Научная статья на тему 'Рибосвичи - новый класс регуляторов генной активности'

Рибосвичи - новый класс регуляторов генной активности Текст научной статьи по специальности «Биологические науки»

CC BY
478
148
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РИБОСВИЧ / ЛИГАНДЫ / РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНА / БАКТЕРИИ / АРАБИДОПСИС / RIBOSWITCH / LIGANDS / REGULATION OF GENE EXPRESSION / BACTERIA / ARABIDOPSIS

Аннотация научной статьи по биологическим наукам, автор научной работы — Маланин Сергей Юрьевич, Барабанщиков Борис Иванович

В обзоре представлены данные о регуляции генной активности с помощью рибосвичей (riboswitch). Рибосвичи представляют собой некодирующие элементы мРНК, которые способны связывать низкомолекулярные лиганды и тем самым регулировать транскрипцию, трансляцию, стабильность и альтернативный сплайсинг РНК транскриптов. Контроль экспрессии в данном случае происходит без участия факторов белковой природы. Рибосвичи состоят из двух доменов: высоко-консервативного аптамера, ответственного за связывание лиганда, и экспрессионной платформы, которая регулирует экспрессию гена, изменяя вторичную структуру РНК. У грамотрицательных бактерий изменение вторичной структуры РНК в большинстве случаев приводит к экранированию последовательности Шайн Дальгарно и блокированию инициации трансляции, тогда как у грамположительных бактерий к аттенуации транскрипции. Рибосвичи являются широко распространенным механизмом регуляции генной активности. Данные риборегуляторы обнаружены не только в бактериях и археях, но и в эукариотических организмах (некоторых видах грибов и растений). Рибосвичи принимают участие в регуляции метаболизма витаминов, аминокислот, пуринов и некоторых других молекул.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биологическим наукам , автор научной работы — Маланин Сергей Юрьевич, Барабанщиков Борис Иванович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Regulation of gene expression by riboswitches is discussed in the present review. Riboswitches are noncoding RNA elements which directly bind small molecule ligands and regulate transcription, translation, stability and alternative splicing of RNA transcripts. The control of gene expression in this case occurs without protein factors, therefore riboswitches may be considered as ancient regulatory systems, which evolved during the prebiotic RNA world. A riboswitch is composed of two domains: a 5' highly conserved aptamer domain responsible for specific binding of a small molecule and a downstream expression platform that regulates expression by alteration of RNA secondary structure. In Gram-negative bacteria, such switch in the secondary structure leads to the sequestration of SD (Shine-Dalgarno) sequence, whereas in Gram-positive bacteria an attenuation of transcription occurs in most cases. Riboswitches are a widespread mechanism for regulation of gene expression. These elements were found not only in bacteria and archaea, but also in eukaryotic organisms (several species of fungi and plants). Moreover, riboswitches affect many metabolic pathways in cells; synthesis of vitamins, amino acids, purins and several other molecules is regulated by the given mechanism. The current review describes the discovery and methods for investigation of these riboregulators. A description of all known riboswitch classes is also given based on classification of its cognate ligands. The review contains our own data about the regulation of thiamine synthesis in Arabidopsis plants by TPP riboswitch by means of alternative splicing control. Moreover, practical applications of natural and artificial riboswitches are considered which can be used as antibacterial drug targets or tools for regulation of gene expression in functional genomics and biotechnology.

Текст научной работы на тему «Рибосвичи - новый класс регуляторов генной активности»

Естественные науки

Маланин С.Ю., Барабанщиков Б.И. Рибосвичи - новый класс регуляторов генной активности // Учен. зап. Казан. ун-та. Сер. Естеств. науки. - 2011. - Т. 153, кн. 2. - С. 73-88.

