Научная статья на тему 'Ретроспективные расчеты циркуляции и ледяного покрова Охотского моря на основе современных технологий численного моделирования'

Ретроспективные расчеты циркуляции и ледяного покрова Охотского моря на основе современных технологий численного моделирования Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
188
39
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОХОТСКОЕ МОРЕ / ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ / РАСЧЕТ ГИДРОМЕТЕОРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК / МОДЕЛЬ МОРСКОЙ ЦИРКУЛЯЦИИ INMOM / МОДЕЛЬ МОРСКОГО ЛЬДА CICE / МОДЕЛЬ COSMO-RU / OKHOTSK SEA / NUMERICAL SIMULATION / CALCULATION OF HYDROMETEOROLOGICAL CHARACTERISTICS / INMOM SIMULATOR OF SEA CIRCULATION / CICE SIMULATOR OF SEA ICE / COSMO-RU SIMULATOR

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Дианский Н. А., Фомин В. В., Чумаков М. М., Степанов Д. В.

Для целей проектирования и строительства объектов нефтегазовой отрасли в шельфовых зонах морей России требуются долговременные ряды наблюдений. Ввиду их отсутствия, особенно в открытом море, рассмотрена возможность получения необходимой гидрометеорологической информации путем численного моделирования. Авторами разработана и реализована методология расчета гидрометеорологических характеристик с помощью моделей морской циркуляции INMOM (англ. Institute of Numerical Mathematics Ocean Model) и морского льда CICE Лос-Аламосской национальной лаборатории, объединенных в единую вычислительную систему с использованием каплера. Для более точного расчета условий на жидких границах Охотского моря модель INMOM реализована для акваторий Охотского и Японского морей с захватом прилегающей части Тихого океана. Чтобы уменьшить влияние сгущения меридианов, использовалась повернутая сферическая система координат. Пространственное разрешение модели составило 1/32° по обеим координатам, что соответствует размеру ячеек сетки приблизительно в 3,5 км. В качестве данных для расчета атмосферного воздействия выбраны срочные детализированные поля метеорологических элементов, рассчитанные с помощью модели COSMO-RU. Расчеты проводились за период 1986-2015 гг. по отдельности для каждого года. Технология верифицирована по результатам измерений, доступным в ФГБУ «ГОИН» за экспедиционный период 2015 г.Показано, что с использованием разработанной технологии и атмосферного форсинга COSMO-RU модели INMOM и CICE адекватно наблюдениям воспроизводят гидрологические и ледовые характеристики Охотского моря. Для оценки возможности модели воспроизводить экстремальные нагоны проанализированы штормовые ситуации за периоды 22-23.09.1986, 08-09.11.1990 и 10.11.1995 в сравнении с опубликованными результатами измерений. Анализ показал, что нагонные значения уровня моря хорошо воспроизводятся. При этом аналогично данным измерений происходило наложение максимальных значений приливного уровня моря и уровня моря, вызванного штормовым нагоном, как для 20-25.09.1986, так и для 9-10.11.1990. Таким образом, полученные результаты расчетов могут быть использованы для определения режимных характеристик и экстремальных значений гидрометеорологических элементов на акватории Охотского моря.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — Дианский Н. А., Фомин В. В., Чумаков М. М., Степанов Д. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Application of modern numerical ocean and ice models for retrospective simulations of circulation and ice cover of Okhotsk Sea

In order to design and build oil-gas industrial facilities in the offshore zones of Russian Federation, one needs long-time flow records. Due to the absence of such records, especially in respect to the open sea, an opportunity to acquire necessary hydrometeorological information by means of numerical simulation was studied. The authors of this paper developed and realized a procedure for calculation of hydrometeorological characteristics using INMOM (Institute of Numerical Mathematics Ocean Model) and CICE (Los Alamos Sea Ice Model) coupled into a united computer system. To calculate conditions of the liquid Okhotsk Sea margins more precise, the INMOM was realized for waters of Okhotsk Sea and the Sea of Japan including the adjacent part of Pacific Ocean. To decrease the influence of grid convergence, the turned spherical coordinates were used. Spatial resolution of the simulator constituted 1/32° for both coordinates and corresponded nearly to 3.5 km grid size. The urgent detailed fields of the meteorological elements calculated by the COSMO-RU were chosen as the data for calculation of the atmospheric impact. Calculations covered 1986-2015 and were done for each year separately. The procedure was verified by the results of measurements available in the N.N. Zubov State Oceanographic Institute for the expeditionary period of 2015.It is shown that application of the named procedure together with the COSMO-RU atmospheric forcing makes INMOM and CICE reproduce the hydrological and ice parameters of Okhotsk Sea adequately. To estimate capability of the simulator in reproducing extremal surges, the storms of 20-25.09.1986, 08-09.11.1990 and 10.11.1995 were analyzed in comparison with the previously published data. This analysis demonstrated that the surge values of sea level were being reproduced quite accurate. At the same time, similar to measured data, both on 22-23.09.1986 andon 9-10.11.1990 there was overlapping of the maximal tidal seal levels and a sea level caused by a storm surge. So, the acquired calculation results could be applied for determining the operating and extremal characteristics of hydrometeorological elements in waters of Okhotsk Sea.

