Научная статья на тему 'Results of studies for the modernized equipment of a pipelayer'

Results of studies for the modernized equipment of a pipelayer Текст научной статьи по специальности «Строительство и архитектура»

CC BY
181
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
pipelayer / pipeline construction / road-building machines / major pipeline / pipelayer boom / work equipment / трубоукладчик / строительство трубопровода / строительно-дорожные машины / магистральный трубопровод / стрела трубоуклад- чика / рабочее оборудование

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Pavel Aleksandrovich Korchagin, Anton Borisovich Letopolskiy, Irina Alekseevna Teterina

Relevance and purpose of the work. Vertical and horizontal swings of a pipeline leading to an uneven distribution of its mass and, as a result, the loss of stability of a crane-pipelayer itself is a problem of modern engineering, which has no unambiguous solution today. This paper gives an option of improving the design of an additional support for a pipe-layer’s boom. The proposed solution allows to increase evenness of laying a pipe and increase the stability of the pipelayer in its operating mode. The result can be achieved by using some additional elements to the design of the pipe-layer’s boom support. Methods. The strength calculation of the proposed design using the existing method is quite time-consuming. To determine the critical stresses, strain values and maximum displacements in the design, the Solid Works software was used. Results and their discussion. The proposed design involves connecting a support with a cargo boom. The support consist of a hydraulic cylinder and a metal base used to fasten a cylinder to the support by means of a bearing type-connection. To confirm the performance of the proposed technical solution, the dependencies are presented, which are based on the design scheme of the pipelayer working equipment. Calculated dependencies allow determining the amount of load for the pipelayer. Conclusions. The results of theoretical studies conducted in the Solid Works software product are presented graphically and show stresses, displacements and deformations in the boom design of the machine for laying the main pipeline. Additionally, as a result of research, the value of the safety factor in the design of the pipelayer boom support has been determined. The diagrams of equivalent stresses, strain values, safety factor and possible displacements in the design of the modernized equipment enable us to draw a conclusion on the performance of the proposed design of the pipelayer boom.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Pavel Aleksandrovich Korchagin, Anton Borisovich Letopolskiy, Irina Alekseevna Teterina

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Результаты исследований модернизированного оборудования трубоукладчика

Àêòóàëüíîñòü è öåëü ðàáîòû. Вертикальные и горизонтальные колебания трубопровода, приводяùие к неравномерному распределению его массы и, как следствие, к потере устойчивости самого крана-трубоукладчика, – проблема современного машиностроения, не имеюùая однозначного решения на сегодняшний день. В статье представлен вариант совершенствования конструкции дополнительной опоры стрелы трубоукладчика. Предложенное техническое решение позволяет увеличить плавность укладки трубы и повысить устойчивость трубоукладчика в рабочем режиме. Результат достигается путем добавления дополнительных элементов в конструкцию опоры стрелы трубоукладчика. Ìåòîäû. Прочностной расчет предлагаемой конструкции суùествуюùим методом достаточно трудоемок. Для определения критических напряжений, величин деформации и максимальных перемеùений в конструкции использован программный продукт SolidWorks. Ðåçóëüòàòû è èõ îáñóæäåíèå. Предложенная конструкция предполагает соединить с грузовой стрелой опору, состояùую из гидравлического цилиндра и металлической основы, используемую для крепления цилиндра к опоре с помоùью болтового соединения. Для подтверждения работоспособности предложенного конструкторского решения приведены зависимости, составленные на основании расчетной схемы рабочего оборудования трубоукладчика. Расчетные зависимости позволяют определить величину нагрузок, действуюùих на трубоукладчик. Âûâîäû. Результаты теоретических исследований, проведенных в программном продукте SolidWorks, представлены графически и отражают напряжения, перемеùения и деформации в конструкции стрелы машины для укладки магистрального трубопровода. Дополнительно в результате исследований установлена величина запаса прочности в конструкции опоры стрелы трубоукладчика. Представленные эпюры эквивалентных напряжений, величин деформации, коэффициента запаса прочности и возможных перемеùений в конструкции модернизированного оборудования дают право сделать вывод о работоспособности предлагаемой конструкции стрелы трубоукладчика.