УДК 575:57.012.6

РИБОСВИЧИ - НОВЫЙ КЛАСС РЕГУЛЯТОРОВ ГЕННОЙ АКТИВНОСТИ

С.Ю. Маланин, Б.И. Барабанщиков Аннотация

В обзоре представлены данные о регуляции генной активности с помощью рибос-вичей (riboswitch). Рибосвичи представляют собой некодирующие элементы мРНК, которые способны связывать низкомолекулярные лиганды и тем самым регулировать транскрипцию, трансляцию, стабильность и альтернативный сплайсинг РНК транс-криптов. Контроль экспрессии в данном случае происходит без участия факторов белковой природы. Рибосвичи состоят из двух доменов: высоко-консервативного аптамера, ответственного за связывание лиганда, и экспрессионной платформы, которая регулирует экспрессию гена, изменяя вторичную структуру РНК. У грамотрицательных бактерий изменение вторичной структуры РНК в большинстве случаев приводит к экранированию последовательности Шайн - Дальгарно и блокированию инициации трансляции, тогда как у грамположительных бактерий - к аттенуации транскрипции. Рибосвичи являются широко распространенным механизмом регуляции генной активности. Данные риборегуляторы обнаружены не только в бактериях и археях, но и в эукариотических организмах (некоторых видах грибов и растений). Рибосвичи принимают участие в регуляции метаболизма витаминов, аминокислот, пуринов и некоторых других молекул.

Ключевые слова: рибосвич, лиганды, регуляция экспрессии гена, бактерии, ара-бидопсис.

Summary

S.Yu. Malanin, B.I. Barabanschikov. Riboswitches Are a New Class of Gene Expression Regulators.

Regulation of gene expression by riboswitches is discussed in the present review. Riboswitches are noncoding RNA elements which directly bind small molecule ligands and regulate transcription, translation, stability and alternative splicing of RNA transcripts. The control of gene expression in this case occurs without protein factors, therefore riboswitches may be considered as ancient regulatory systems, which evolved during the prebiotic RNA world. A riboswitch is composed of two domains: a 5' highly conserved aptamer domain responsible for specific binding of a small molecule and a downstream expression platform that regulates expression by alteration of RNA secondary structure. In Gram-negative bacteria, such switch in the secondary structure leads to the sequestration of SD (Shine-Dalgarno) sequence, whereas in Gram-positive bacteria an attenuation of transcription occurs in most cases. Riboswitches are a widespread mechanism for regulation of gene expression. These elements were found not only in bacteria and archaea, but also in eukaryotic organisms (several species of fungi and plants).

Moreover, riboswitches affect many metabolic pathways in cells; synthesis of vitamins, amino acids, purins and several other molecules is regulated by the given mechanism.

The current review describes the discovery and methods for investigation of these ri-boregulators. A description of all known riboswitch classes is also given based on classification of its cognate ligands. The review contains our own data about the regulation of thiamine synthesis in Arabidopsis plants by TPP riboswitch by means of alternative splicing control. Moreover, practical applications of natural and artificial riboswitches are considered which can be used as antibacterial drug targets or tools for regulation of gene expression in functional genomics and biotechnology.

Key words: riboswitch, ligands, regulation of gene expression, bacteria, Arabidopsis.

Литература

1. Henkin T.M., Yanofsky C. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions // Bioessays. -2002. - V. 24, No 8. - P. 700-707.

2. Nelson A.R., Henkin T.M., Agris P.F. tRNA regulation of gene expression: interactions of an mRNA 5'-UTR with a regulatory tRNA // RNA. - 2006. - V. 12, No 7. - P. 12541261.

3. Storz G., Opdyke J.A., Zhang A. Controlling mRNA stability and translation with small, noncoding RNAs // Curr. Opin. Microbiol. - 2004. - V. 7, No 2. - P. 140-144.

4. Chowdhury S., Ragaz C., Kreuger E., Narberhaus F. Temperature-controlled structural alterations of an RNA thermometer // J. Biol. Chem. - 2003. - V. 278, No 48. -P. 47915-47921.

5. Winkler W.C., Breaker R.R. Regulation of bacterial gene expression by riboswitches // Annu. Rev. Microbiol. - 2005. - V. 59. - P. 487-517.

6. Roth A., Breaker R.R. The structural and functional diversity of metabolite-binding riboswitches // Annu. Rev. Biochem. - 2009. - V. 78. - P. 305-334.

7. Dambach M.D., Winkler W.C. Expanding roles for metabolite-sensing regulatory RNAs // Curr. Opin. Microbiol. - 2009. - V. 12, No 2. - P. 161-169.

8. Wachter A. Riboswitch-mediated control of gene expression in eukaryotes // RNA Biol. -2010. - V. 7, No 1. - P. 67-76.

9. Miranda-Rios J., Morera C., Taboada H., Davalos A., Encarnacion S., Mora J., Soberon M. Expression of thiamine biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb3 in Rhizobium etli // J. Bacteriol. - 1997. - V. 179, No 22. - P. 6887-6893.

