developed 3871 10.69 0.39

2 barren 15765 43.54 1.58

3 forest 6341 17.51 0.63

4 pastures 1900 5.25 0.19

5 planted/cultivated 8328 23.01 0.83

Total 36205 100 3.62

Discussion

The usage of the word UXO is commonly connected with the threats § presented by anti-personnel and anti-tank mines set during war events and the deployment of engineering units (Pamucar et al, 2011), as well as the repercussions they cause left behind after armed conflicts. There are generally mine-explosive barrier records with accurate locations for these explosive devices. However, cluster bombs also constitute a significant and genuine hazard. The method they are deployed (dispersion of bomblets from various delivery canisters or missiles) results in a vast scattering zone whose borders are not simple to find and designate. Simultaneously with landing on uneven terrain or owing to the surrounding vegetation, there is an extra dispersion of explosives, further increasing the contaminated area. A variety in their looks (colour) and detonators (which are activated in a specific way), unable their trouble-free clearance /demining. Furthermore, damage to UXO causes the delay of the intended "self-destruction - self-sterilization" thus producing an extension of the period of its destruction capabilities. The preceding section describes the sites where soil decontamination was applied but also indicates the regions where the hazard persists to a considerable degree. Gamma-ray spectrometry techniques have been developed to determine the uranium content of surface samples of the soil contaminated with depleted uranium (Sahoo et al, 2004). This approach may estimate contaminated surface soil samples' natural and depleted uranium content and the depleted uranium activity ratio of 235U/238U (Vukanac et al, 2010). It would be necessary to do such analyses to improve everyday life of the local population.

Geoecological aspect

The use of depleted uranium is contentious and has been the subject of international discussion (UN Institute for Disarmament Research, 2008). When it comes to contamination and degradation of the environment, it can be said that uranium and depleted uranium are isotopically very similar, chemically radioactive heavy metals that are dangerous to humans in four ways (Fairlie, 2009):

• as a toxic heavy metal,

• as a chemical carcinogen,

• as an endocrine disorder agent, and

• as an carcinogenic radiation agent.

Another difficulty is with bombs, grenades, and projectiles buried in the ground for many years and whose detonators and primary explosive

e

lo

>

co CM o CM

of

UJ

a:

ZD O o

_J

<

o

X

o

LU

I—

>-

Cd <

I—

< _J

CD >o

X LU I—

o

o >

0

charges have become "dormant." They can be activated due to an external effect (earthquakes, landslides, excavation of building foundations, increased temperature due to fire, etc.). In addition to fatal consequences for the population (as the most significant loss), there are long-term psychological consequences for the people, water pollution, disabling of water and electricity supply installations, damage to road infrastructure, damage to health systems, and significant economic consequences.

After conducting a multi-criteria study of the described area, it was determined that in addition to the cultivated land cover (33 % - Fig. 2, Table 5), this area contains 21.05 % of the total infertile land. The barren soil is essentially the most contaminated. In the 18.32 km2 area, there is an enhanced danger to human life and health. Such locations are appropriately referred to as zones of low security. The same is typical for forest-covered places (28.46 %). In this part of Serbia, the population depends on exploiting wood mass, so the existing danger of UXO endangers their primary economic activity. The removal of UXO is complicated in the forest area due to the area relief, lack of visibility, and other obstacles. Pastures cover only 7.97 km2, but it is not an immeasurable area where cattle and people can be endangered as well as other wild animals that live or feed there. Additionally, pastures are crucial regions for honey production, medicinal plants harvesting, and more. Increased radioactivity in these locations has a direct effect on human health degradation.

Following the confirmation that ammunition containing U-236 with depleted uranium (DU) was used during the NATO air campaign in Serbia in 1999, concern was expressed about the possibility that other nuclides from the nuclear fuel cycle, especially transuranium nuclides, could be present with this type of ammunition. Numerous tests have been performed, and many papers have been published. For example, in an article entitled "Actinide Analysis of a Depleted Uranium Penetrator from a 1999 Target Site in Southern Serbia," published in the Journal of Environmental Radioactivity (2003), McLaughlin et al published the results of the analyses of uranium and plutonium from the target location in southern Serbia (McLaughlin et al, 2003). The results of that and many other works confirmed the presence of trace plutonium in the penetrator, the highest concentration of plutonium ever reported in the Balkans.