Текст научной работы на тему «Results of studies for the modernized equipment of a pipelayer»

Технические науки Engineering sciences

УДК 624.042.12 https://doi.org/10.21440/2307-2091-2019-1-96-102

Results of studies for the modernized equipment of a pipelayer

Pavel Aleksandrovich KORCHAGIN*, Anton Borisovich LETOPOLSKIY**, Irina Alekseevna TETERINA***

Siberian State Automobile and Highway University (SibADI), Omsk, Russia

Relevance and purpose of the work. Vertical and horizontal swings of a pipeline leading to an uneven distribution of its mass and, as a result, the loss of stability of a crane-pipelayer itself is a problem of modern engineering, which has no unambiguous solution today. This paper gives an option of improving the design of an additional support for a pipe-layer's boom. The proposed solution allows to increase evenness of laying a pipe and increase the stability of the pipelayer in its operating mode. The result can be achieved by using some additional elements to the design of the pipe-layer's boom support.

Methods. The strength calculation of the proposed design using the existing method is quite time-consuming. To determine the critical stresses, strain values and maximum displacements in the design, the Solid Works software was used.

Results and their discussion. The proposed design involves connecting a support with a cargo boom. The support consist of a hydraulic cylinder and a metal base used to fasten a cylinder to the support by means of a bearing type-connection. To confirm the performance of the proposed technical solution, the dependencies are presented, which are based on the design scheme of the pipelayer working equipment. Calculated dependencies allow determining the amount of load for the pipelayer.

Conclusions. The results of theoretical studies conducted in the Solid Works software product are presented graphically and show stresses, displacements and deformations in the boom design of the machine for laying the main pipeline. Additionally, as a result of research, the value of the safety factor in the design of the pipelayer boom support has been determined. The diagrams of equivalent stresses, strain values, safety factor and possible displacements in the design of the modernized equipment enable us to draw a conclusion on the performance of the proposed design of the pipelayer boom.

Keywords: pipelayer, pipeline construction, road-building machines, major pipeline, pipelayer boom, work equipment.

Introduction

A pipelayer is a road construction machine used in the construction and repair of pipelines (GOST Р 52079-2003. Wrought iron pipe for major gas pipelines, oil pipelines, and product pipelines. Enacted 2002-01-01. Moscow, 2005. 32 p.)[1]. The pipelayer is a crane with a side boom. The ability to lift the same load by the pipelayer at different boom inclinations is not constant. According to its main purpose, the pipelayer is subjected mainly to external vertical loads applied to its load hook; these loads include a weight of a single-part rigid cargo or the weight of a raised elastic section of the laid pipeline [2]. The second variant of the external load is complex since it depends not only on the elevated pipeline but on the shape of its deflection as well [2].

The movement of the pipelayer along the roughs (as well as inconsistent actions of operators during group work of machines with a common load) leads to the fact that the shape of the pipeline deflection in the vertical plane constantly changes; the mass of the raised section between the machines is redistributed [3]. In other words, if during work with a single-part rigid cargo, the load on the working equipment is constant and depends only on the weight of this load and while working with a pipeline it is variable, as it depends on many constantly changing technological factors and, above all, on a transitory weight (pipeline parameters) (Fig. 1) [2].

In order to ensure the safety of work for laying the pipeline, it is proposed to improve the design of equipment. Purpose of the research

When working, the load on the work equipment often does not correspond to the load capacity of a machine. In this case, there is a danger of tipping over of the pipelayer [1]. One of the solutions to this problem is to install a support which is mounted on the main pipelayer boom (Fig. 2) [3].

Materials and methods of the research

The crane with a side boom (pipelayer) has the ability to lift the same load in a number of options for the boom lifting is not constant. In the position of the boom close to the vertical, the pipelayer is able to lift a load of greater weight than with an increase of working radius, due to the possible tipping of the machine towards the load [2].

To determine the hook load of the pipelayer, the following calculation was made [4]:

1. Trench parameters;

2. Minimum number of pipelayers when performing a working operation. Trench height (htr)

where Dtr is the diameter of the pipeline.

h = 0,8 + D ,

tr tr

"[email protected]

https://o rcid.org/0000-0001 -8936-5679 ""[email protected]

https://o rcid.org/0000-0003-3503-131X """ И [email protected]

https://orcid.org/0000-0001 -8012-8511

tf_

Figure 1. Technological scheme of pipeline construction. Рисунок 1. Расчетно-технологическая схема укладки трубопровода.