10. Lundrigan M.D., Koster W., Kadner R.J. Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12 // Proc. Natl. Acad. Sci. USA. - 1991. - V. 88, No 4. - P. 1479-1483.

11. Ravnum S., Andersson D.I. An adenosyl-cobalamin (coenzyme-B12)-repressed transla-tional enhancer in the cob mRNA of Salmonella typhimurium // Mol. Microbiol. - 2001. -V. 39, No 6. - P. 1585-1594.

12. Nahvi A., Sudarsan N., Ebert M.S., Zou X., Brown K.L., Breaker R.R. Genetic control by a metabolite binding mRNA // Chem. Biol. - 2002. - V. 9, No 9. - P. 1043-1049.

13. Mironov A.S., Gusarov I., Rafkov R., Lopez L.E., Shatalin K., Kreneva R.A., Perumov D.A., Nudler E. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria // Cell. - 2002. - V. 111, No 5. - P. 747-756.

14. Epshtein V., Mironov A.S., Nudler E. The riboswitch-mediated control of sulphur metabolism in bacteria // Proc. Natl. Acad. Sci. USA. - 2003. - V. 100, No 9. - P. 50525056.

15. Sudarsan N., Wickiser J.K., Nakamura S., Ebert M.S., Breaker R.R. An mRNA structure in bacteria that controls gene expression by binding lysine // Genes Dev. - 2003. - V. 17, No 21. - P. 2688-2697.

16. SerganovA., PolonskaiaA., Phan A.T., BreakerR.R., PatelD.J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch // Nature. - 2006. - V. 441, No 7097. - P. 1167-1171.

17. Thore S., Leibundgut M., Ban N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand // Science. - 2006. - V. 312, No 5777. - P. 1208-1211.

18. Sudarsan N., Cohen-Chalamish S., Nakamura S., Emilsson G.M., Breaker R.R. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine // Chem. Biol. - 2005. - V. 12, No 12. - P. 1325-1335.

19. Weinberg Z., Barrick J.E., Yao Z., Kim J.N., Gore J., Wang J.X., Lee E.R., Block K.F., Sudarsan N., Neph S., Tompa M., Ruzzo W.L., Breaker R.R. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline // Nucleic Acids Res. - 2007. - V. 35, No 14. - P. 4809-4819.

20. Roth A., Winkler W.C., Regulski E.E., Lee B.W., Lim J., Jona I., Barrick J.E. Ritwik A., Kim J.N., Welz R., Iwata-Reuyl D., Breaker R.R. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain // Nat. Struct. Mol. Biol. -2007. - V. 14, No 4. - P. 308-317.

21. Kim J.N., Roth A., Breaker R.R. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine // Proc. Natl. Sci. USA. - 2007. - V. 104, No 41. -P. 16092-16097.

22. Regulski E.E., Moy R.H., Weinberg Z., Barrick J.E., Yao Z., Ruzzo W.L., Breaker R.R. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism // Mol. Microbiol. - 2008. - V. 68, No 4. -P. 918-932.

23. Winkler W.C., Breaker R.R. Genetic control by metabolite binding riboswitches // Chem-biochem. - 2003. - V. 4, No 10. - P. 1024-1032.

24. Cromie M.J., Shi Y., Latifi T., Groisman E.A. An RNA sensor for intracellular Mg2+ // Cell. - 2006. - V. 125. - P. 71-84.

25. Groisman E.A. The pleiotropic two-component regulatory system PhoP-PhoQ // J. Bac-teriol. - 2001. - V. 183, No 6. - P. 1835-1842.

26. Dann C.E., Wakeman C.A., Sieling C.L., Baker S.C., Irnov I., Winkler W.C. Structure and mechanism of a metal-sensing regulatory RNA // Cell. - 2007. - V. 130, No 5. - P. 878-892.

27. Draper D.E., Grilley D., Soto A.M. Ions and RNA folding // Annu. Rev. Biophys. Bio-mol. Struct. - 2005. - V. 34. - P. 221-243.

28. Woodson S.A. Metal ions and RNA folding: a highly charged topic with a dynamic future // Curr. Opin. Chem. Biol. - 2005. - V. 9, No 2. - P. 104-109.

29. Grilley D., Soto A.M., Draper D.E. Mg2+-RNA interaction free energies and their relationship to folding of RNA tertiary structures // Proc. Natl. Acad. Sci. USA. - 2006. -V. 103, No 38. - P. 14003-14008.