After military operations, most UXO (or their fragments) containing depleted uranium remained underground in specific geomorphological and geochemical environments exposed to local climatic conditions. The distribution, mobility, and/or fixing of depleted uranium in the contaminated soil varied according to the geological and pedological surroundings, vegetation type, and climatic factors. Corrosion products of depleted

CD O

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

uranium and other contaminating particles associated with UXO fluctuate over time depending on the extent of their geochemical fractionation. It is an assumption that has been validated in several studies. At around 150 mm from the source, the concentration of depleted uranium decreases to 1% of its original value (Radenkovic et al, 2008).

Moreover, the danger of UXO activation varies by season and during dry and rainy periods. The ability to transfer contaminated material over various environmental mediums signals an infinite hazard to the living world. Human epidemiological research has shown that exposure to low and moderate radon concentrations may cause up to 14% of malignant tumours. Due to the radiation in the soil, animals living in subterranean cavities are exposed to more significant amounts. Over the years, numerous dose-effect models have been created to evaluate the dangers to individuals and the environment (Cujic et al, 2021).

Studies of the mobility and geo-fractionation of depleted uranium in the soil have shown that depleted uranium may be very mobile under substantial contamination conditions and intensive ion exchange with the environment. Furthermore, as previously mentioned in the study, the decomposition rate is also soil-dependent, mainly for Fe and Mn oxides and carbonate substrates in the soil (Popovic et al, 2008).

In the past few decades, the southern part of Central Serbia has undergone significant ecological changes, including depopulation as a social factor (Potic et al, 2022), where the natural process of ecological revitalization due to population ageing and emigration is taking place, and forest areas are expanding. Due to the growth and spread of vegetation on uncultivated surfaces, it will become more challenging to clean and remediate that area over time (Mihajlovic et al, 2014).

Risk management of unexploded ordnance

One risk assessment method is insufficient for UXO locations. The UXO risk assessment procedure requires creating civil-military collaboration to develop alternative approaches. The initial step might be prioritizing UXO ¡ cleanup areas. This data type is beneficial for allocating financial and non-financial resources, such as equipment and personnel. A full description or geoecological investigation of UXO-contaminated regions would be the second stage in risk assessment (risk assessment for specific locations). With this approach, quantifiable data on the possible harm to individuals living around the UXO location (as shown in Figs. 1 - 8) and local ecosystems may be supplied.

Location data is often unavailable and wildly inaccurate. Using remote sensing allows the creation of at least a rough database with the most

<u q:

<u

<u

0 >

CO

01

0

01

of

UJ

a:

ZD O O

_J

<

o

X

o

LU

I—

>-

Ql <

I—

< -J

CD >Q

X LU I—

O

o >

O

endangered locations. However, detailed information is necessary for data collection to establish UXO risk management correctly. Two sources of risk at UXO sites must also be considered: the risk of explosion and environmental contamination from ammunition components flushed into water and soil. These two types of threats are significantly different. The first leads to immediate consequences for a man or his material environment; in contrast, the consequences of permanent exposure to ammunition are chronic impairment of the quality of life.

The presence of 33% arable land (Table 5) indicated significant agricultural activity and increased people's mobility and daily activities in the vicinity of UXO. According to the 2011 census, this region had 166 people living in 44 homes. Such a demographic distribution would suggest an equal number of potential UXO victims.

At only four notable locations where the Serbian Center for Demining confirmed the presence of UXO, there are 801 built structures: houses, shops, schools, food storage facilities, warehouses, garages with mechanization for agricultural surface processing, and fuel depots, among others. Without security measures over an extended period, it is logical to presume that this area poses an enhanced security risk. Given the unknown and unexpected composition of UXO, the threats to the environment, groundwater and surface water, soil, and air, and the long-term impacts on living organisms' DNA, it is deemed essential to affirm environmental risk management.