Текст научной работы на тему «Ретроспективные расчеты циркуляции и ледяного покрова Охотского моря на основе современных технологий численного моделирования»

УДК 551.582

Ретроспективные расчеты циркуляции и ледяного покрова Охотского моря на основе современных технологий численного моделирования

НА Дианский123*, В.В. Фомин1, М.М. Чумаков4, Д.В. Степанов5

1 Государственный океанографический институт им. Н.Н. Зубова, Российская Федерация, 119034, г. Москва, Кропоткинский пер., д. 6

2 МГУ им. М.В. Ломоносова, Российская Федерация, 119991, г. Москва, ГСП-1, Ленинские горы, д. 1

3 Институт вычислительной математики РАН, Российская Федерация, 119333, г. Москва, ул. Губкина, д. 8

4 ООО «Газпром ВНИИГАЗ», Российская Федерация, 142717, Московская обл., Ленинский р-н, с.п. Развилковское, пос. Развилка, Проектируемый пр-д № 5537, вл. 15, стр. 1

5 Тихоокеанский океанологический институт им. В.И. Ильичева, ДВО РАН, Российская Федерация, 690041, Приморский край, г. Владивосток, Балтийская ул., д. 43

* E-mail: [email protected]

Ключевые слова:

Охотское море, численное моделирование, расчет

гидрометеорологических характеристик, модель морской циркуляции INMOM, модель морского льда CICE, модель COSMO-RU.

Тезисы. Для целей проектирования и строительства объектов нефтегазовой отрасли в шельфо-вых зонах морей России требуются долговременные ряды наблюдений. Ввиду их отсутствия, особенно в открытом море, рассмотрена возможность получения необходимой гидрометеорологической информации путем численного моделирования. Авторами разработана и реализована методология расчета гидрометеорологических характеристик с помощью моделей морской циркуляции INMOM (англ. Institute of Numerical Mathematics Ocean Model) и морского льда CICE Лос-Аламосской национальной лаборатории, объединенных в единую вычислительную систему с использованием ка-плера. Для более точного расчета условий на жидких границах Охотского моря модель INMOM реализована для акваторий Охотского и Японского морей с захватом прилегающей части Тихого океана. Чтобы уменьшить влияние сгущения меридианов, использовалась повернутая сферическая система координат. Пространственное разрешение модели составило 1/32° по обеим координатам, что соответствует размеру ячеек сетки приблизительно в 3,5 км. В качестве данных для расчета атмосферного воздействия выбраны срочные детализированные поля метеорологических элементов, рассчитанные с помощью модели COSMO-RU. Расчеты проводились за период 1986-2015 гг. по отдельности для каждого года. Технология верифицирована по результатам измерений, доступным в ФГБУ «ГОИН» за экспедиционный период 2015 г.

Показано, что с использованием разработанной технологии и атмосферного форсинга COSMO-RU модели INMOM и CICE адекватно наблюдениям воспроизводят гидрологические и ледовые характеристики Охотского моря. Для оценки возможности модели воспроизводить экстремальные нагоны проанализированы штормовые ситуации за периоды 22-23.09.1986, 08-09.11.1990 и 10.11.1995 в сравнении с опубликованными результатами измерений. Анализ показал, что нагонные значения уровня моря хорошо воспроизводятся. При этом аналогично данным измерений происходило наложение максимальных значений приливного уровня моря и уровня моря, вызванного штормовым нагоном, как для 20-25.09.1986, так и для 9-10.11.1990. Таким образом, полученные результаты расчетов могут быть использованы для определения режимных характеристик и экстремальных значений гидрометеорологических элементов на акватории Охотского моря.

В статье представлена разработанная авторами методология, позволяющая решать задачу определения режимных и экстремальных характеристик гидрометеорологических элементов (ГМЭ) и параметров ледяного покрова для заданной акватории при отсутствии долговременных рядов наблюдений. Методология основана на использовании мезомасштабной негидростатической модели атмосферы и трехмерной бароклинной модели морской гидротермодинамики высокого пространственного разрешения, совмещенной с моделью динамики ледяного покрова. Разработка особенно актуальна применительно к определению экстремальных характеристик ГМЭ, необходимых для расчета нагрузок на сооружения, расположенные в открытом море, при условии отсутствия регулярных долговременных наблюдений в соответствующей акватории. К таким районам относится и Охотское море - одно

из дальневосточных морей, расположенное в высоких широтах. В настоящее время там ведется активное освоение новых нефтегазовых месторождений. Предлагаемая методология реализована для Охотского моря.

Динамика вод Охотского моря определяется следующими природными факторами: мус-сонным характером атмосферного воздействия, сопровождаемым наличием интенсивных мезо-масштабных циклонов; сильным приливным воздействием; наличием больших пространств, покрытых льдом; водообменом с северо-восточной частью Тихого океана и с северной частью Японского моря. Также Охотское море характеризуется пространственной неоднородностью поля плотности, влияющей на динамику его вод. Процессы намерзания и таяния морского льда, конвективное заглубление верхнего квазиоднородного слоя, сток р. Амур, приток теплых вод через пролив Лаперуза, а также водообмен с северной частью Тихого океана представляются основными обстоятельствами, ответственными за формирование характерной плотностной стратификации моря.

Кроме того, особенности топографии дна моря, а также его гидрологический режим обусловливают существование мезо- и суб-мезомасштабных вихрей, что подтверждается спутниковой информацией. Это вызывает необходимость проведения расчетов на сетках с высоким пространственным разрешением.