30. Gilbert S.D., Stoddard C.D., Wise S.J., Batey R.T. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain // J. Mol. Biol. -2006. - V. 359, No 3. - P. 754-768.

31. Yamauchi T., Miyoshi D., Kubodera T., Nishimuta A., Nakai S., Sugimoto N. Roles of Mg2+ in TPP-dependent riboswitch // FEBS Lett. - 2005. - V. 579, No 12. - P. 25832588.

32. Takusagawa F., Fujioka M., Spies A., Schowen R.L. S-adenosylmethionine (AdoMet)-dependent methyltransferases // Comprehensive Biological Catalysis / Ed. by M. Sinnott. -San Diego, CA: Acad. Press, 1998. - V. 1. - P. 1-30.

33. McDaniel B.A.M., Grundy F.J., Artsimovitch I., Henkin T.M. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA // Proc. Natl. Acad. Sci. USA. - 2003. - V. 100, No 6. - P. 3083-3088.

34. Winkler W.C., Nahvi A., Sudarsan N., Barrick J.E., Breaker R.R. An mRNA structure that controls gene expression by binding S-adenosylmethionine // Nat. Struct. Biol. -2003. - V. 10, No 9. - P. 701-707.

35. Montage R.K., Batey R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element // Nature. - 2006. - V. 441, No 7097. - P. 1172-1175.

36. Corbino K.A., Barrick J.E., Lim J., Welz R., Tucker B.J., Puskarz I., Mandal M., Rud-nick N.D., Breaker R.R. Evidence for a second class of S-adenosylmethionine ribo-switches and other regulatory RNA motifs in alpha-proteobacteria // Genome Biol. -2005. - V. 6, No 8. - P. R70-1-R70-10.

37. Fuchs R.T., Grundy F.J., Henkin T.M. The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase // Nat. Struct. Mol. Biol. - 2006. - V. 13, No 3. - P. 226-233.

38. Weinberg Z., Regulski E.E., HammondM.C., Barrick J.E., Yao Z., Ruzzo W.L., Breaker R.R. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches // RNA. - 2008. - V. 14, No 5. - P. 822-828.

39. Poiata E., Meyer M.M., Ames T.D., Breaker R.R. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria // RNA. - 2009. - V. 15, No 11. -P. 2046-2056.

40. Wang J.X., Lee E.R., Morales D.R., Lim J., Breaker R.R. Riboswitches that sense S-ade-nosylhomocysteine and activate genes involved in coenzyme recycling // Mol. Cell. -2008. - V. 29, No 6. - P. 691-702.

41. GelfandM.S., Mironov A.A., Jomantas J., Kozlov Y.I., Perumov D.A. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes // Trends Genet. - 1999. -V. 15, No 11. - P. 439-442.

42. SerganovA., Huang L., Patel D.J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch // Nature. - 2009. - V. 458, No 7235. - P. 233-237.

43. Миронов А.С., Карелов Д.В., Соловьева И.М., Еремина С.Ю., Эрраис Л.Л., Кренева З.А., Перумов Д.А. Исследование связи вторичной структуры и регуляторной активности лидерного транскрипта оперона биосинтеза рибофлавина у Bacillus subtilis // Генетика. - 2008. - Т. 44, № 4. - С. 467-473.

44. Winkler W.C., Cohen-Chalamish S., Breaker R.R. An mRNA structure that controls gene expression by binding FMN // Proc. Natl. Acad. Sci. USA. - 2002. - V. 99, No 25. -P. 15908-15913.

45. Vitreschak A.G., Rodionov D.A., Mironov A.A., Gelfand M.S. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation // Nucleic Acids Res. - 2002. - V. 30, No 14. - P. 3141-3151.

46. Martens J.H., Barg H., Warren M.J., Jahn D. Microbial production of vitamin B12 // Appl. Microbiol. Biotechnol. - 2002. - V. 58, No 3. - P. 275-285.

47. Franklund C.V, Kadner R.J. Multiple transcribed elements control expression of the Escherichia coli btuB gene // J. Bacteriol. - 1997. - V. 179, No 12. - P. 4039-4042.

48. Vitreschak A.G., Rodionov D.A., Mironov A.A., Gelfand M.S. Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element // RNA. -2003. - V. 9, No 9. - P. 1084-1097.