Figure 2. Pipelayer boom equipped with support. 1 - support; 2 -hydaulic cylinder; 3 - hydraulic cylinder of support extension.

Figure 3. Stresses and loads that effect on the boom.

Рисунок 2. Стрела трубоукладчика, оснащенная опорой. 1 - Рисунок 3. Силы реакции и нагрузки, действующие на стрелу.

опора; 2 - гидроцилиндр; 3 - гидроцилиндр выдвижения опоры.

Trench width

B = 1,5 D .

The optimal distance between suspension points (Fig. 1) of the pipeline is calculated by the formulas

l1 = 2,46 4-l2 = 1,224 -l3 = 1,224 -^, l4 = 2,464 --,

\ q \ q \ q \ q

where EI is rigidity of the laid pipeline; q - weight of 1 meter of the pipeline; h,, h2 - height of lift of the pipeline (h1 = h2, h3 = htr + 0,5). The load on the pipelayers (Fig. 1) was determined by the formulas [4]

3 2

2 3

The analysis of the results obtained in determining the loads at the points of suspension of the pipeline with the cargo characteristic of the pipelayer TG-124 (depending on a hook radius), allowed us to conclude that there is an actual load equals to 93742 N on one of the suspension points, which does not correspond to the carrying capacity of the pipelayer equal to 67 000 N with the hook radius of 3.96 m [1].

Load capacity of the pipelayer TG-124 Грузовая характеристика трубоукладчика ТГ-124

Hook radius (from the left edge of rolling over)............................................................................................................................................................1.5

Load capacity with counterweight and stability coefficient 1.4 tons............................................................................................12.5

2.5 10.9

3.5

7.6

4.5 5.75

5.6 4.6

The boom design of the upgraded pipelayer consists of two parts, the main boom and additional support interconnected by a non-rigid binding [4]. A distinctive feature of the design is that the boom support is made in the form of an overhung hydraulic cylinder, which is pivotally connected to a shoe [4, 5]. As a hydraulic cylinder, it is proposed to use a hydraulic cylinder from the standard series 55111-8603010 [3].

Fig. 3 schematically reflects the boom of the pipelayer equipped with the support; actual reaction forces of the supporting surface and the loads while laying the pipeline in a trench are indicated [6].

Figure 4. Left section of the structure. Рисунок 4. Левая часть конструкции.

Figure 5. Right section of the structure. Рисунок 5. Правая часть конструкции.

To determine the values of reactions RA , R , R and RCy, it is necessary to divide the hinge B, having considered the equilibrium of each of the parts and making up theforce balance equation (Fig. 4, 5). As a result, new reactions RBx and RBy appear in the hinge pivot B (Fig. 5).

To determine the value of unknown forces, three force balance equations are formed:

- sum of forces about the X axis;

- sum of forces about the Y axis;

- sum of moments about the A point [7, 8].

y FX =Ra +Rb =0, y FY =R+RB - Q =0,

ZM = 4,12RB - 4, 5R_ - 3,96Q =0. (1)

j.J J

The force balance equations are formed: the sum of forces about the X axis; the sum of forces about the Y axis; the sum of moments about the point B; the sum of moments about the point C [9, 10].

У F.X = - RB - Rr = 0,

4,8 R +2,9 R =0,

From the formula (2) From the formula (3)

From the formula (4)

-4,8 R +2,9 R =0,

Substituting expressions (5) and (6) into the formula (1) the reaction was found RCx:

-4,12 + 4,5Rr -3,96 Q = 0.

The resultant force of reactions RBx and RB arising in the hinge pivot is equal to:

i

(2)

(3)

(4)

(5)

(6)

Bending moment in the hinge pivot axis [10]

2 ;

where N - cross-sectional bending force, kN; a is the distance from a rod end to the loading point, cm. The minimum torque of resistance of the cross profile of the axis [11]

where m - condition load effect factor; R - design resistance of round rolled steel, MPa. The diameter of the axis is determined by the formula [12]

For further calculation, it is necessary to check the axis for section. You can do this using the formula [4, 13]

-7-r-

where n - the number of sections of the axis n = 2; R - section resistance, MPa.

cp cp cp

Research results and their discussion

In the Solid Works environment, some theoretical studies have been carried out aimed at determining the strength characteristics of the proposed design of the pipelayer boom with additional support [4, 14].