Отмеченные моменты накладывают жесткие ограничения на модели, используемые для расчета циркуляции Охотского моря. Адекватность воспроизведения моделью циркуляции моря определяется полнотой учета совместного вклада всех указанных факторов, что обусловливает необходимость применения моделей, основанных на полных уравнениях гидротермодинамики моря. Разработанная в Институте вычислительной математики РАН модель морской и океанической циркуляции INMOM (англ. Institute of Numerical Mathematics Ocean Model) [1] вполне отвечает этим требованиям. Следует отметить, что глобальная версия INMOM служит океаническим компонентом в модели земной системы [2], созданной в ИВМ РАН и участвующей в программе прогнозирования изменений климата Межправительственной группы экспертов по изменению климата IPCC (англ. Intergovernmental Panel on Climate Change), а также в экспериментальной модели

долгосрочного прогноза Гидрометцентра РФ [3]. Эта же глобальная версия INMOM участвует в международной программе CORE (англ. Coordinated Ocean-ice Reference Experiments) исследования циркуляции Мирового океана и ее изменчивости на основе мультимо-дельного подхода [4]. Версии модели INMOM также применяются для расчетов циркуляции Черного и Азовского [5], Карского и Баренцева [6], Японского [7] морей.

Поскольку процесс намерзания и таяния морского льда - один из основных факторов формирования характерной плотностной стратификации Охотского моря, то для наиболее корректного моделирования характеристик гидрологического и ледового режимов необходимо совместно использовать гидротермодинамическую модель морской циркуляции и динамическую модель ледяного покрова, учитывающую процессы торошения льда, а также его термодинамику и реологию. В качестве модели морского льда выбрана модель CICE Лос-Аламосской национальной лаборатории [8], которая содержит модули для расчета термодинамики, переноса и динамики морского льда.

В систему расчетов гидрометеорологических характеристик включена также и модель ветрового волнения SWAN [9], адаптированная к условиям акватории Охотского моря. Однако расчет волнения выходит за рамки данной статьи, поэтому далее не будем на нем останавливаться.

Одним из центральных моментов успешного воспроизведения морской циркуляции является качество атмосферного воздействия, учитываемого при расчете модели гидротермодинамики моря. В данном случае исходными данными для расчета атмосферного воздействия служат срочные поля ГМЭ, рассчитанные с помощью модели COSMO-RU [10].

Предлагаемый авторами метод гидродинамического моделирования представляет собой синтез методик мезомасштабного моделирования атмосферных процессов, моделирования морской циркуляции, ветрового волнения и динамики ледяного покрова (рис. 1). Научно-практическая ценность такого подхода состоит в том, что в результате его применения достигаются как «физическая» согласованность рассчитанных полей ГМЭ и параметров ледяного покрова (в смысле выполнения физических закономерностей,

Рис. 1. Общая схема алгоритма гидродинамического моделирования параметров природной среды над акваторией Охотского моря под управлением каплера

присущих системе «океан - атмосфера»), так и их пространственно-временная согласованность, что обеспечивает высокую степень адекватности результатов моделирования.

Полученные методом гидродинамического моделирования высокодетальные поля ГМЭ служат исходными данными для вероятностного моделирования. Необходимо отметить, что в соответствии с положениями теории экстремальных значений для определения величин ГМЭ, имеющих столетний период повторяемости (типичное для проектирования значение), необходимо использовать исходную информацию за период, продолжительностью не менее 30 лет1.

Представленная методология верифицирована по данным наблюдений в рамках летних и зимних экспедиционных исследований, выполненных силами ФГБУ «ГОИН» с использованием специализированных научно-исследовательских судов, в том числе ледоколов.

Краткое описание совместной модели морской гидротермодинамики и эволюции ледяного покрова

Модель ШМОМ относится к классу с-моделей океана [1]. В ее основе лежит система полных

См. СП 38.13330.2012. Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов). Актуализированная редакция СНиП 2.06.04-82*.

уравнений в приближениях гидростатики и Бус-синеска, записанная в обобщенных сферических ортогональных координатах по горизонтали и в с-системе координат по вертикали. Прогностическими переменными модели служат горизонтальные компоненты вектора скорости, потенциальная температура, соленость и отклонение уровня океана от невозмущенной поверхности. Для расчета плотности используется уравнение состояния, учитывающее сжимаемость морской воды и специально предназначенное для моделей циркуляции океана [11].

В качестве граничных условий на поверхности океана задаются потоки тепла, пресной воды и импульса, на основе которых задача формулируется в терминах псевдопотоков температуры, солености и скорости. Для температуры и солености на твердых боковых границах и дне ставится условие отсутствия потоков, а для скорости - условие непротекания, дополненное условиями свободного скольжения на боковых границах и квадратичного трения на дне [1]. Сток рек предписывается в виде псевдоосадков, сосредоточенных в акваториях, примыкающих к устьям рек. На жидких границах задается также временной ход приливного уровня моря и предписываются значения температуры и солености согласно данным наблюдений.

Как было показано, для успешного воспроизведения гидрологического и ледового режимов Охотского моря необходимо использовать

модель эволюции ледяного покрова, в качестве которой выбрана модель CICE [8]. Блок термодинамики CICE описывает намерзание льда, выпадение снега, а также их таяние за счет тепловых процессов. Блок переноса льда служит для расчета эволюции ледяного и снежного покровов вследствие дрейфа, для чего используется монотонная схема переноса, обеспечивающая неотрицательность концентрации и массы снега и льда. И, наконец, блок динамики льда рассчитывает эволюцию скорости его движения, которая изменяется за счет воздействия ветра, поверхностных течений океана, суточного вращения Земли, уровенной поверхности океана и взаимодействия льдин друг с другом, которое описывается упруго-вязко-пластичной реологией с учетом торошения. Модель CICE в настоящее время активно используется международным сообществом при решении широкого спектра задач. Модели INMOM и CICE объединены в систему расчетов с помощью ка-плера, реализованного с использованием библиотеки ESMF (англ. Earth System Modeling Framework). При использовании ESMF отдельные блоки GridComp отвечают за реализацию компонентов каплера - моделей INMOM

и С1СЕ; за обмен информацией между ними отвечает блок Ср1Сотр.