Risk assessment methods can define the level of danger to people, property, and the environment in an area and establish priorities and courses of action. It is necessary to determine the factors and levels of risk to develop a UXO risk management system. Such a system would provide a strategic advantage over the area's level of vulnerability. Specifically, applying various (physical, educational, economic, etc.) measures would lower the risk of endangering people, property, and the environment. This claim is supported by the fact that the problem of UXO has the characteristics of a "long shadow" of a crisis, i.e., a problem arises quickly, while its consequences remain for a long time in the future. Therefore, developing an adequate methodology for risk assessment and a risk management strategy in this area is paramount.

Conclusion

Besides unexploded ordnance left behind after the 1999 bombing campaign on the territory of former Yugoslavia, there is also UXO left from World Wars I and II and still buried in the ground. The data on the mentioned

amounts is not accessible except in the circumstances encountered during particular land excavation works. Afterwards, the problem of UXO intensifies, but it does not move away from stating the problem and ° demanding that it be solved. The frequent reference to UXO in the ground inadvertently covers the issues of our waterways which are also contaminated with unexploded ammunition. Contamination levels considerably impact planning and decision making when choosing safe locations for crossing an area while undertaking different activities (Bozanic et al, 2018).

Combining physical and chemical procedures and analyses may help decision making on the cleanup plan for depleted uranium-contaminated military sites. It is vital to consider establishing radioactive monitoring in such a location and others where UXO is an issue. Such surveillance must be genuine, radiological surveillance must be reasonably valid, and unprofessional groups or people cannot conduct it. In Serbia, such monitoring is undertaken by the Department of Radiation and Environmental Protection of the Institute of Nuclear Sciences in Vinca, Belgrade (Krneta Nikolic et al, 2014).

The article contributes significantly to creating a strategy for environmental risk management in regions contaminated by UXO. The paper provides an example of an effective technique for resolving risk assessment issues experienced by the Army in UXO locations. Not only does it present a suitable risk analysis, but it also considers numerous environmental protection possibilities. It is feasible to calculate the number of structures and people, soil kinds, plant types, and others exposed to UXO dangers based on the key spots using the multi-criteria analysis and the GIS. This paper is one of the guidelines for environmental risk assessment.

Since the UXO issue in the observed region has not been resolved for the last two decades and based on the findings of this paper's analyses, it can be stated that the UXO problem in this area will persist and continue to threaten the safety of people and property. Consequently, establishing a UXO risk management plan and a methodology for risk assessment ¡ following strategic guidelines is paramount. The findings of this paper's analyses unequivocally reveal the level of risk to people, property, and the environment with a detrimental long-term effect on this region. Appropriate risk assessment and UXO risk management would contribute to slowing down the UXO detrimental consequences in all aspects.

Future studies should identify the criteria for zoning UXO-contaminated regions based on threats to people, property, and the environment. The findings of the analyses presented in this article may be used as a foundation for establishing the criteria and methodology and then estimating

<u

e

lo

>

co CM o CM

of

UJ

a:

ZD O o

_J

<

o

X

o

LU

I—

>-

Cd <

I—

< _J

CD >o

X LU I—

o

o >

0

the danger of UXO. According to the same approach, it is conceivable to do comparable analyses for other areas and the whole territory of the Republic of Serbia, therefore resolving the issue of UXO risk management and laying the groundwork for more effective protection of people's property and the environment.

References

-Australian Government, Defence. 2020. Unexploded Ordnance (UXO) in Australia [online]. Available at: https://uxo.defence.gov.au/ [Accessed: 20 May 2023].

Bozanic, D., Tesic, D. & Milicevic, J. 2018. A hybrid fuzzy AHP-MABAC model: Application in the Serbian Army - The selection of the location for deep wading as a technique of crossing the river by tanks. Decision Making: Applications in Management and Engineering, 1(1), pp.143-164 [online]. Available at: https://dmame-journal.org/index.php/dmame/article/view/2 [Accessed: 20 May 2023].