49. Nahvi A., Barrick J.E., Breaker R.R. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes // Nucleic Acids Res. - 2004. - V. 32, No 1. - P. 143— 150.

50. Baugh P.E., Collison D., Gamer C.D., Joule J.A. Molybdenum metalloenzymes // Comprehensive Biological Catalysis / Ed. by M. Sinnott. - San Diego, CA: Acad. Press, 1998. 1998. - V. III. - P. 377-400.

51. Winkler W., Nahvi A., Breaker R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression // Nature. - 2002. - V. 419, No 6910. - P. 952-956.

52. Sudarsan N., Barrick J.E., Breaker R.R. Metabolite-binding RNA domains are present in the genes of eukaryotes // RNA. - 2003. - V. 9, No 6. - P. 644-647.

53. CroftM.T., Moulin M., Webb M.E., Smith A.G. Thiamine biosynthesis in algae is regulated by riboswitches // Proc. Natl. Acad. Sci. USA. - 2007. - V. 104, No 52. - P. 20770-20775.

54. Cheah M.T., Wachter A., Sudarsan N., Breaker R.R. Control of alternative RNA splicing and expression by eukaryotic riboswitches // Nature. - 2007. - V. 447, No 7143. - P. 497-501.

55. Wachter A., Tunc-Ozdemir M., Grove B.C., Green P.J., Shintani D., Breaker R.R. Ri-boswitch Control of Gene Expression in Plants by Splicing and Alternative 3' End Processing of mRNAs // Plant Cell. - 2007. - V. 19, No 11. - P. 3437-3450.

56. Маланин С.Ю., Никифорова В.Ю. Связь альтернативного сплайсинга и нонсенс-опосредованного разрушения мРНК (NMD) в регуляции экспрессии гена THIC у арабидопсиса // Физиол. раст. - 2010. - Т. 57, № 2. - С. 280-286.

57. Christiansen L.C., Schou S., Nygaard P., Saxild H.H. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism // J. Bacte-riol. - 1997. - V. 179, No 8. - P. 2540-2550.

58. Mandal M., Boese B., Barrick J.E., Winkler W.C., Breaker R.R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria // Cell. - 2003. -V. 113, No 5. - P. 577-586.

59. Mandal M., Breaker R.R. Adenine riboswitches and gene activation by disruption of a transcription terminator // Nat. Struct. Mol. Biol. - 2004. - V. 11, No 1. - P. 29-35.

60. Lescoute A., Westhof E. Riboswitch structures: Purine ligands replace tertiary contacts // Chem. Biol. - 2005. - V. 12, No 1. - P. 10-13.

61. Batey R.T., Gilbert S.D., Montange R.K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxantine // Nature. - 2004. - V. 432, No 7015. -P. 411-415.

62. Serganov A., Yuan Y., Pikovskaya O., Polonskaia A., Malinina L., Phan A.T., Hobartner C., Micura R., Breaker R.R., Patel D.J. Structural basis of discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs // Chem. Biol. - 2004. - V. 11, No 12. - P. 1729-1741.

63. Kolberg M., Strand K.R., Graff P., Andersson K.K. Structure, function, and mechanism of ribonucleotide reductases // Biochim. Biophys. Acta. - 2004. - V. 1699, No 1-2. -P. 1-34.

64. Spitale R.C., Torelli A.T., Krucinska J., Bandarian V., Wedekind J.E. The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain // J. Biol. Chem. - 2009. - V. 284, No 17. - P. 11012-11016.

65. Rieder U., Kreutz C., Micura R. Folding of a transcriptionally acting PreQ1 riboswitch // Proc. Natl. Acad. Sci. USA. - 2010. - V. 107, No 24. - P. 10804-10809.

66. Harada F., Nishimura S. Possible anticodon sequences of tRNAHis, tRNAAsn, and tRNAAsp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the an-ticodon of three transfer ribonucleic acids // Biochem. - 1972. - V. 11, No 2. - P. 301-308.

67. Sudarsan N., Lee E.R., Weinberg Z., Moy R.H., Kim J.N., Link K.H., Breaker R.R. Riboswitches in eubacteria sense the second messenger cyclic di-GMP // Science. - 2008. -V. 321, No 5887. - P. 411-413.