Реализация совместной модели циркуляции и морского льда для Охотского моря и сценарии расчетов

Для более точного расчета условий на жидких границах модель ШМОМ для Охотского моря была реализована для акваторий Охотского и Японского морей с захватом прилегающей части Тихого океана. Использовалась повернутая сферическая система координат. Пространственное разрешение модели составило 1/32° по обеим координатам, что соответствует квазиравномерному размеру ячеек сетки в 3,5 км. По глубине задавались 25 с-слоев со сгущением у свободной поверхности и дна для более точного описания приповерхностного и придонного слоев. Шаг по времени равен 30 с. Для учета особенностей топографии дна и береговой черты Охотского моря использовалась цифровая модель рельефа, созданная в ФГБУ «ГОИН», которая была сглажена в соответствии с пространственным разрешением версии ШМОМ для Охотского моря (рис. 2).

Рис. 2. Топография дна в модели Охотского и Японского морей

Расчеты по модели INMOM проводились за период 1986-2015 гг. по отдельности для каждого года. Каждый эксперимент начинался с октября предыдущего года с соответствующих этому месяцу и году среднемесячных значений температуры и солености. В качестве начальных условий и условий на жидкой границе, а также для формирования фонового состояния использованы данные Средиземноморского центра климатических изменений (итал. Centro Euro-Mediterraneo sui Cambiamenti Climatici, CMCC) о температуре и солености [12].

Начальные поля скорости, концентрации и высоты морского льда задавались равными нулю. Длительность каждого из экспериментов составила 1 год и 3 месяца. Первые три месяца - с октября по декабрь - были необходимы в качестве разгоночного периода и в дальнейшем не использовались.

На поверхности дополнительно задавалась притяжка температуры и солености к данным реанализа с продолжительностями релаксации соответственно 4 сут и 1 мес. по отношению к 10-метровому поверхностному слою. Такой подход можно интерпретировать как простую схему усвоения типа наджинга поверхностных значений температуры и солености. При этом для солености используются данные реанали-за для поверхностных значений солености [12], а для температуры - два независимых массива данных: OISST (поверхностная температура) [13] для периода 1986-2007 гг. и OSTIA [14] для 2008-2015 г. В точках сетки жидкой границы задавались значения приливного уровня моря, рассчитывающиеся по модели TPXO (англ. A TOPEX/Poseidon Global Tidal Model) [15]. Также на жидкой границе данные реана-лиза по температуре и солености использованы для задания градиентных скоростей течений.

В качестве оператора боковой диффузии тепла и соли в модели реализован точный

аналог оператора горизонтальной диффузии [1]. Операторы боковой вязкости 2-го и 4-го порядков реализованы в простом виде вдоль поверхностей с = const [1]. Коэффициенты вертикальной вязкости и диффузии выбирались согласно параметризации Филандера - Пацановского [16]. Выбранные в соответствии с пространственным разрешением коэффициенты вязкости и диффузии представлены в табл. 1.

В качестве данных атмосферного воздействия, необходимых для расчета атмосферного форсинга, в модели INMOM используются результаты расчетов по модели COSMO, реализованной для акватории дальневосточных морей РФ с пространственным разрешением 6 км (над акваторией Охотского моря) и 13 км (над остальной частью акватории, см. рис. 2). Для расчета турбулентных потоков импульса, тепла и влаги (испарения) используются стандартные балк-формулы [1].

Верификация результатов моделирования по натурным данным

Модель INMOM верифицировалась по данным измерений, доступным в ФГБУ «ГОИН» за экспедиционный период 2015 г. Координаты станций указаны в табл. 2. Верификация проводилась для компонентов и модуля скорости течений, а также уровня моря. Данные расчетов осреднялись с дискретностью по времени 3 ч для станций № 2 и № 3 и с дискретностью 1 ч для станций № 1, № 4 и № 5 в соответствии с осреднением данных измерений.

Сравнение расчетов и данных наблюдений проводилось для всех пяти станций и для всех горизонтов наблюдений. Приведем отдельные результаты сравнения для станций № 1 (самой мелководной - на придонном горизонте 26 м) и № 5 (самой приглубой - на придонном горизонте 153 м) (рис. 3). Следует особо отметить, что воспроизведение придонной скорости

Таблица 1

Коэффициенты вязкости и диффузии в модели INMOM для Охотскогого моря, м2/с

Горизонтальная диффузия для температуры и солености 2-го порядка 10

Боковая вязкость 2-го порядка 25

Боковая вязкость 4-го порядка, м4/с 3105

Вертикальная вязкость От 10-4 до 10-3

Вертикальная диффузия для температуры От 2-10-6 до 2-10-3

Вертикальная диффузия для солености От 10-6 до 10-3

Вертикальная диффузия в верхнем 2,5-метровом слое и в случае неустойчивой стратификации 2-10-3

Вертикальная вязкость в верхнем 2,5-метровом слое и в случае неустойчивой стратификации 10-3

Таблица 2

Координаты гидрологических станций

№ станции Долгота, град. в.д. Широта, град. с.ш. Глубина, м

1 143,5778 51,45824 35

2 143,7384 51,42013 65

3 143,9144 51,33905 95

4 144,0384 51,31817 125

5 144,1518 51,30042 155

представляет собой особую сложность, так как требует не только точного задания глубин, но и качественного воспроизведения моделью 3-мерной циркуляции моря.

