Научная статья на тему 'RHEOLOGICAL PROPERTIES OF MAYONNAISE WITH NON-TRADITIONAL INGREDIENTS'

RHEOLOGICAL PROPERTIES OF MAYONNAISE WITH NON-TRADITIONAL INGREDIENTS Текст научной статьи по специальности «Химические технологии»

CC BY
17
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MAYONNAISE / RHEOLOGICAL PROPERTIES / HOMOGENIZATION / HONEY / VEGETABLE OIL / CARBOHYDRATES

Аннотация научной статьи по химическим технологиям, автор научной работы — Bredikhin Sergey A., Martekha Alexander N., Andreev Vladimir N., Kaverina Yuliya E., Korotkiy Igor A.

Rheological measurements are used in the food industry to determine physical characteristics of raw materials, as well as semi-finished and finished products. We aimed to study the effects of ingredients and homogenization parameters on the rheological properties of mayonnaise prepared with pumpkin and rice oils, as well as various honeys. Mayonnaise samples were prepared with non-traditional ingredients, namely cold-pressed pumpkin seed oil, refined rice oil, and four varieties of honey (acacia, linden, forest, and spring). The samples were made in the traditional way on an Ultra Turrax T25 IKA homogenizer (3500-24 000 rpm). The rheological properties of honey and mayonnaise were determined on a Brookfield rotational viscometer. Forest honey had the highest viscosity, while linden honey had the lowest viscosity, compared to the other honeys. The sample of mayonnaise with forest honey had the highest effective viscosity (3.427 Pa·s) and consistency (101.26 Pa·sn). The use of whey powder provided mayonnaise with the most optimal rheological parameters. Of all carbohydrates, inulin HD had the best effect on the consistency of mayonnaise, with effective viscosity of 2.801 ± 0.001 Pa·s and a flow index of 0.2630 ± 0.0020. Disaccharides provided mayonnaise with higher viscosity and consistency than monosaccharides. Mayonnaise with fresh egg yolk had higher viscosity (2.656 ± 0.002 Pa·s) and consistency (65.640 ± 0.004 Pa·s) than the samples with other egg products. The rheological characteristics of mayonnaise were also determined by the homogenization time and rotor speed. Increasing the time from 2 to 4 min at 10 000 rpm raised the emulsion’s viscosity and consistency from 6.253 to 8.736 Pa·s and from 77.42 to 134.24 Pa·sn, respectively, as well as reduced the flow index from 0.2628 to 0.1995. The rotor speed of 10 000-12 000 rpm was optimal for mayonnaise with pumpkin and rice oils and honey. The studied samples of mayonnaise with pumpkin and rice oils, as well as honey, belong to non-Newtonian systems and pseudoplastic fluids. The empirical flow curves can be adequately described by the Herschel-Bulkley model. Our results can significantly increase the efficiency of mayonnaise production, improve its quality, and reduce production costs.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «RHEOLOGICAL PROPERTIES OF MAYONNAISE WITH NON-TRADITIONAL INGREDIENTS»

2022 Т. 52 № 4 / Техника и технология пищевых производств / Food Processing: Techniques and Technology

ISSN2074-9414 (Print) ISSN 2313-1748 (Online)

https://doi.org/10.21603/2074-9414-2022-4-2402 https://elibrary.ru/DNZOKM

Original article Available online at https://fptt.ru/en

®

Rheological Properties of Mayonnaise with Non-Traditional Ingredients

Sergey A. Bredikhin1 , Alexander N. Martekha1'* , Vladimir N. Andreev1 , Yuliya B. Kaverina1 , Igor A. Korotkiy2

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy^**, Moscow, Russia 2 Kemerovo State University1^, Kemerovo, Russia

*Alexander N. Martekha: man6630@rgau-msha.ru, https://orcid.org/0000-0002-7380-0477 Sergey A. Bredikhin: https://orcid.org/0000-0002-6898-0389 Vladimir N. Andreev: https://orcid.org/0000-0002-4890-379X Yuliya E. Kaverina: https://orcid.org/0000-0002-8352-922X Igor A. Korotkiy: https://orcid.org/0000-0002-7623-0940

© S.A. Bredikhin, A.N. Martekha, V.N. Andreev, Yu.E. Kaverina, I.A. Korotkiy, 2022

Abstract.

Rheological measurements are used in the food industry to determine physical characteristics of raw materials, as well as semi-finished and finished products. We aimed to study the effects of ingredients and homogenization parameters on the rheological properties of mayonnaise prepared with pumpkin and rice oils, as well as various honeys.

Mayonnaise samples were prepared with non-traditional ingredients, namely cold-pressed pumpkin seed oil, refined rice oil, and four varieties of honey (acacia, linden, forest, and spring). The samples were made in the traditional way on an Ultra Turrax T25 IKA homogenizer (3500-24 000 rpm). The rheological properties of honey and mayonnaise were determined on a Brookfield rotational viscometer.

Forest honey had the highest viscosity, while linden honey had the lowest viscosity, compared to the other honeys. The sample of mayonnaise with forest honey had the highest effective viscosity (3.427 Pas) and consistency (101.26 Pas11). The use of whey powder provided mayonnaise with the most optimal rheological parameters. Of all carbohydrates, inulin HD had the best effect on the consistency of mayonnaise, with effective viscosity of 2.801 ± 0.001 Pas and a flow index of 0.2630 ± 0.0020. Disaccharides provided mayonnaise with higher viscosity and consistency than monosaccharides. Mayonnaise with fresh egg yolk had higher viscosity (2.656 ± 0.002 Pas) and consistency (65.640 ± 0.004 Pas) than the samples with other egg products. The rheological characteristics of mayonnaise were also determined by the homogenization time and rotor speed. Increasing the time from 2 to 4 min at 10 000 rpm raised the emulsion's viscosity and consistency from 6.253 to 8.736 Pas and from 77.42 to 134.24 Pas11, respectively, as well as reduced the flow index from 0.2628 to 0.1995. The rotor speed of 10 000-12 000 rpm was optimal for mayonnaise with pumpkin and rice oils and honey.

The studied samples of mayonnaise with pumpkin and rice oils, as well as honey, belong to non-Newtonian systems and pseudoplastic fluids. The empirical flow curves can be adequately described by the Herschel-Bulkley model. Our results can significantly increase the efficiency of mayonnaise production, improve its quality, and reduce production costs.