68. Hengge R. Principles of c-di-GMP signalling in bacteria // Nat. Rev. Microbiol. - 2009. -V. 7, No 4. - P. 263-273.

69. Smith K.D., Lipchock S.V., Ames T.D., Wang J., Breaker R.R., Strobel S.A. Structural basis of ligand binding by a c-di-GMP riboswitch // Nat. Struct. Mol. Biol. - 2009. - V. 16, No 12. - P. 1218-1223.

70. Kochhar S., Paulus H. Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis // Microbiol. - 1996. - V. 142, No 7. - P. 1635-1639.

71. Grundy F.J., Lehman S.C., Henkin T.M. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes // Proc. Natl. Acad. Sci. USA. - 2003. - V. 100, No 21. - P.12057-12062.

72. Barrick J.E., Corbino K.A., Winkler W.C., Nahvi A., Mandal M., Collins J., Lee M., Roth A., Sudarsan N., Jona I., Wickiser J.K., Breaker R.R. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control // Proc. Natl. Acad. Sci. USA. - 2004. -V. 101, No 17. - P. 6421-6426.

73. MandalM., Lee M., Barrick J.E., Weinberg Z., Emilsson G.M., Ruzzo W.L., Breaker R.R. A glycine-dependent riboswitch that uses cooperative binding to control gene expression // Science. - 2004. - V. 306, No 5694. - P. 275-279.

74. Rodionov D.A., DubchakI., Arkin A., Alm E., GelfandM.S. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria // Genome Biol. - 2004. -V. 5, No 11. - P. R90-1-R90-27.

75. Sudarsan N., Hammond M.C., Block K.F., Welz R., Barrick J.E., Roth A., Breaker R.R. Tandem riboswitch architectures exhibit complex gene control functions // Science. -2006. - V. 314, No 5797. - P. 300-304.

76. Milewski S. Glucosamine-6-phosphate synthase: the multi-facets enzyme // Biochim. Biophys. Acta. - 2002. - V. 1597, No 2. - P. 173-192.

77. McCarthy T.J., Plog M.A., Floy S.A., Jansen J.A., Soukup J.K., Soukup G.A. Ligand requirements for glmS ribozyme self-cleavage // Chem. Biol. - 2005. - V. 12, No 11. -P. 1221-1226.

78. Klein D.J., Ferre-D'Amare A.R. Structural basis of glmS ribozyme activation by gluco-samine-6-phosphate // Science. - 2006. - V. 313, No 5794. - P. 1752-1756.

79. Cochrane J.C., Lipchock S. V., Strobel S.A. Structural investigation of the glmS ribozyme bound to its catalytic cofactor // Chem. Biol. - 2006. - V. 14, No 1. - P. 97-105.

80. Vitreschak A.G., Rodionov D.A., Mironov A.A., Gelfand M.S. Riboswitches: the oldest mechanism for the regulation of gene expression? // Trends Genet. - 2004. - V. 20. -P. 44-50.

81. EllingtonA.D., SzostakJ.W. In vitro selection of RNA molecules that bind specific ligands // Nature. - 1990. - V. 346, No 6287. - P. 818-822.

82. Grate D., Wilson C. Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex // Bioorg. Med. Chem - 2001. - V. 9, No 10. - P. 2565-2570.

83. Desai S.K., Gallivan J.P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation // J. Am. Chem. Soc. - 2004. -V. 126, No 41. - P. 13247-13254.

84. Verhounig A., Karcher D., Bock R. Inducible gene expression from the plastid genome by a synthetic riboswitch // Proc. Natl. Acad. Sci. USA. - 2010. - V. 107, No 14. -P. 6204-6209.

85. Breaker R.R. Engineered allosteric ribozymes as biosensor components // Curr. Opin. Biotechnol. - 2002. - V. 13, No 1. - P. 31-39.

86. Ogawa A., Maeda M. An artificial aptazyme-based riboswitch and its cascading system in E. coli // Chembiochem. - 2008. - V. 9, No 2. - P. 206-209.

87. Lee E.R., Blount K.F., Breaker R.R. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression // RNA Biol. - 2009. - V. 6, No 2. - P. 187-194.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Поступила в редакцию 16.12.10

Маланин Сергей Юрьевич - инженер кафедры генетики Казанского (Приволжского) федерального университета. E-mail: sergen83@mail.ru

Барабанщиков Борис Иванович - доктор биологических наук, профессор кафедры генетики Казанского (Приволжского) федерального университета. E-mail: Boris.Barabanchikov@ksu.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.