Результаты верификации демонстрируют хорошее соответствие результатов расчетов данным натурных измерений. Так, для модуля скорости течений для всех станций и горизонтов коэффициент корреляции изменяется от 0,62 до 0,83 и в среднем составляет 0,72. При этом его максимальные значения достигаются для прибрежных станций № 1-3, в которых приборы были установлены на дне. Коэффициент корреляции для более приглубых станций № 4 и 5 несколько хуже, что может быть связано в первую очередь с шумом в данных измерений, поскольку эти станции буйковые и, следовательно, были подвержены собственным движениям.

Значения коэффициента корреляции на при-глубых горизонтах несколько выше, чем в приповерхностном горизонте. Этот эффект вызван большим влиянием постоянных течений, наблюдающихся в прибрежной зоне Сахалина, а также приливных течений. Среднеквадратическая (СКО), абсолютная и средняя арифметическая ошибки уменьшаются с глубиной, что в первую очередь обусловлено снижением скорости течений по вертикали.

Сравнение расчетных значений компонент скоростей течений с данными измерений показывает, что они также воспроизводятся с хорошей степенью точности. Коэффициент корреляции для всех станций и горизонтов для зональной компоненты изменяется от 0,63 до 0,87 и в среднем составляет 0,75, а для меридиональной - от 0,72 до 0,88 и в среднем составляет 0,81. Хорошо воспроизводятся как течения, вызванные приливным воздействием, так и течения, связанные с прохождением циклонов над акваторией Охотского моря. Для меридиональной компоненты скорости течений наблюдаются незначительно большая СКО и в то же время более высокие коэффициенты

корреляции. Это связано с наличием постоянного Восточно-Сахалинского течения, направленного с севера на юг.

На акватории Охотского моря основной вклад в изменение уровня моря вносит приливное воздействие. В связи с этим наблюдаются высокие значения коэффициента корреляции для уровня моря. Он изменяется от 0,88 до 0,97 и в среднем составляет 0,93. Неприливные колебания уровня моря воспроизводятся достаточно хорошо, что особенно заметно на станции № 1.

Проведен анализ воспроизведения приливной динамики. Для этого из расчетного уровня моря выделены гармонические постоянные для шести гармоник, из которых три первые по значимости - О1, К1, и М2 - сравнивались с таковыми, выделенными по данным наблюдений ФГБУ «ГОИН», и с данными о трех гармониках, опубликованными В.Ф. Путовым и Г.В. Шевченко для станций Луньская-88 и Киринская-88 [17]. Сравнение модельных и наблюденных [17] приливных гармоник показывает их хорошее согласование (табл. 3).

Таким образом, комплексное сравнение результатов расчетов и натурных измерений подтверждает, что модель ШМОМ с высокой степенью точности воспроизводит циркуляцию и ее пространственно-временную изменчивость на восточном шельфе о. Сахалин.

Качество воспроизведения ледовых характеристик оценивалось по данным изысканий, выполненных ФГБУ «ГОИН» в прибрежной зоне о. Сахалин, а также по спутниковым картам льда. Примеры временных реализаций модуля скорости дрейфа льда по данным измерений и по результатам моделирования за период с 01.01 по 30.03.2016, а также карты сплоченности льда представлены на рис. 4, 5.

Результаты свидетельствуют, что скорость дрейфа льда воспроизводится с хорошей точностью. Воспроизводятся как приливная компонента скорости дрейфа льда, так и экстремальные значения, вызванные синоптической

Рис. 3. Станции № 1 (левый столбец) и № 5 (правый столбец): отклонения уровня моря невозмущенной поверхности (а, б); временные реализации зональной (в, г) и меридиональной (д, е) компонент придонной скорости течений

Таблица 3

Гармонические постоянные для трех приливных гармоник по результатам моделирования и данным наблюдений

Луньская-88 Киринская-88

Волна измерения [17] модель измерения [17] модель

амплиту- фаза, амплиту- фаза, амплиту- фаза, амплиту- фаза,

да, см град. да, см град. да, см град. да, см град.

О1 30,0 62,8 28,05 71 28,1 72,8 28,1 75

К1 27,0 96,2 27,71 91 24,3 116,8 32,5 88

М2 9,7 317,4 7,68 313 7,9 326,7 7,76 314

изменчивостью ветра. Анализ карты сплоченности льда и положения кромки льда, определенной по спутниковым картам, также показывает неплохое соответствие данных моделирования данным, полученным в результате обработки спутниковых карт. Для анализа модельное поле сплоченности льда было ограничено минимальной сплоченностью 0,15. Результаты расчетов показывают качественное соответствие местоположения кромки льда по модельным результатам данным измерений в северной и западной частях Охотского моря.

Результаты воспроизведения штормовых ситуаций в Охотском море

Существенный фактор моделирования экстремальных ситуаций над акваторией Охотского моря - возможность воспроизведения экстремального подъема уровня моря, вызванного резонансом максимального приливного уровня

62° с.ш. 60° с.ш. 58° с.ш. 56° с.ш. 54° с.ш. 52° с.ш. 50° с.ш. 48° с.ш. 46° с.ш. 44° с.ш.

135°в.д. 138°в.д. 141°в.д. 144°в.д. 147°в.д. 150°в.д. 153°в.д. 156°в.д. 159°в.д. 162°в.д.