Cauderay, G.C. 1993. Anti-Personnel Mines. International Review of the Red Cross, 33(295), pp.273-287. Available at:

https://doi.org/10.1017/S0020860400080530.

Congalton, R.G. & Green, K. 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition. Boca Raton: CRC Press. Available at: https://doi.org/10.1201/9780429052729.

Congedo, L. 2021. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. The Journal of Open Source Software, 6(64), art.number:3172. Available at: https://doi.org/10.21105/joss.03172.

-Copernicus. 2020. Copernicus Open Access Hub [online]. Available at: https://scihub.copernicus.eu/ [Accessed: 20 May 2023].

Cujic, M., Jankovic Mandic, Lj., Petrovic, J., Dragovic, R., Bordevic, M., Bokic, M. & Dragovic, S. 2021. Radon-222: environmental behavior and impact to (human and non-human) biota. International Journal of Biometeorology, 65, pp.69-83. Available at: https://doi.org/10.1007/s00484-020-01860-w.

Duro, D.C., Franklin, S.E. & Dube, M.G. 2012. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, pp.259-272. Available at: https://doi.org/10.1016/j.rse.2011.11.020.

-Eorc.Jaxa. 2019. Precise Global Digital 3D Map "ALOS World 3D" [online]. Available at: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d_e.htm [Accessed: 20 May 2023].

Fairlie, I. 2009. Depleted uranium: properties, military use and health risks. Medicine, Conflict and Survival, 25(1), pp.41-64. Available at: https://doi.org/10.1080/13623690802568962.

-Google Earth. 2020. Geospatial Solutions: Google Earth Pro 7.3.3.7786 [online]. Available at: https://www.google.com/earth/versions/ [Accessed: 20 May 2023].

-Government of Canada. 2021. What is Unexploded Explosive Ordnance (UXO)? [online]. Available at: https://www.canada.ca/en/department-national-defence/services/uxo/what-is-uxo.html [Accessed: 20 May 2023].

Karasiak, N. 2016. lennepkade/dzetsaka: Fix bug in processing provider with vector files. Zenodo.org. Available at: https://doi.org/10.5281/zenodo.2552284.

Krneta Nikolic, J.D., Todorovic, D.J., Jankovic, M.M., Pantelic, G.K. & RajaCic, M.M. 2014. Quality assurance and quality control in environmental radioactivity monitoring. Quality Assurance and Safety of Crops and Foods, 6(4), pp.403-409. Available at: https://doi.org/10.3920/QAS2012.0.236.

-Landmine Action. 2002. Summary: Explosive remnants of war, Unexploded ordnance and postconflict communities [online]. Available at: http://www.cpeo.org/pubs/UXOreport_3_26.pdf (Accessed: 25 November 2022).

Martin, M.F., Dolven, B., Feickert, A. & Lum, T. 2019. War Legacy Issues in Southeast Asia: Unexploded Ordnance (UXO). Congressional Research Service [online]. Available at: https://sgp.fas.org/crs/weapons/R45749.pdf [Accessed: 20 May 2023].

Mas, J.F. & Flores, J.J. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), pp.617-663. Available at: https://doi.org/10.1080/01431160701352154.

McLaughlin, J.P., Vintro, L.L., Smith, K.J., Mitchell, P.I. & Zunic, Z.S. 2003. Actinide analysis of a depleted uranium penetrator from a 1999 target site in southern Serbia. Journal of Environmental Radioactivity, 64(2-3), pp.155-165. Available at: https://doi.org/10.1016/S0265-931X(02)00046-2.

Mihajlovic, Lj., Komazec, N., MilinCic, M., Mihajlovic, B. & Bordevic, T. 2014. Prevention of Environmental Migration Using GIS as a Research Method. In: Trajanovic. M. & Stankovic, M. (Eds.) 6th International ICT Conference, Proceedings, Nis, Serbia, pp.60-63, October 14-16 [online]. Available at: https://www.academia.edu/10518758/Proceedings_of_6th_International_ICT_Co nference [Accessed: 20 May 2023]. ISBN: 978-86-80593-52-4.