Keywords. Mayonnaise, rheological properties, homogenization, honey, vegetable oil, carbohydrates

For citation: Bredikhin SA, Martekha AN, Andreev VN, Kaverina YuE, Korotkiy IA. Rheological Properties of Mayonnaise with Non-Traditional Ingredients. Food Processing: Techniques and Technology. 2022;52(4):739-749. (In Russ.). https://doi. org/10.21603/2074-9414-2022-4-2402

Received: 13.05.2022 Revised: 02.06.2022 Accepted: 05.07.2022

https://doi.org/10.21603/2074-9414-2022-4-2402 Оригинальная статья

https://elibrary.ru/DNZOKM https://fptt.ru

Исследование реологических свойств майонеза с нетрадиционным сырьем

®

С. А. Бредихин1 , А. Н. Мартеха1'* , В. Н. Андреев1 , Ю. Б. Каверина1 , И. А. Короткий2

1 Российский государственный аграрный университет -Московская сельскохозяйственная академия им. К. А. Тимирязева^**, Москва, Россия

2 Кемеровский государственный университет^**, Кемерово, Россия

*А. Н. Мартеха: man6630@rgau-msha.ru, https://orcid.org/0000-0002-7380-0477 С. А. Бредихин: https://orcid.org/0000-0002-6898-0389 В. Н. Андреев: https://orcid.org/0000-0002-4890-379X Ю. Е. Каверина: https://orcid.org/0000-0002-8352-922X И. А. Короткий: https://orcid.org/0000-0002-7623-0940

© С. А. Бредихин, А. Н. Мартеха, В. Н. Андреев, Ю. Е. Каверина, И. А. Короткий, 2022

Аннотация.

Реологические измерения в пищевой промышленности играют важную роль в определении физических характеристик сырья, полуфабрикатов и готовых продуктов. Цель работы состояла в исследовании влияния ингредиентов и параметров процесса гомогенизации на реологические свойства майонеза с добавлением тыквенного и рисового масел, а также различных сортов мёда.

Для приготовления опытных образцов майонеза в качестве нетрадиционных ингредиентов использовали тыквенное масло холодного отжима и рафинированное рисовое масло, а также четыре сорта мёда (акациевый, липовый, лесной и весенний). Приготовление майонеза осуществляли традиционным способом на лабораторном гомогенизаторе Ultra Turrax T25 IKA (диапазон скоростей вращения ротора 3500-24 000 об/мин). Реологические свойства меда и опытных образцов майонеза определяли на ротационном вискозиметре Brookfield.

Сравнительный анализ реологических показателей меда показал, что высокую вязкость имеет лесной мед, а низкую -липовый. Введение в рецептуру майонеза различных сортов мёда повлияло на реологические свойства готового продукта. Образец майонеза с лесным медом имел высокие значения эффективной вязкости (3,427 Пас) и коэффициента консистенции (101,26 Пас"). Использование сухой сыворотки в качестве молочного компонента при приготовлении майонеза с добавлением тыквенного и рисового масел позволило получить продукт с лучшими реологическими показателями. Также положительное влияние, по сравнению с другими углеводами, на консистенцию майонеза оказало введение инулина HD (эффективная вязкость 2,801 ± 0,001 Пас, индекс текучести 0,2630 ± 0,0020). Используемые дисахариды обеспечивают более высокую вязкость и консистенцию майонеза, чем моносахариды. Майонез со свежим яичным желтком имел более высокую вязкость (2,656 ± 0,002 Пас) и консистенцию (65,640 ± 0,004 Пас) по сравнению с добавлением других яичных продуктов. Реологические характеристики майонеза также зависят от продолжительности гомогенизации и частоты вращения ротора гомогенизатора. Увеличение продолжительности гомогенизации с 2 до 4 мин при частоте вращения ротора гомогенизатора 10 000 об/мин повышало вязкость эмульсии с 6,253 до 8,736 Пас и коэффициент консистенции - с 77,42 до 134,24 Пас", а также снижало индекс текучести с 0,2628 до 0,1995. Частота вращения ротора гомогенизатора в диапазоне 10 000-12 000 об/мин является оптимальной для майонеза с добавлением тыквенного и рисового масел и меда.

Исследованные образцы майонеза с тыквенным и рисовым маслом, а также с мёдом относятся к неньютоновским системам, псевдопластическим типам жидкостей. Полученные эмпирические кривые течения с высокой степенью адекватности описываются моделью Гершеля-Балкли. Применение полученных результатов позволит повысить эффективность проектирования технологических процессов при производстве майонезов, улучшить качественные показатели готового продукта и снизить производственные издержки.

Ключевые слова. Майонез, реологические свойства, гомогенизация, мёд, растительное масло, углеводы

Для цитирования: Исследование реологических свойств майонеза с нетрадиционным сырьем / С. А. Бредихин [и др.] // Техника и технология пищевых производств. 2022. Т. 52. № 4. С. 739-749. https://doi.org/10.21603/2074-9414-2022-4-240

Поступила в редакцию: 13.05.2022 Принята после рецензирования: 02.06.2022 Принята к публикации: 05.07.2022

Introduction

Food production processes are organized in such a way as to ensure the highest quality of the finished product. During processing, raw materials of plant origin are exposed to various mechanical stresses. In this regard, rheological analysis of food products is becoming increasingly important for assessing the quality of raw materials and finished products, as well as for predicting the behavior of semi-finished products during processing. In particular, it is used to determine the structure of the product and its characteristics in accordance with the technical regulations [1].

Mayonnaise is a multicomponent, finely dispersed water-fat emulsion of the direct oil-in-water type that is stable over a wide temperature range [2-4]. In this product, vegetable oil is an internal phase in the form of tiny drops in a dispersion medium [5].

According to the standard, high-calorie mayonnaise must contain more than 50% of edible vegetable oil, which forms its fat phase [6]. Mayonnaise is classified as a promising food product due to its composition and sensory properties. Also, it is used as a seasoning for various dishes. By enhancing the food's nutritional value and taste, mayonnaise stimulates appetite and improves digestion. It is a product of high biological and physiological value [7].