— кромка льда по спутниковым данным [13] А положение гидрологической станции, на которой определялась скорость дрейфа льда

Рис. 5. Поле сплоченности льда на 21.01.2015 как отношение площади льда в ячейке сетки к ее площади

,—1

о '—1 о '—1 о '—1 с^

,—1 ,—1 г^ СП СП т ■4

о о о о о о о о о

ю ю ю ю ю ю ю ю

о о о о о о о о о

Рис. 4. Временная реализация модуля скорости дрейфа льда

и подъема уровня моря в результате развития штормовых ситуаций. Наложение двух этих эффектов даже при незначительном штормовом нагоне может приводить к существенным разрушениям [18]. Для оценки качества модели применительно к воспроизведению таких

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

событий проанализированы штормовые ситуации [18], имевшие место 20-25.09.1986 (рис. 6), 08-09.11.1990 и 10.11.1990 (рис. 7). Аналогично данным измерений в порту г. Корсакова в модели происходит наложение максимальных значений приливного уровня моря и уровня

§220 200 180 160 140 120 100 80 60

Рис. 6. Уровень моря для штормовой ситуации 20-25 сентября 1986 г.

Поронайск

Лермонтовка

Макаров

Охотское

Рис. 7. Поле уровня моря, см, в заливе Терпения по результатам расчета по модели ШМОМ (а) и данным В.Ф. Путова, Г.В. Шевченко [17] (б, показано пунктиром)

для 10 ноября 1990 г.

моря, вызванного штормовым нагоном как для 22-23.09.1986, так и для 09-10.11.1990. При этом, если в первом случае наблюдается незначительное занижение максимального значения на 6-7 см, то во втором случае полученные значения максимального уровня моря практически совпадают с измеренными.

Анализ пространственных карт для залива Терпения показывает, что уровень моря, рассчитанный INMOM, также соответствует опубликованным ранее данным [17]. В численных расчетах происходит согласование фазы наступления прилива и максимальных подъемов уровня, вызванных штормовыми нагонами, что

соответствует данным измерений.

***

Таким образом, представленная методология позволяет рассчитывать ретроспективные детализированные поля ГМЭ с использованием современных численных моделей атмосферной циркуляции COSMO-RU, морской

циркуляции INMOM, ветрового волнения SWAN, морского льда CICE. Методология реализована для акватории Охотского моря с учетом основных физических процессов, влияющих на динамику вод. Верификация результатов расчетов показала, что созданный вычислительный комплекс моделей позволяет с высокой степенью точности воспроизводить динамические характеристики на акватории Охотского моря, и в частности на шельфе о. Сахалин. При этом хорошо воспроизводится не только приповерхностная гидротермодинамика вод, но также и их вертикальная структура. Показано, что использование разработанной методологии позволяет воспроизводить экстремальные значения ГМЭ, поэтому подход можно применить для определения режимных и экстремальных характеристик ГМЭ на акватории Охотского моря.

Работа выполнена при поддержке РФФИ (Проект № 15-05-07539_а).

Список литературы

1. Дианский Н.А. Моделирование циркуляции океана и исследование его реакции

на короткопериодные и долгопериодные атмосферные воздействия / Н.А. Дианский. -М.: Физматлит, 2013. - 272 с.

2. Volodin E.M. Simulation of the present-day climate with the climate model INMCM5 / E.M. Volodin, E.V. Mortikov, S.V. Kostrykin et al. // Clim. Dyn. - 2017.

3. Толстых М.А. Воспроизведение сезонных аномалий атмосферной циркуляции при помошц совместной модели атмосферы

и океана / М.А. Толстых, Н.А. Дианский, А.В. Гусев и др. // Известия РАН. Физика атмосферы и океана. - 2014. - Т. 50. - № 2. -С. 131-142.

4. Danabasoglu G. North Atlantic simulations

in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Pt. II: Inter-annual to decadal variability / G. Danabasoglu, S.G. Yeager, W.M. Kim et al. // Ocean Modelling. - 2016. -V. 97. - P. 65-90.

5. Zalesny V.B. Numerical model of the circulation of the Black Sea and the Sea of Azov /

V.B. Zalesny, N.A. Diansky, V.V. Fomin et al. // Russ. J. Numer. Anal. Math. Modelling. - 2012. -V. 27. - № 1. - P. 95-111.

6. Дианский Н.А. Воспроизведение циркуляции Карского и Печорского морей с помощью системы оперативного диагноза и прогноза морской динамики / Н. А. Дианский,

B.В. Фомин, И.М. Кабатченко и др. // Арктика: экология и экономика. - 2014. - № 1 (13). -

C. 57-73.

7. Дианский Н.А. Роль ветрового и термического воздействий в формировании изменчивости циркуляции вод в Центральной котловине Японского моря с 1958 по 2006 гг. /

Н.А. Дианский, Д.В. Степанов, А.В. Гусев и др. // Известия РАН. Физика атмосферы и океана. - 2016. - Т. 52. - № 2. - С. 234-245.

8. Hunke E.C. CICE: the Los Alamos sea ice model, documentation and software user's manual, Version 4.1: Tech. Rep. LA-CC-06-012 / E.C. Hunke, W.H. Lipscomb. - Los Alamos, NM: Los Alamos National Laboratory, 2010.

9. SWAN Cycle III. Version 41.01AB. Scientific and technical documentation / Delft University of Technology, Faculty of Civil Engineering

and Geosciences, Environmental Fluid Mechanics Section. - The Netherlands, Delft: Delft University of Technology, 2015.