Strengthening studies were carried out in the following sequence [7]:

1. Specify the material and determine the type of boom mounting and the boom of the hydraulic cylinder (fixed hinge pivot; soil exposure on the support - fixed geometry).

2. Set the load (load is directed along the rope downwards; a cylindrical figure as the rope model installed in the rod ends of binding of the hook block; an operational force is directed to the surface of this figure with the opposite direction).

3. Build a grid on a solid body dividing the model into smaller segments.

4. Perform calculation [14].

Fig. 6 shows a curve reflecting the result of theoretical studies aimed at determining the equivalent stresses in the structure. Minimum stress values in the structure are 0.257 Pa; maximum stress values in the structure - 2.63 • 108 Pa.

The conducted studies have allowed us to determine the areas of accumulation of maximum stresses in the structure of the support for a given load equal to 12 tons [14, 15]. Studies have shown that the maximum stress does not exceed a permissible limit of material plasticity [3].

Fig. 7 shows a curve reflecting the result of theoretical studies aimed at determining movements in the design of the pipelayer boom support [11, 14]. Studies have shown that the minimum displacement values in the structure are 0 mm, maximum values - 4.62 mm.

Theoretical studies aimed at the study of displacements made it possible to determine the places in the support structure with possible displacements of structural details. It has been established that maximum displacements are concentrated in the place of attachment of the additional support to the hydraulic cylinder [11]. Possible movements in the structure can be prevented either by increasing the number of bolted joints or by increasing fasteners [16].

Figure 6. Study of the stresses in the support structure of the pipe- Figure 7. Study of motion in the support structure of the pipelayer

layer boom. boom.

Рисунок 6. Исследование напряжений в конструкции опоры Рисунок 7. Исследование перемещений в конструкции опоры

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

стрелы трубоукладчика. стрелы трубоукладчика.

Figure 8. Study of deformations in the support structure of the pipelayer boom.

Рисунок 8. Исследование деформаций в конструкции опоры стрелы трубоукладчика.

Figure 9. Study of the safety factor in the support structure of the pipelayer boom.

Рисунок 9. Исследование запаса прочности в конструкции опоры стрелы трубоукладчика.

Fig. 8 shows a curve reflecting the result of theoretical studies aimed at determining the amount of deformation in the structure of the boom support [4, 17]. When a load of 12 tons is applied, the minimum amount of deformation in the structure is 1.93 • 10-7 mm, the maximum - 5.8 x 10-4 mm.

Studies aimed at determining the deformation made it possible to determine the places of possible deformations of the proposed structure of the pipelayer boom support. Studies allowed us to conclude that the critical values in the simulation of possible maximum load capacity in the nodes of the equipment do not occur [4].

Fig. 9 shows a curve reflecting the result of theoretical studies aimed at determining the factor of safety in the structure of the boom support [4, 15]. The minimum safety margin is 1.6, and the maximum safety margin is 4.76.

Studies of the factor of safety allowed us to establish the strength characteristics along the entire length of the proposed design, as well as to determine whether the structure is able to withstand the specified loads characterized by the FOS safety factor. In order for the load to withstand the specified loads, the safety factor should be more than 1, and therefore the details in the design should be made with a safety factor more than 1.5. Conclusion

In the course of the research, calculated dependencies were obtained to determine the forces in the nodal connections. The obtained formulas allow us to calculate the load change from the mass of the pipe laid in the trench. It was found that the resulting stresses and displacements in the design of working equipment do not exceed critical values. The conducted strength calculation made it possible to conclude that there is a sufficient safety margin for the design of the working equipment of the pipelayer.

Application of the pipelayer with additional support can reduce the amount of equipment used when laying a pipeline. The proposed design of the boom support will allow increasing evenness of laying a pipe, increase the stability of the pipelayer and significantly secure the pipeline construction process.

REFERENCES

1. Usanov V., Berezin A., Vorontsov A., Zhutkin V., Babakov Yu. 2015, Cost reduction in the operation of pipelayers. Tekhnadzor [Technical Supervision], no. 11 (108), pp. 686-687. (In Russ.)

2. Parshin D. Ya., Shoshiashvili D. Ya. 1990, Automatic stability control of pipelayers. Stroitel'nyye i dorozhnyye mashiny [Construction and road building machinery], no. 10, pp. 16-18. (In Russ.)