Vegetable oil is one of the main components of mayonnaise that contributes to its sensory and physicomechanical properties [8]. The oil content has a significant effect on the product's rheological properties such as yield strength, as well as storage and loss moduli. A combination of sunflower and pumpkin seed oils can provide an optimal composition of fatty acids and tocopherols, natural antioxidants that improve nutritional and sensory properties of mayonnaise. In particular, sunflower oil enriches the product with essential linoleic acid, while cold-pressed pumpkin oil is rich in oleic acid and gamma-tocopherol, contributing to longer shelf life. In addition, the latter's aroma and color can enhance the product's sensory properties.

Other main ingredients of mayonnaise are milk proteins, egg powder, stabilizers, and water. Fat-soluble vitamins, sugar, salt, mustard, and various flavor additives are present in small amounts [9].

Powdered milk, egg powder, and vegetable phospholipids are used as emulsifiers [10]. Powdered milk is also a structure-forming agent, since milk proteins swell in the presence of moisture, increasing the water-retaining capacity of mayonnaise [11].

Mustard powder is used as a flavor additive, as well as an emulsifier and a structure-forming agent due to its proteins. Mustard powder should be dry, with a sharp smell of allyl oil and a light yellow color. Mustard paste should be free of mustiness and bitterness [12].

Acetic acid improves the taste and enhances bactericidal properties of mayonnaise. Water is needed

to dissolve salt and sugar, as well as to dissolve and swell milk proteins and other ingredients.

Vegetable oil contained in mayonnaise provides the human body with physiologically active (essential) fatty acids, which lower blood cholesterol and help prevent atherosclerosis. Milk and egg powder are sources of proteins and essential amino acids, while sugar is a source of carbohydrates. Organic acids (acetic and citric) improve digestion, provide the required acidity and bactericidal purity, and determine taste and aroma [11].

Mayonnaise is a direct-type emulsion that is easily absorbed by the body. This fact and the content of vegetable oil determine its nutritional value [14].

Egg yolks act as emulsifiers mainly due to the presence of phospholipids, as well as high and low density lipoproteins. Vinegar, salt, sugar, and mustard are added to mayonnaise for flavor. These ingredients play an important role in the physical stability of the emulsion [15, 16]. Lutein, phycocyanin and other compounds, as well as processed beets and fruit components provide mayonnaise with oxidation stability and contribute to its taste and color, enhancing consumer interest [10, 17-19]. Rheological properties are an important quality criterion for food products, including water-fat emulsions (mayonnaise, sauces, and margarine) [20]. They are responsible for the product's consistency and quality during production, storage, and transportation [21, 22]. The rheological characteristics of mayonnaise are mainly determined by its fat phase, as well as thickeners, stabilizers, and emulsifiers in its formulation [23]. The product's quality, stability, and viscosity depend on the homogenization process, the dispersion of fat droplets in the continuous water phase, egg yolk, the type of carbohydrates, as well as the amount and type of milk [24-27]. In this type of emulsion, fat droplets are mechanically dispersed in the continuous water phase of acetic acid, while natural emulsifiers from egg yolk (phospholipids and proteins) ensure greater stabilization of the entire system [28].

The homogenization parameters (rotor speed and time) and the choice of a rotor-stator system, which forms fat droplets of a larger or smaller diameter, determine the medium's stability and play an important role in the formation of a water-fat emulsion [29-31].

We aimed to study the rheological and textural properties of mayonnaise containing pumpkin and rice oils, as well as various types of honey. We also sought to determine the influence of process parameters and the composition of the oil phase on the rheological properties of mayonnaise.

Study objects and methods

High-calorie mayonnaise with pumpkin and rice oils was formulated from refined sunflower oil, cold-pressed pumpkin seed oil, and refined rice oil (fat phase); egg products (fresh and pasteurized egg yolks and whole egg powder); carbohydrates (glucose, fructose, lactose,

sucrose, inulin HD); acetic acid; sea salt; mustard; dairy products (whole milk, skimmed milk, and whey powders); tartaric acid; distilled water; and banana puree (Table 1).

Mayonnaise with the addition of honey was formulated from refined sunflower oil (fat phase), egg yolk, honey, acetic acid, sea salt, tartaric acid, and distilled water (Table 2).

The fat phase of mayonnaise consisted of refined sunflower oil (Sloboda, Russia), cold-pressed pumpkin seed oil (Organic brand), and refined rice oil (Tayra, Thailand). Vinegar, sea salt, and mustard were bought at a local shop. Egg yolk was purchased from a private supplier and prepared both fresh and pasteurized. Four types of honey (acacia, spring, linden, and forest) were purchased from a private supplier (Moscow region). The milk component consisted of whole milk powder (26.3% proteins, 39.8% sugars, 26% fats), skimmed milk powder (1.5% fat) (Tagris), and whey powder (2% milk

Table 1. Formulation of mayonnaise with pumpkin and rice oils

Таблица 1. Рецептура для приготовления майонеза с добавлением тыквенного и рисового масел

Formulation Sample

Content, % Weight, g

Refined sunflower oil 50.0 150.0

Cold-pressed pumpkin seed oil 12.5 37.5

Refined rice oil 12.5 37.5

Egg products 6.2 18.6

Dairy products 2.1 6.3

Carbohydrates 2.2 6.6

Acetic acid 3.0 9.0

Sea salt 0.9 2.7

Mustard 0.2 0.6

Tartaric acid 0.1 0.3

Distilled water 7.8 23.4

Banana puree 2.5 7.5

TOTAL 100 300

Table 2. Formulation of mayonnaise with honey

Таблица 2. Рецептура приготовления майонеза с добавлением меда

Formulation Sample

Content, % Weight, g

Refined sunflower oil 75.0 225.0

Fresh egg yolk 7.7 23.1

Honey 3.8 11.4

Acetic acid 4.0 12.0

Sea salt 0.9 2.7

Tartaric acid 0.1 0.3

Distilled water 8.5 25.5

TOTAL 100 300

fat, 12-14% proteins, 74% lactose) (Vita-Max). The carbohydrates glucose, sucrose, fructose, lactose, tartaric acid, and inulin HD were purchased from Novaprodukt. Tartaric acid was added as an acidity regulator. The fruit component (banana puree) was prepared by peeling bananas, cutting them into pieces, and crushing by stirring to obtain a homogenized sample.