10. Ривин Г.С. Система COSMO-Ru негидростатического мезомасштабного краткосрочного прогноза погоды Гидрометцентра России: второй этап реализации и развития / Г.С. Ривин,

И. А. Розинкина, Р.М. Вильфанд и др. // Метеорология и гидрология. - 2015. - № 6. -С. 58-70.

11. Brydon D. A new approximation of the equation of state for seawater, suitable for numerical ocean models / D. Brydon, S. San, R. Bleck // J. Geoph. Res. - 1999. - V. 104. - № C1. - P. 1537-1540.

12. GL0BAL_REANALYSIS_PHYS_001_011 // Product user manual for Global Ocean Reanalysis products. - Is. 2.8. - P. 22-25. - http://cmems-resources.cls.fr/documents/PUM/CMEMS-GLO-PUM-001-004-009-010-011-017.pdf

13. Спутниковая температура и лед OISST // Электронный атлас NOAA. - https://www.esrl. noaa.gov

14. Copernicus Marine Environment Monitoring Service. Global Ocean OSTIA Sea Surface Temperature and Sea Ice Analysis. - http://marine. copernicus.

15. Egbert G.D. Efficient inverse modeling of barotropic ocean tides / G.D. Egbert,

S.Y. Erofeeva // J. Atmos. Oceanic Technol. -2002. - V. 19 (2). - Р. 183-204.

16. Pacanovsky R.C. Parametrization of vertical mixing in numerical models of the tropical ocean / R.C. Pacanovsky, G. Philander // J. Phys. Oceanogr. - 1981. - V. 11. - P. 1442-1451.

17. Путов В.Ф. Пространственно-временная изменчивость уровня моря на северовосточном побережье о. Сахалин / В.Ф. Путов, Г.В. Шевченко // Метеорология и гидрология. -1991. - № 10. - С. 94-101.

18. Като Э. Экстремальные высоты штормовых нагонов на побережье о. Сахалин / Э. Като, Ю.В. Любицкий, Г.В. Шевченко // Мореходство и морские науки - 2011: избранные доклады III Сахалинской региональной морской научно-технической конференции. - 2011. -

C. 177-193.

Application of modern numerical ocean and ice models for retrospective simulations of circulation and ice cover of Okhotsk Sea

N.A. Dianskiy1-2-3*, V.V. Fomin1, M.M. Chumakov4, D.V. Stepanov5

1 N.N. Zubov State Oceanographic Institute, Bld. 6, Kropotkinskiy pereulok, Moscow, 119034, Russian Federation

2 Lomonosov Moscow State University, Bld. 1, Leninskiye Gory, Moscow, GSP-1, 119991, Russian Federation

3 Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Bld. 8, Gubkina street, Moscow, 119333, Russian Federation

4 Gazprom VNIIGAZ LLC, Bld. 1, Estate 15, Proyektiruemyy proezd # 5537, Razvilka village, Leninsky district, Moscow Region, 142717, Russian Federation

5 V.I. Ilyichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, Bld. 43, Baltiyskaya street, Vladivostok, Primorskiy Kray, 690041, Russian Federation

* E-mail: [email protected]

Abstract. In order to design and build oil-gas industrial facilities in the offshore zones of Russian Federation, one needs long-time flow records. Due to the absence of such records, especially in respect to the open sea, an opportunity to acquire necessary hydrometeorological information by means of numerical simulation was studied. The authors of this paper developed and realized a procedure for calculation of hydrometeorological characteristics using INMOM (Institute of Numerical Mathematics Ocean Model) and CICE (Los Alamos Sea Ice Model) coupled into a united computer system. To calculate conditions of the liquid Okhotsk Sea margins more precise, the INMOM was realized for waters of Okhotsk Sea and the Sea of Japan including the adjacent part of Pacific Ocean. To decrease the influence of grid convergence, the turned spherical coordinates were used. Spatial resolution of the simulator constituted 1/32° for both coordinates and corresponded nearly to 3.5 km grid size. The urgent detailed fields of the meteorological elements calculated by the COSMO-RU were chosen as the data for calculation of the atmospheric impact. Calculations covered 1986-2015 and were done for each year separately. The procedure was verified by the results of measurements available in the N.N. Zubov State Oceanographic Institute for the expeditionary period of 2015.

It is shown that application of the named procedure together with the COSMO-RU atmospheric forcing makes INMOM and CICE reproduce the hydrological and ice parameters of Okhotsk Sea adequately. To estimate capability of the simulator in reproducing extremal surges, the storms of 20-25.09.1986, 08-09.11.1990 and 10.11.1995 were analyzed in comparison with the previously published data. This analysis demonstrated that the surge values of sea level were being reproduced quite accurate. At the same time, similar to measured data, both on 22-23.09.1986 and

on 9-10.11.1990 there was overlapping of the maximal tidal seal levels and a sea level caused by a storm surge.

So, the acquired calculation results could be applied for determining the operating and extremal characteristics

of hydrometeorological elements in waters of Okhotsk Sea.

Keywords: the Okhotsk Sea, numerical simulation, calculation of hydrometeorological characteristics, INMOM

simulator of sea circulation, CICE simulator of sea ice, COSMO-RU simulator.

References

1. DIANSKIY, N.A. Simulation of ocean circulation and study of its reaction to short-period and long-period atmospheric influence [Modelirovaniye tsirkulyatsii okeans i issledovaniye yego reaktsii na korotkoperiodnyye i dolgoperiodnyye atmosfernyye vozdeystviya]. Moscow: Fizmatlit, 2013. (Russ.).