Orlic, M. 2000. Depleted uranium as a product of nuclear technology. In: XLIV ETRAN Conference, Sokobanja, Serbia, pp.35-42, June 26-29 [online]. Available at: https://www.etran.rs/common/archive/ETRAN_1955- |

2006/ET(R)AN_1955-

2006/eTRAN/44.ETRAN.2000.4/Orlic.M.ETRAN.2000.4.pdf (in Serbian) [Accessed: 20 May 2023].

Pamucar, D., Bozanic, D., Borovic, B. & Milic, A. 2011. Modelling of the fuzzy logical system for offering support in making decisions within the engineering units of the Serbian Army. International Journal of Physical Sciences, 6(3), pp.592-609 [online]. Available at: https://academicjournals.org/journal/IJPS/article-abstract/139CC9428354 [Accessed: 20 May 2023].

Plackett, RL 1976. Reviewed Work: Discrete Multivariate Analysis: Theory and Practice. by Yvonne M.M. Bishop, Stephen E. Fienberg, Paul W. Holland.

<u

<1>

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ö >

CO Ol

0

01

of

UJ

a:

ZD O o

_J

<

o

X

o

LU

I—

>-

Cd <

I—

< _J

CD >o

X LU I—

o

o >

0

Journal of the Royal Statistical Society. Series A (General), 139(3), pp.402-403. Available at: https://doi.org/10.2307/2344845.

Popovic, D., Todorovic, D., Frontasyeva, M., Ajtic, J., Tasic, M. & Rajsic, S. 2008. Radionuclides and heavy metals in Borovac, Southern Serbia. Environmental Science and Pollution Research, 15(6), pp.509-520. Available at: https://doi.org/10.1007/s11356-008-0003-6.

Potic, I.M., Curcic, N.B., Potic, M.M., Radovanovic, M.M. & Tretiakova, T.N. 2017. Remote sensing role in environmental stress analysis: East Serbia wildfires case study (2007-2017). Journal of the Geographical Institute "Jovan Cvijic" SASA, 67(3), pp.249-264. Available at: https://doi.org/10.2298/ijgi1703249p.

Potic, I., Mihajlovic, Lj.M., Simunic, V., Curcic, N.B. & Milincic, M. 2022. Deforestation as a Cause of Increased Surface Runoff in the Catchment: Remote Sensing and SWAT Approach—A Case Study of Southern Serbia. Frontiers in Environmental Science, 10(June), art.number: 896404. Available at: https://doi.org/10.3389/fenvs.2022.896404.

Potic, I. & Potic, M. 2017. Remote sensing machine learning algorithms in environmental stress detection: Case study of Pan-European south section of Corridor 10 in Serbia. The University Thought - Publication in Natural Sciences, 7(2), pp.41-46. Available at: https://doi.org/10.5937/univtho7-14957.

-QGIS. 2022. QGIS A Free and Open Source Geographic Information System [online]. Available at: https://www.qgis.org/en/site/forusers/download.html [Accessed: 20 May 2023].

Radenkovic, M.B., Cupac, S.A., Joksic, J.D. & Todorovic, D.J. 2008. Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia). Environmental Science and Pollution Research, 15(1), pp.61-67. Available at: https://doi.org/10.1065/espr2007.03.399.

Regodic, M. 2008. Remote sensing as a method of space data acquisition. Vojnotehnicki glasnik/Military Technical Courier, 56(1), pp.91-112 (in Serbian). Available at: https://doi.org/10.5937/vojtehg0801091R.

-Republika Srbija, Centar za Razminiranje. 2022. Minska situacija: MINSKA SITUACIJA NOVEMBAR 2022. [online]. Available at: https://www.czrs.gov.rs/lat/minska-situacija.php [Accessed: 10 November 2022].

-Republika Srbija, Republicki zavod za statistiku. 2023. Popis stanovnistva, domacinstava i stanova, Popis 2011, Popisni podaci - eksel tabele [online]. Available at: https://www.stat.gov.rs/sr-Latn/oblasti/popis/popis-2011/popisni-podaci-eksel-tabele (in Serbian) [Accessed: 20 May 2023].