Mayonnaise preparation. Mayonnaise samples (300 g) with pumpkin and rice oils were prepared in the traditional way on a T25 Ultra Turrax IKA laboratory homogenizer, using a S25 D-14 G-KS rotor-stator system with a rotor speed of 3500-24 000 rpm. For this, we pre-weighed the ingredients (fresh egg yolk, vinegar, water, and others) and mixed them with half of sunflower oil. Then, we turned on the homogenizer and slowly added the rest of sunflower oil, as well as pumpkin seed and rice oils. The mixture was homogenized for 3 min at 10 000 rpm at room temperature, followed by rheological analysis. Other samples were prepared in the same way, with varying ingredients and homogenization parameters depending on the formulation.

Rheological properties. The rheological analysis of freshly prepared mayonnaise samples with pumpkin and rice oils was performed on a Brookfield rotational viscometer with coaxial cylinders. The viscometer was connected to a computer equipped with Rheocalc 3.2 software for measurements and data processing. The measurements were taken at 25 and 10°C. The temperatures were maintained using a TC-501P Brookfield thermostat. In particular, we determined the dependence of shear stress (т) and effective viscosity (м) on shear rate (D) in the ranges of 2.15-136.6 1/s (increasing measurement) and 136.6-2.15 1/s (reverse measurement). We also studied the phenomenon of thixotropy, i.e. the ability to restore viscous and plastic properties after the load is removed and deformation ceases.

The experimental data showed the rheological model of mayonnaise. Particularly, the samples had non-Newtonian properties and belonged to pseudoplastic fluids. The rheological parameters of consistency coefficient (k) and flow index (n) were calculated using the linear regression method in Microsoft Excel.

Formula (1) describes the Ostwald-Reiner power law used to calculate the rheological parameters.

т = k-D" (1)

where т is the shear stress, Pa; D is the shear rate, 1/s; k is the consistency coefficient, Pa sn; n is the flow index.

Formula (2) was used to calculate effective viscosity of the mayonnaise sample:

M = k-D"-1 (2)

where м is the effective viscosity, Pa s.

Statistical analysis. All the experiments were carried out in triplicate. One-way analysis of variance (ANOVA)

was used to establish the significance of differences in the experimental data. Data management and analysis was performed using SPSS software and presented as mean ± standard deviation.

Results and discussion

Rheological properties of mayonnaise with honey. We determined the influence of honey varieties and homogenization parameters on the rheological properties of mayonnaise measured at 25°C (Figs. 1 and 2, Tables 3-6). Figure 1 shows the relationship between shear stress and shear rate for spring honey.

According to the results, honey belongs to Newtonian fluids, since the line passed through the origin of the coordinate system (Fig. 1). Table 3 presents the rheological properties of the studied honey varieties expressed

Shear rate, 1/s

Figure 1. Relationship between shear stress and shear rate for spring honey at 25°C

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Рисунок 1. Зависимость между напряжением сдвига и скоростью сдвига весеннего меда при 25 °C

Shear rate, 1/s

Figure 2. Relationship between shear stress and shear rate for mayonnaise with acacia honey (10 000 rpm, 2 min) at 25°C

Рисунок 2. Зависимость напряжения сдвига и скорости сдвига майонеза с акациевым медом (10 000 об/мин, 2 мин) при 25 °C

in terms of rheological parameters.

As can be seen in Table 3, forest honey had the highest viscosity and consistency coefficient, while linden honey had the lowest viscosity.

The relationship between shear stress and shear rate for mayonnaise with acacia honey indicated that the samples with honey exhibited non-Newtonian, pseudoplastic properties (Fig. 2).

Li et al. confirmed that mayonnaise is a non-Newtonian fluid that exhibits yield strength, pseudoplas-ticity, and thixotropy [32]. Sakai et al. reported the pseudoplastic behavior of mayonnaise with characteristics depending on the raw material [10].

Empirical flow curves with a high degree of adequacy are described by the Herschel-Bulkley model.

Table 4 shows the effect of honey on the rheological parameters of mayonnaise homogenized at 10 000 rpm for 2 min at 25°C.

The control mayonnaise with acacia honey had an effective viscosity of 3.118 ± 0.001 Pas, a shear rate of 77.82 1/s, a consistency coefficient of 77.420 ± 0.125 Pasn, and a flow index of 0.2624 ± 0.0003 measured at 25°C. The sample with linden honey had slightly higher effective viscosity (3.294 ± 0.002 Pasn) and consistency coefficient (78.460 ± 0.002 Pasn) compared to the acacia honey mayonnaise. Forest honey showed higher viscosity (3.4270 ± 0.0005 Pasn) and consistency (101.260 ± 0.002 Pasn) but a lower flow index (0.2224 ± 0.0002) compared to the other samples.

Tables 5 and 6 show the effects of homogenization time and rotor speed on the rheological properties of mayonnaise with acacia honey measured at 25°C.

As can be seen in Table 5, the homogenization time of 2 min led to an effective viscosity of 6.253 ± 0.001 Pas at a shear rate of 30.36 1/s, a consistency coefficient of 77.42 ± 0.04 Pa sn, and a flow index of 0.2628 ± 0.0002. Increasing the time to 4 min contributed to higher viscosity (8.7360 ± 0.0005 Pa s) and consistency (134.240 ± 0.125 Pasn) but a lower flow index (0.1995 ± 0.0002).

Table 6 shows the effect of the rotor speed (10 000 and 12 000 rpm) during 2 min of homogenization on

Table 3. Rheological properties of honeys measured at 25°C

Таблица 3. Реологические свойства различных сортов меда, измеренные при 25 °C

Honey variety ц*, Pa-s k, Pa-sn n

Spring honey 4.9446 6.4789 Q.895Q

Forest honey 16.65Q9 17.3Q2Q Q.9851

Linden honey 4.7719 7.3144 Q.8341

Acacia honey 5.8413 6.Q93Q Q.9837

*Effective viscosity at shear rate of 77.82 1/s. *Эффективная вязкость при скорости сдвига 77,82 1/с.