3. Voronin A. N., Lipsky V. K., Serenkov P. S. 2012, Analysis of the accident rate of the main pipeline transport in the Republic of Belarus, the Russian Federation, the countries of Western Europe and the USA. Vestnik Polotskogo gosudarstvennogo universiteta [Bulletin of the Polotsk State University], F series: Construction. Applied sciences, no. 16, pp. 69-74. (In Russ.)

4. Voronin A. N., Lipsky V. K. 2014, Opisaniye seti protsessov v magistral'nom truboprovodnom transporte s ispol'zovaniyem sistemy funktsion-al'nogo modelirovaniya [Description of the network of processes in the main pipeline transport using the functional modeling system]. Reliability and safety of the main pipeline transport: Collection of works at VIII International scientific-technical conference. Ed. by V. K. Lipsky, pp. 49-51.

5. Vashchuk I. M., Utkin V. I., Harkun B. I. 1989, Truboukladchiki [Pipelayers]. Moscow, 180 p.

6. Dudoladov, Yu. A. 1981, Krany-truboukladchiki [Cranes-pipelayers]. Moscow, 240 p.

7. Teterina I. A., Korchagin P. A., Letopolsky A. B. 2018, Investigation of soil destruction by trench chain excavator cutting element process. Proceedings of the 4th International Conference on Industrial Engineering ICIE 2018: Lecture Notes in Mechanical Engineering. Moscow, Russia, 15-18 May 2018. Cham, pp. 2123-2132. https://doi.org/10.1007/978-3-319-95630-5_229

8. Teterina I. A. 2017, Povysheniye effektivnosti sistemy vibrozashchity operatora dorozhnoy podmetal'no-uborochnoy mashiny [Improving the effectiveness of vibration system of operator's machine sweeper], master thesis. Omsk, 18 p.

9. Dobronravov S. S., Dobronravov M. S. 2006, Stroitel'nyye mashiny i oborudovaniye [Construction machinery and equipment]: reference book. 2nd ed., updated and revised. Moscow, 445 p.

10. Korytov M. S., Shcherbakov V. S., Titenko V. V. 2018, Analytical solution of the problem of acceleration of cargo by a bridge crane with constant acceleration at elimination of swings of a cargo rope. Journal of Physics: Conference Series, vol. 944, no. 1. https://doi.org/10.1088/1742-6596/944/1/012062

11. Denisova L. A., Meshcheryakov V. A. 2018, Control systems design: the technology of stochastic perturbations simulation. Journal of Physics: Conference Series, vol. 1050, no. 1. 012020. https://doi.org/10.1088/1742-6596/1050/1/012020

12. Boyarkina I. V. , Tarasov V. N. 2017, Regularities of the working equipment elements mass reduction to the hydraulic power cylinder piston for the bucket boom machines size standard. Journal of Physics: Conference Series, vol. 858, no. 1.

13. Shcherbakov V. S., Korytov M. S., Shershneva E. O. 2016, Influence of an obstacle on load displacement by a gantry crane. Russian Engineering Research, vol. 36, no. 3, pp. 194-197. https://doi.org/10.3103/S1068798X16030151

14. Vasilyev V. I., Ovsyannikov V. E., Ziganshin R. A., Terekhov A. S. 2018, Peculiar features of formation of surface roughness profile upon mechanical processing of iron parts of handling machines after diffusion alloying. International Journal of Mechanical Engineering and Technology, vol. 9 (3), pp. 1061-1067. Link

15. Zarubin V. N. 1984, Truboukladchik [Pipelayer], Moscow, 134 p.

16. Korneyev S. A., Korneyev V. S., Voronov E. A., Chernyavskiy D. I., Romanyuk D. A. 2018, Thermodynamically matched description of highly elastic couplings load characteristics considering misalignment of the attached shafts. AIP Conference Proceedings. 030006. https://doi. org/10.1063/1.5051867

17. Harkun B. I., Vereynov O. V., Utkin V. I., Shevelenko V. I., Sliskov V. I., Zakharchuk B. Z. 1979, Kran-truboukladchik [Pipelayer crane]. Patent RF no. 703490.