Sahoo, S.K., Fujimoto, K., Celikovic, I., Ujic, P. & Zunic, Z.S. 2004. Distribution of uranium, thorium, and isotopic composition of uranium in soil samples of south Serbia: Evidence of depleted uranium. Nuclear Technology and Radiation Protection, 19(1), pp.26-30. Available at: https://doi.org/10.2298/NTRP0401026S.

Salomonson, V.V. 2014. Remote Sensing, Historical Perspective. In: Njoku, EG (Eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series, pp.684-691. New York, NY: Springer. Available at: https://doi.org/10.1007/978-0-387-36699-9_158.

Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K. & Iwamoto, H. 2016. Generation of the 30 M-MESH global digital surface model by alos prism. In: XXIII ISPRS Congress: The International Archives of the g Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, Prague, Czech Republic, July 12-19. Available at: https://doi.org/10.5194/isprsarchives-XLI-B4-157-2016.

Tarboton, D.G., Dash, P. & Sazib, N. 2015. TauDEM 5.3: Guide to using the TauDEM command line functions 2015. Logan: Utah State University [online]. Available at:

https://hydrology.usu.edu/taudem/taudem5/TauDEM53CommandLineGuide.pdf [Accessed: 20 May 2023].

-The Geneva International Centre for Humanitarian Demining (GICHD). 2019. Explosive ordnance: Types of explosive ordnance [online]. Available at: https://www.gichd.org/en/explosive-ordnance/ [Accessed: 20 May 2023].

-UN Institute for Disarmament Research. 2008. Disarmament forum. 2008/1 = Forum du désarmement. 2008/1. Geneva: UN Institute for Disarmament Research [online]. Available at: http://digitallibrary.un.org/record/633351. ISBN/ISSN: 1020-7287.

Vukanac, I., Novkovic, D., Kandic, A., Djurasevic, M. & Milosevic, Z. 2010. A simple method for determination of natural and depleted uranium in surface soil samples. Applied Radiation and Isotopes, 68(7-8), pp.1433-1434. Available at: https://doi.org/10.1016/j.apradiso.2009.11.056.

ф m

Управление рисками, связанными с неразорвавшимися боеприпасами, в Республике Сербия в целях защиты окружающей среды - исследование случая Боровац

Иван М. Потича, Ненад М. Комазец6, Лиляна М. Михайлович15, Александр М. Милич6, Саша Т. Бакрача

а Военно-географический институт имени генерала Стевана Бошковича, г. Белград, Республика Сербия

б Университет обороны в г. Белград, Военная академия, г. Белград, Республика Сербия

Белградский университет, географический факультет, Е

г. Белград, Республика Сербия, корессподент ~

РУБРИКА ГРНТИ: 81.93.03 Методология оценки вероятности аварий,

катастроф, стихийных бедствий и их последствий. Оценка риска, 34.35.51 Антропогенные воздействия на экосистемы, 20.23.25 Информационные системы с базами знаний. ВИД СТАТЬИ: оригинальная научная статья

^ Резюме:

Введение/цель: После нескольких десятилетий борьбы с неразорвавшимися боеприпасами (НРБ) в некоторых районах Республики Сербия обнаружено, что они все еще представляют о значительную опасность для населения, имущества и окружающей

среды. Несмотря на то, что местность была разминирована, все еще стоит серьезная угроза от труднодоступных частей неразорвавшихся боеприпасов. Несоответствующие системные ш решения в управлении неразорвавшимися боеприпасами могут

Ц повлечь за собой серьезные негативные последствия.

о Методы: В данной статье изучается воздействие частей НРБ на

население и окружающую среду на основании анализа о пространственного распределения различных видов и количества

НРБ. Были проведены два различных геопространственных

0 анализа, а также разработаны рекомендации по управлению ш рисками с помощью многокритериального устранения рисков,

анализа ГИС и дистанционного зондирования.

н Результаты: Было проведено два различных

геопространственных анализа, в результате которых осуществлена классификация территории с высоким риском от неразорвавшихся боеприпасов.