Table 4. Effect of honey variety on the rheological parameters of mayonnaise Таблица 4. Влияние сорта меда на реологические параметры майонеза

Honey variety /*, Pa-s k, Pa-sn n R2

Spring honey 3.083 ± 0.001 63.110 ± 0.029 0.3067 ± 0.0040 0.968

Forest honey 3.4270 ± 0.0005 101.260 ± 0.002 0.2224 ± 0.0002 0.990

Linden honey 3.294 ± 0.002 78.460 ± 0.002 0.2719 ± 0.0002 0.989

Acacia honey 3.118 ± 0.002 77.420 ± 0.125 0.2624 ± 0.0003 0.994

*Effective viscosity at shear rate of 77.82 1/s. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 77,82 1/с. R2 - коэффициент детерминации.

Table 5. Effect of homogenization time on the rheological properties of mayonnaise with acacia honey Таблица 5. Влияние продолжительности гомогенизации на реологические свойства майонеза с акациевым медом

Sample, min /*, Pa-s k, Pa-s" n R2

2 6.253 ± 0.001 77.42 ± 0.04 0.2628 ± 0.0002 0,994

4 8.7350 ± 0.0005 134.240 ± 0.125 0.1995 ± 0.0002 0,964

*Effective viscosity at shear rate of 30.36 1/с. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 30,36 1/с. R2 - коэффициент детерминации.

Table 6. Effect of the rotor speed on the rheological properties of mayonnaise with acacia honey Таблица 6. Влияние частоты вращения ротора на реологические свойства майонеза с акациевым медом

Sample, rpm /*, Pa-s k , Pa-sn n R2

10 000 6.253 ± 0.010 77.42 ± 0.04 0.2628 ± 0.0002 0.994

12 000 8.039 ± 0.029 102.320 ± 0.125 0.2547 ± 0.0002 0.982

*Effective viscosity at shear rate of 30.36 1/s. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 30,36 1/с. R2 - коэффициент детерминации.

й СМ

Л

И

500 450 400 350 300 250 200 150 100 50 0

60 50 40 30 20 10 0

0,1 10 20 30 40 50 60 70 Shear rate, 1/s

h Shear stress

Effective viscosity

Figure 3. Flow curves for mayonnaise with pumpkin and rice oils at 25°C

Рисунок 3. Кривые течения майонеза с добавлением тыквенного и рисового масел при 25 °C

the rheological parameters of mayonnaise with acacia honey measured at 25°C.

As can be seen, the rotor speed changed the rheological properties of mayonnaise. In particular, the

speed of 10 000 rpm resulted in the effective viscosity of 6.253 ± 0.001 Pas at a shear rate of 30.36 1/s, a consistency coefficient of 77.42 ± 0.04 Pasn, and a flow index of 0.2628 ± 0.0002. Increasing the rotor speed to 12000 rpm produced a more stable emulsion with higher effective viscosity (8.039 ± 0.029 Pas) and consistency (102.320 ± 0.125 Pasn). The emulsion's higher stability was due to finer fat droplets formed at the rotor speed of 12 000 rpm, which were finely dispersed in the water phase. Thus, this speed was more optimal than 10 000 rpm.

Rheological properties of mayonnaise with pumpkin and rice oils. Figure 3 and in Tables 7-11 show the effects of ingredients on the rheological properties of mayonnaise with pumpkin and rice oils measured at 25 and 10°C.

Figure 3 features the relationship between shear stress and shear rate measured at 25°C.

We found that the tested samples exhibited non-Newtonian, pseudoplastic properties, as well as thixotropy. The empirical flow curves are described by the Herschel-Bulkley model with a high degree of adequacy.

Table 7 shows the effect of milk components on the rheological parameters of mayonnaise homogenized for 3 min at 10 000 rpm.

Table 7. Effect of milk component on the rheological properties of mayonnaise with pumpkin and rice oils Таблица 7. Влияние молочного компонента на реологические свойства майонеза c добавлением тыквенного и рисового масел

Sample /*, Pa s k, Pas11 n R2 /*, Pas k, Pa sn n R2

25 °C 10 °C

Skimmed milk powder 2.2290 ± 0.0002 46.870 ± 0.078 0.3005 ± 0.0030 0.998 2.7120 ± 0.0002 54.840 ± 0.029 0.3095 ± 0.0030 0.998

Whole milk powder 2.3430 ± 0.0002 55.210 ± 0.004 0.2744 ± 0.0030 0.997 2.9990 ± 0.0002 67.110 ± 0.002 0.2863 ± 0.0030 0.987

Whey powder 2.3910 ± 0.0002 57.180 ± 0.003 0.2710 ± 0.0020 0.990 3.0550 ± 0.0002 69.090 ± 0.002 0.2838 ± 0.0020 0.995

*Effective viscosity at shear rate of 77.82 1/s. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 77,82 1/с. R2 - коэффициент детерминации.

Table 8. Effect of carbohydrate composition on the rheological properties of mayonnaise with pumpkin and rice oils Таблица 8. Влияние углеводного состава на реологические свойства майонеза с добавлением тыквенного и рисового масел

Sample /*, Pas k, Pasn n R2 /*, Pas k, Pasn n R2

25 °C 10 °C

Glucose 2.392 ± 0.004 57.160 ± 0.078 0.2712 ± 0.0010 0.990 3.052 ± 0.004 69.060 ± 0.029 0.2837 ± 0.0010 0.995

Fructose 1.997 ± 0.003 39.050 ± 0.003 0.3172 ± 0.0020 0.997 2.464 ± 0.003 55.620 ± 0.002 0.2842 ± 0.0020 0.989

Sucrose 2.425 ± 0.002 58.630 ± 0.004 0.2685 ± 0.0030 0.992 3.024 ± 0.002 70.150 ± 0.002 0.2780 ± 0.0030 0.995

Lactose 2.748 ± 0.001 68.480 ± 0.002 0.2615 ± 0.0020 0.993 3.031 ± 0.001 77.510 ± 0.001 0.2556 ± 0.0020 0.984

Inulin HD 2.801 ± 0.001 69.360 ± 0.002 0.2630 ± 0.0020 0.992 3.051 ± 0.001 78.920 ± 0.004 0.2530 ± 0.0020 0.983

*Effective viscosity at shear rate of 77.82 1/s. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 77,82 1/с. R2 - коэффициент детерминации.