2. VOLODIN, E.M., E.V. MORTIKOV, S.V. KOSTRYKIN et al. Simulation of the present-day climate with the climate model INMCM5. Clim. Dyn. 2017. ISSN 0930-7575.

3. TOLSTYKH, M.A., N.A. DIANSKIY, A.V. GUSEV et al. Reproduction of seasonal anomalies in circulation of the atmosphere using a common model of the atmosphere and the ocean [Vosproizvedeniye sezonnykh anomaliy atmosfernoy tsirkulyatsii pri pomoshchi sovmestnoy modeli atmosfery i okeana]. Izvestiya RAN. Fizika atmosfery i okeana. 2014, vol. 50, no. 2, pp. 131-142. ISSN 0002-3515. (Russ.).

4. DANABASOGLU, G., S.G. YEAGER, W.M. KIM et al. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Pt. II: Inter-annual to decadal variability. Ocean Modelling. 2016, vol. 97, pp. 65-90. ISSN 1463-5003.

5. ZALESNY, V.B., N.A. DIANSKIY, V. V. FOMIN et al. Numerical model of the circulation of the Black Sea and the Sea of Azov. Russ. J. Numer. Anal. Math. Modelling. - 2012, vol. 27, no. 1, pp. 95-111. ISSN 0927-6467.

6. DIANSKIY, N.A., V. V. FOMIN, I.M. KABATCHENKO et al. Reproduction of circulation in Kara and Pechora seas using a system of operative diagnosis and forecast for sea dynamics [Vosproizvedeniye tsirkulyatsii Karskogo i Pechorskogo morey s pomoshchyu sistemy operativnogo diagnoza i prognoza morskoy dinamiki]. Arktika: ekologiya i ekonomika. 2014, no. 1(13), pp. 57-73. ISSN 2223-4594. (Russ.).

7. DIANSKIY, N.A., D.V. STEPANOV, A.V. GUSEV et al. A role of wind and thermal exposures in forming of water circulation volatility in the Central Basin at the Sea of Japan during 1958-2006 [Rol vetrovogo i termicheskogo vozdeystviy v formirovanii izmenchivosti tsirkulyatsii vod v Tsentralnoy korlovine Yaponskogo moray s 1958 po 2006 gg.]. Izvestiya RAN. Fizika atmosfery i okeana. 2016, vol. 52, no. 2, pp. 234-245. ISSN 0002-3515. (Russ.).

8. HUNKE, E.C. and W.H. LIPSCOMB. CICE: the Los Alamos sea ice model, documentation and software user's manual, Version 4.1: Tech. Rep. LA-CC-06-012. Los Alamos, NM: Los Alamos National Laboratory, 2010.

9. SWAN Cycle III. Version 41.01AB. Scientific and technical documentation. The Netherlands, Delft: Delft University of Technology, 2015.

10. RIVIN, G.S., I.A. ROZINKINA, R.M. VILFAND et al. Hydrometeorological Center of Russia COSMO-Ru system for non-hydrostatic mesoscale short-term weather forecast: second stage of realization and development [Sistema COSMO-Ru negidrostaticheskogo mezomasshtabnogo kratkosrochnogo prognoza pogody Gidrometsentra Rossii: vtoroy etap realizatsii i razvitiya]. Meteorologiya igidrologiya. 2015, no. 6, pp. 58-70. ISSN 0130-2906. (Russ.).

11. BRYDON, D., S. SAN, R. BLECK. A new approximation of the equation of state for seawater, suitable for numerical ocean models. J. Geoph. Res. 1999, vol. 104, no. C1, pp. 1537-1540. ISSN 0148-0227.

12. GLOBAL_REANALYSIS_PHYS_001_011. In: Product user manual for Global Ocean Reanalysis products [online], is. 2.8, pp. 22-25. Available from: http://cmems-resources.cls.fr/documents/PUM/CMEMS-GLO-PUM-001-004-009-010-011-017.pdf

13. OISST [online]. Available from: https://www.esrl.noaa.gov

14. COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE. Global Ocean OSTIA Sea Surface Temperature and Sea Ice Analysis [online]. Available from: http://marine.copernicus

15. EGBERT, G.D. and S.Y. EROFEEVA. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol. 2002, vol. 19(2), pp. 183-204. ISSN 0739-0572.

16. PACANOVSKY, R.C. and G. PHILANDER. Parametrization of vertical mixing in numerical models of the tropical ocean. J. Phys. Oceanogr. 1981, vol. 11, pp. 1442-1451. ISSN 0022-3670.

17. PUTOV, V.F. and G.V. SHEVCHENKO. Spatiotemporal inconstancy of sea level at the north-western coast of Sakhalin [Prostranstvenno-vremennaya izmenchivost urovnya moray na severo-vostochnom poberezhye o. Sakhalin]. Meteorologiya i gidrologiya. 1991, no. 10, pp. 94-101. ISSN 0130-2906. (Russ.).

18. KATO, E., Yu.V. LUBITSKIY, G.V. SHEVCHENKO. Extremal heights of the storm surges at the coastline of Sakhalin [Ekstremalnyye vysoty shtormovykh nagonov na poberezhye o. Sakhalin]. In: Navigation and marine sciences - 2011: selected papers of the 3rd Sakhalin science-technical regional conference, 2011, pp. 177-193. (Russ.).

i Надоели баннеры? Вы всегда можете отключить рекламу.