< Выводы: Данная статья вносит значительный вклад в создание

ёз стратегии управления экологическими рисками на местности,

2 загрязненной неразорвавшимися боеприпасами. Такой тип

стратегии является эффективным методом для решения

1 проблемы оценки риска на местности с неразорвавшимися боеприпасами. В статье также обсуждается анализ рисков и меры по охране окружающей среды. С помощью многокритериального

о анализа и ГИС оценивается степень риска для населения,

имущества, типов почвы и растительности от воздействия НРБ. Данная статья представляет собой руководство по оценке экологических рисков.

Ключевые слова: Неразорвавшиеся боеприпасы, управление рисками в кризисных ситуациях, охрана окружающей среды, безопасность, геопространственный анализ.

ш I-

о

Управ^а^е ризиком од неексплодираних убогих средстава у Републици Срби]и у функции заштите животне средине - студи]а случа]а Боровац §

Иван М. Поти^а, Ненад М. Комазец6, Милана М. Миха]лови^в, Александар М. Мили^6, Саша Т. Бакрача

а Во^огеографски институт „Генерал Стеван Бошкови^", Београд, Република Срби]а

б Универзитет одбране у Београду, Во]на академи]а, Београд, Република Срби]а

в Универзитет у Београду, Географски факултет, Београд, Република Срби]а, аутор за преписку

ОБЛАСТ: географски информациони системи,

менаумент животне средине, управ^а^е ризицима КАТЕГОРИJА (ТИП) ЧЛАНКА: оригинални научни рад

Сажетак:

Увод/цил: После вишедецени}ског решаваъа проблема са неексплодираним убоним средствима у неким областима Републике Срби}е, она }ош увек представла}у знатан ризик по безбедност луди, имовине и животне средине. Иако }е терен знатно очишЯен, посто]е озбилне претъе од компоненти ко}е се тешко проналазе. Неадекватна системска решена за управлаъе овим средствима могу изазивати веома велике последице.

Методе: На основу анализе просторне дистрибуци}е различитих типова и количина неексплодираних убо}них средстава, у чланку се проучава]у ефекти ових компоненти на лудске животе и животну средину. Извршене су две различите геопросторне анализе, а уклучене су и смернице за управлаъе ризиком путем елиминаци]е ризика на основу више критери]ума, ГИС анализа и далинске детекци}е.

Резултати: Две различите геопросторне анализе резултирале су класификацирм области ко}е су под високим ризиком од преосталих неексплодираних убо}них средстава.

Заклучак: Чланак знача]но доприноси ствараъу стратеги}е управлаъа еколошким ризицима у регионима контаминираним неексплодираним убоним средствимаОна представла ефикасну технику за решаваъе изазова процене ризика на тим просторима . У раду се разматра]у и анализа ризика и опци}е заштите животне средине. КористеПи вишекритери}умску анализу и ГИС, процек>у]е се изложеност структуре, луди, врста землишта и билних врста опасностима ко}е неексплодирана убо}на средства изазива}у на клучним локаци}ама. Ова] рад служи као смерница за процену еколошког ризика.

ш СЕ

ф

(Л <

СD

SZ >о

Къучне речи: неексплодирана y6ojHa средства, менаумент кризних ситуац^а, заштита животне средине, сигурност, геопросторна анализа.

Paper received on / Дата получения работы / Датум приема чланка: 24.05.2023. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 30.11.2023.

Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 01.12.2023.

© 2023 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier О (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the

0 terms and conditions of the Creative Commons Attribution license ^ (http://creativecommons.org/licenses/by/3.0/rs/).

U © 2023 Авторы. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military

1 Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и

0 распространяется в соответствии с лицензией «Creative Commons» (http://creativecommons.org/licenses/by/3.0/rs/).

01 © 2023 Аутори. Об]авио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier ^ (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово ]е чланак отвореног приступа и дистрибуира се у

складу са Creative Commons лиценцом (http://creativecommons.org/licenses/by/3.0/rs/).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

х ш

О —>

О >

О

i Надоели баннеры? Вы всегда можете отключить рекламу.