Table 9. Effect of egg products on the rheological properties of mayonnaise Таблица 9. Влияние яичных продуктов на реологические свойства майонеза

Sample /*, Pas k, Pasn n R2 /*, Pas k, Pasn n R2

25 °C 10 °C

Fresh 2.656 ± 0.002 65.640 ± 0.004 0.2634 ± 0.0020 0.991 3.144 ± 0.001 73.520 ± 0.004 0.2761 ± 0.0020 0.998

egg yolk

Pasteurized 2.391 ± 0.002 57.150 ± 0.003 0.2711 ± 0.0002 0.990 3.054 ± 0.002 69.090 ± 0.003 0.2838 ± 0.0030 0.995

egg yolk

Whole 2.504 ± 0.001 54.230 ± 0.002 0.2937 ± 0.0030 0.999 3.116 ± 0.002 71.240 ± 0.002 0.2813 ± 0.0020 0.997

egg powder

*Effective viscosity at shear rate of 77.82 1/s. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 77,82 1/с. R2 - коэффициент детерминации.

Table 10. Effect of homogenization time on the rheological properties of mayonnaise with pumpkin and rice oils

Таблица 10. Влияние продолжительности гомогенизации на реологические свойства майонеза с добавлением тыквенного

и рисового масел

Sample, min /*, Pas k, Pasn n R2 /*, Pas k, Pasn n R2

25 °C 10 °C

1 1.548 ± 0.002 42.150 ± 0.004 0.2887 ± 0.0020 0.991 2.244 ± 0.001 60.410 ± 0.004 0.2908 ± 0.0020 0.998

3 1.939 ± 0.002 57.150 ± 0.003 0.2711 ± 0.0020 0.990 2.485 ± 0.002 69.099 ± 0.003 0.2838 ± 0.0030 0.995

5 1.758 ± 0.001 53.610 ± 0.002 0.3282 ± 0.0030 0.999 2.208 ± 0.002 58.760 ± 0.002 0.3026 ± 0.0020 0.997

*Effective viscosity at shear rate of 103.8 1/s. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 103,8 1/с. R2 - коэффициент детерминации.

Table 11. Effect of the rotor speed on the rheological properties of mayonnaise with pumpkin and rice oils Таблица 11. Влияние частоты вращения ротора на реологические свойства майонеза с добавлением тыквенного и рисового масел

Sample, rpm /*, Pa s k, Pas11 n R2 /*, Pas k, Pas11 n R2

25 °C 10 °C

10 000 1.939 ± 0.002 57.150 ± 0.004 0.2711 ± 0.0020 0.990 2.485 ± 0.001 69.090 ± 0.004 0.2838 ± 0.0020 0.995

12 000 2.281 ± 0.002 59.880 ± 0.003 0.2242 ± 0.0020 0.999 2.515 ± 0.002 75.130 ± 0.003 0.3075 ± 0.0030 0.996

15 000 1.810 ± 0.001 38.910 ± 0.002 0.3375 ± 0.0030 0.996 2.208 ± 0.002 49.560 ± 0.002 0.3299 ± 0.0020 0.995

*Effective viscosity at shear rate of 77.82 1/s. R2 is the coefficient of determination. *Эффективная вязкость при скорости сдвига 77,82 1/с. R2 - коэффициент детерминации.

The control mayonnaise made from whey powder had an effective viscosity of 2.3910 ± 0.0002 Pas, a consistency index of 57.180 ± 0.003 Pasn, and a flow index of 0.271 ± 0.002 measured at 25°C. Using skimmed milk powder led to lower effective viscosity (2.2290 ± 0.0002 Pasn) and consistency (46.870 ± 0.078 Pasn) but a higher flow index (0.3005 ± 0.0030), compared to the samples with whole milk and whey powders. Thus, whey powder contributed to higher consistency and viscosity of mayonnaise with pumpkin and rice oils measured at 25°C. When measured at 10°C, the rheological parameters showed higher values than those obtained at 25°C, which confirmed the effect of temperature on the rheological properties.

Table 8 shows the effect of carbohydrate type on the rheological parameters of mayonnaise homogenized for 3 min at 10 000 rpm. The measurements were taken at 25 and 10°C.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The control mayonnaise was prepared with glucose. We found that the use of glucose and fructose monosaccharides lowered effective viscosity and consistency, compared to the use of sucrose and lactose disaccharides, inulin HD, or acacia honey. Fructose contributed to the lowest values of these parameters, while inulin HD provided the highest consistency (69.360 ± 0.002 Pas) and effective viscosity (2.801 ± 0.001 Pas), but the lowest flow index (0.2630 ± 0.0020) measured at 25°C. Alvarez-Sabatel et al. found that the content of vegetable oil and inulin affected the stability and rheological properties of mayonnaise homogenized in the rotor-stator system, as well as under high pressure [17]. The same effects were observed on the rheological parameters of the samples with pumpkin and rice oils at 10°C.

Table 9 shows the effects of egg products on the rheological parameters of mayonnaise with pumpkin and rice oils homogenized for 3 min at 10 000 rpm. The measurements were taken at 25 and 10°C.

The mayonnaise prepared with fresh egg yolk had higher viscosity (2.656 ± 0.002 Pas) and consistency

(65.640 ± 0.004 Pasn) but a lower flow index (0.2634 ± 0.0020). Using whole egg powder resulted in higher effective viscosity and consistency compared to pasteurized egg yolk and lower values of these parameters compared to fresh egg yolk. Higher values were obtained for the rheological properties at 10°C, compared to measurements at 25°C.

Tables 10 and 11 show the effects of homogenization time and rotor speed on the rheological properties of mayonnaise with pumpkin and rice oils. According to the flow index, the mayonnaise under study belonged to non-Newtonian fluids of the pseudoplastic type.

Table 10 shows the effect of homogenization time (1, 3 and 5 min) at 10 000 rpm on the rheological properties of mayonnaise measured at 25 and 10°C.

As can be seen, the sample homogenized for 1 min had an effective viscosity of 1.548 ± 0.002 Pas at a shear rate of 103.8 1/s, a consistency coefficient of 42.150 ± 0.004 Pasn, and a flow index of 0.2887 ± 0.0020. Increasing homogenization time to 3 min resulted in higher viscosity (1.936 ± 0.002 Pas) and consistency (57.150 ± 0.003 Pasn) but a lower flow index (0.2711 ± 0.0020). A further increase to 5 min destroyed the structure of mayonnaise and led to lower viscosity (1.758 ± 0.001 Pas) and consistency (53.610 ± 0.002 Pasn) but a higher flow index (0.3282 ± 0.0030). Measurements at 10°C showed the same results, but higher values compared to those for the rheological parameters obtained at 25°C.

Table 11 shows the effects of the rotor speed (10 000, 12 000, and 15 000 rpm) on the rheological parameters of mayonnaise homogenized for 3 min. Measurements were taken at 25 and 10°C.

As can be seen, the rotor speed affected the rheological parameters of the samples. An increase from 10 000 to 12 000 rpm led to higher effective viscosity (2.281 ± 0.002 Pas) and consistency (59.880 ± 0.003 Pas), as well as a lower flow index (0.2242 ± 0.0020). This meant better stability since the system formed a large number of small fat droplets finely dispersed in the water phase of the emulsion. A further increase to 15 000 rpm resulted in an emulsion with lower effective viscosity (1.810 ± 0.001 Pas) and consistency

(38.910 ± 0.002 Pas11), compared to the rotor speeds of 10 000 and 12 000 rpm. Thus, such a high speed destroyed the structure of the water-fat emulsion, resulting in the system's dilution. This phenomenon can be observed when measuring the rheological properties at 10°C.

Conclusion

The tested samples of mayonnaise prepared with pumpkin and rice oils, as well as various honeys, belong to non-Newtonian systems and pseudoplastic fluids. Using whey powder resulted in the highest effective viscosity and consistency, as well as the lowest flow index. We also studied the effects of carbohydrates on the rheological properties of mayonnaise with pumpkin and rice oils. Mayonnaise prepared with inulin HD had higher effective viscosity (2.801 ± 0.001 Pas) and consistency, as well as a lower flow index (0.2630 ± 0.0020), compared to the other sugars tested. Disaccharides contributed to higher viscosity and consistency compared to monosaccharides. Mayonnaise prepared with fresh egg yolk had higher viscosity (2.656 ± 0.002 Pas) and consistency (65.640 ± 0.004 Pas11). Forest honey provided mayonnaise with higher effective viscosity and consistency, as well as a lower flow index, compared to spring, linden, and acacia honeys. The sample with spring honey had the lowest effective viscosity and consistency, as well as the highest flow index.

The rotor speed and homogenization time also affected the rheological properties of mayonnaise. The sample

homogenized at 12 000 rpm had higher viscosity and consistency, as well as a lower flow index, compared to the sample prepared at 10 000 rpm. The same parameters were obtained for the samples homogenized for 3 min. The empirical flow curves can be adequately described by the Herschel-Bulkley model.

Our results may be useful for formulators of edible fatty products, especially mayonnaise. The rheological properties are important for mayonnaise consistency and quality control during production, storage, and transportation.

Contribution

S.A. Bredikhin supervised the research. All the authors performed the experiments, processed the data, and wrote the manuscript.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Критерии авторства

С. А. Бредихин руководил работой. Все авторы принимали участие в исследованиях, обработке данных и написании текста.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

References

1. Yildirim M, Sumnu G, Sahin S. Rheology, particle-size distribution, and stability of low-fat mayonnaise produced via double emulsions. Food Science and Biotechnology. 2016;25(6):1613-1618. https://doi.org/10.1007/s10068-016-0248-7

2. Ghorbani Gorji S, Smyth HE, Sharma M, Fitzgerald M. Lipid oxidation in mayonnaise and the role of natural antioxidants: A review. Trends in Food Science and Technology. 2016;56:88-102. https://doi.org/10.1016/j.tifs. 2016.08.002

3. Mohammed NK, Ragavan H, Ahmad NH, Hussin ASM. Egg-free low-fat mayonnaise from virgin coconut oil. Foods and Raw Materials. 2022;10(1):76-85. https://doi.org/10.21603/2308-4057-2022-1-76-85

4. Averyanova EV, Shkolnikova MN, Chugunova OV. Antioxidant Properties of Triterpenoids in Fat-Containing Products. Food Processing: Techniques and Technology. 2022;52(2):233-243. (In Russ.). https://doi.org/10.21603/2074- 94142022-2-2358

5. Katsaros G, Tsoukala M, Giannoglou M, Taoukis P. Effect of storage on the rheological and viscoelastic properties of mayonnaise emulsions of different oil droplet size. Heliyon. 2020;6(12) https://doi.org/10.1016/j.heliyon. 2020.e05788

6. Miguel GA, Jacobsen C, Prieto C, Kempen PJ, Lagaron JM, Chronakis IS, et al. Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil. Journal of Food Engineering. 2019;263:348-358. https://doi.org/10.1016/j.jfoodeng.2019.07.019

7. Taslikh M, Mollakhalili-Meybodi N, Alizadeh AM, Mousavi M-M, Nayebzadeh K, Mortazavian AM. Mayonnaise main ingredients influence on its structure as an emulsion. Journal of Food Science and Technology. 2021;59(6):2108-2116. https://doi.org/10.1007/s13197-021-05133-1

8. Bredikhin SA, Martekha AN, Andreev VN, Soldusova EA, Karpova NA. Investigation of the structural and mechanical characteristics of mayonnaise with the addition of linseed oil. IOP Conference Series: Earth and Environmental Science. 2022;979(1). https://doi.org/10.1088/1755-1315/979/1Z012089

9. Armaforte E, Hopper L, Stevenson G. Preliminary investigation on the effect of proteins of different leguminous species (Cicer arietinum, Vicia faba and Lens culinarius) on the texture and sensory properties of egg-free mayonnaise. LWT. 2021;136. https://doi.org/10.1016/j.lwt.2020.110341

10. Sakai S, Ikeda N. A numerical analysis to evaluate the emulsifying activity of pasteurized egg yolk. Food Hydrocolloids. 2022;123. https://doi.org/10.1016/j.foodhyd.2021.107087

11. Chen J, Cao C, Yuan D, Xia X, Liu Q, Kong B. Impact of different ionic strengths on protein-lipid co-oxidation in whey protein isolate-stabilized oil-in-water emulsions. Food Chemistry. 2022;385. https://doi.org/10.1016/j.foodchem. 2022.132700

12. Jalali-Jivan M, Abbasi S. Novel approach for lutein extraction: Food grade microemulsion containing soy lecithin & sunflower oil. Innovative Food Science and Emerging Technologies. 2020;66. https://doi.org/10.1016/j.ifset.2020. 102505

13. Patil U, Benjakul S. Physical and textural properties of mayonnaise prepared using virgin coconut oil/fish oil blend. Food Biophysics. 2019;14(3):260-268. https://doi.org/10.1007/s11483-019-09579-x

14. Primacella M, Wang T, Acevedo NC. Characterization of mayonnaise properties prepared using frozen-thawed egg yolk treated with hydrolyzed egg yolk proteins as anti-gelator. Food Hydrocolloids. 2019;96:529-536. https://doi.org/10.1016/ j.foodhyd.2019.06.008

15. Park J-Y, Choi M-J, Yu H, Choi Y, Park K-M, Chang P-S. Multi-functional behavior of food emulsifier erythorbyl laurate in different colloidal conditions of homogeneous oil-in-water emulsion system. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;636. https://doi.org/10.1016/jxolsurfa.2021.128127

16. Feng T, Fan C, Wang X, Wang X, Xia S, Huang Q. Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing. Food Hydrocolloids. 2022;124. https://doi.org/10.1016/j.foodhyd.2021.107265

17. Alvarez-Sabatel S, Martinez de Maranon I, Arboleya J-C. Impact of oil and inulin content on the stability and rheological properties of mayonnaise-like emulsions processed by rotor-stator homogenization or high pressure homogenization (HPH). Innovative Food Science and Emerging Technologies. 2018;48:195-203. https://doi.org/10.1016/jifset. 2018.06.014

18. Raikos V, McDonagh A, Ranawana V, Duthie G. Processed beetroot (Beta vulgaris L.) as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes. Food Science and Human Wellness. 2016;5(4):191-198. https://doi.org/10.1016/j.fshw.2016.10.002

19. Ovsyannikov VYu, Toroptsev VV, Berestovoy AA, Lobacheva NN, Lobacheva MA, Martekha AN. Development and research of new method for juice extracting from sugar beet with preliminary pressing. IOP Conference Series: Earth and Environmental Science. 2021;640(5). https://doi.org/10.1088/1755-1315/640/5/052011

20. Bonilla JC, Clausen MP. Super-resolution microscopy to visualize and quantify protein microstructural organization in food materials and its relation to rheology: Egg white proteins. Food Hydrocolloids. 2022;124. https://doi.org/10.1016/ j.foodhyd.2021.107281

21. van Eck A, Fogliano V, Galindo-Cuspinera V, Scholten E, Stieger M. Adding condiments to foods: How does static and dynamic sensory perception change when bread and carrots are consumed with mayonnaise? Food Quality and Preference. 2019;73:154-170. https://doi.org/10.1016/j.foodqual.2018.11.013

22. Heydari A, Razavi SMA, Farahnaky A. Effect of high pressure-treated wheat starch as a fat replacer on the physical and rheological properties of reduced-fat O/W emulsions. Innovative Food Science and Emerging Technologies. 2021;70. https://doi.org/10.1016/j.ifset.2021.102702

23. Kantekin-Erdogan MN, Ketenoglu O, Tekin A. Effect of monoglyceride content on emulsion stability and rheology of mayonnaise. Journal of Food Science and Technology. 2019;56(1):443-450. https://doi.org/10.1007/s13197-018-3506-2

24. Aganovic K, Bindrich U, Heinz V. Ultra-high pressure homogenisation process for production of reduced fat mayonnaise with similar rheological characteristics as its full fat counterpart. Innovative Food Science and Emerging Technologies. 2018;45:208-214. https://doi.org/10.1016/j.ifset.2017.10.013

25. Yang X, Li A, Yu W, Li X, Sun L, Xue J, et al. Structuring oil-in-water emulsion by forming egg yolk/alginate complexes: Their potential application in fabricating low-fat mayonnaise-like emulsion gels and redispersible solid emulsions. International Journal of Biological Macromolecules. 2020;147:595-606. https://doi.org/10.1016/j.ijbiomac.2020. 01.106

26. Shen R, Luo S, Dong J. Application of oat dextrine for fat substitute in mayonnaise. Food Chemistry. 2011;126(1):65-71. https://doi.org/10.1016/j.foodchem.2010.10.072

27. Seo CW, Yoo B. Preparation of milk protein isolate/K-carrageenan conjugates by maillard reaction in wet-heating system and their application to stabilization of oil-in-water emulsions. LWT. 2021;139. https://doi.org/10.1016/ j.lwt.2020.110542

28. Gmach O, Bertsch A, Bilke-Krause C, Kulozik U. Impact of oil type and pH value on oil-in-water emulsions stabilized by egg yolk granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;581. https://doi. org/10.1016/j.colsurfa.2019.123788

29. Kumar Y, Roy S, Devra A, Dhiman A, Prabhakar PK. Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT. 2021;149. https://doi. org/10.1016/j.lwt.2021.111632

30. Bredikhin SA, Andreev VN, Martekha AN, Soldusova EA. Investigation of the process of structure formation during ultrasonic homogenization of milk. IOP Conference Series: Earth and Environmental Science. 2022;954(1). https:// doi.org/10.1088/1755-1315/954/1/012014

31. Bredihin SA, Andreev VN, Martekha AN, Schenzle MG, Korotkiy IA. Erosion potential of ultrasonic food processing. Foods and Raw Materials. 2021;9(2):335-344. https://doi.org/10.21603/2308-4057-2021-2-335-344

32. Li A, Gong T, Hou Y, Yang X, Guo Y. Alginate-stabilized thixotropic emulsion gels and their applications in fabrication of low-fat mayonnaise alternatives. International Journal of Biological Macromolecules. 2020;146:821-831. https:// doi.org/10.1016/j.ijbiomac.2019.10.050

i Надоели баннеры? Вы всегда можете отключить рекламу.