The article was received on September 3, 2018

УДК 624.042.12

https://doi.org/10.21440/2307-2091-2019-1-96-102

Результаты исследований модернизированного оборудования трубоукладчика

Павел Александрович КОРЧАГИН**, Антон Борисович ЛЕТОПОЛЬСКИИ**, Ирина Алексеевна ТЕТЕРИНА***

Сибирский государственный автомобильно-дорожный университет (СибАДИ), Россия, Омск

Актуальность и иель работы. Вертикальные и горизонтальные колебания трубопровода, приводящие к неравномерному распределению его массы и, как следствие, к потере устойчивости самого крана-трубоукладчика, - проблема современного машиностроения, не имеющая однозначного решения на сегодняшний день. В статье представлен вариант совершенствования конструкции дополнительной опоры стрелы трубоукладчика. Предложенное техническое решение позволяет увеличить плавность укладки трубы и повысить устойчивость трубоукладчика в рабочем режиме. Результат достигается путем добавления дополнительных элементов в конструкцию опоры стрелы трубоукладчика. Метолы. Прочностной расчет предлагаемой конструкции существующим методом достаточно трудоемок. Для определения критических напряжений, величин деформации и максимальных перемещений в конструкции использован программный продукт SolidWorks. Результаты и их обсужление. Предложенная конструкция предполагает соединить с грузовой стрелой опору, состоящую из гидравлического цилиндра и металлической основы, используемую для крепления цилиндра к опоре с помощью болтового соединения. Для подтверждения работоспособности предложенного конструкторского решения приведены зависимости, составленные на основании расчетной схемы рабочего оборудования трубоукладчика. Расчетные зависимости позволяют определить величину нагрузок, действующих на трубоукладчик. Выволы. Результаты теоретических исследований, проведенных в программном продукте SolidWorks, представлены графически и отражают напряжения, перемещения и деформации в конструкции стрелы машины для укладки магистрального трубопровода. Дополнительно в результате исследований установлена величина запаса прочности в конструкции опоры стрелы трубоукладчика. Представленные эпюры эквивалентных напряжений, величин деформации, коэффициента запаса прочности и возможных перемещений в конструкции модернизированного оборудования дают право сделать вывод о работоспособности предлагаемой конструкции стрелы трубоукладчика.

Ключевые слова: трубоукладчик, строительство трубопровода, строительно-дорожные машины, магистральный трубопровод, стрела трубоукладчика, рабочее оборудование.

ЛИТЕРАТУРА

1. Усанов В., Березин А., Воронцов А., Жуткин В., Бабаков Ю. Снижение затрат при эксплуатации кранов-трубоукладчиков // Технадзор. 2015. № 11 (108). С. 686-687.

2. Паршин Д. Я., Шошиашвили М. Э. Автоматический контроль устойчивости кранов-трубоукладчиков // Строительные и дорожные машины. 1990. № 10. С. 16-18.

3. Воронин А. Н., Липский В. К., Серенков П. С. Анализ аварийности магистрального трубопроводного транспорта в Республике Беларусь, Российской Федерации, странах западной Европы и США // Вестник ПГУ. Сер. F. «Строительство. Прикладные науки». 2012. № 16. С. 69-74.

4. Воронин А. Н., Липский В. К. Описание сети процессов в магистральном трубопроводном транспорте с использованием системы функционального моделирования // Надежность и безопасность магистрального трубопроводного транспорта: сб. тезисов VIII Междунар. науч.-техн. конф. Новополоцк: ПГУ, 2014. С. 49-51.

5. Ващук И. М., Уткин В. И., Харкун Б. И. Трубоукладчики. М.: Машиностроение, 1989. 180 с.

6. Дудоладов Ю. А. Краны-трубоукладчики. М.: Высш. школа, 1981. 240 с.

7. Teterina I. A., Korchagin P. A., Letopolsky A. B. Investigation of soil destruction by trench chain excavator cutting element process // Proceedings of the 4th International Conference on Industrial Engineering ICIE 2018: Lecture Notes in Mechanical Engineering, Moscow, Russia, 15-18 May 2018. Cham: Springer, 2018. P. 2123-2132. http://dx.doi.org/10.1007/978-3-319-95630-5_229

8. Тетерина И. А. Повышение эффективности системы виброзащиты оператора дорожной подметально-уборочной машины: автореф. дис. ... канд. техн. наук. Омск, 2017. 18 с.

9. Добронравов С. С., Добронравов М. С. Строительные машины и оборудование: справочник. 2-е изд, перераб. и доп. М.: Высш. школа, 2006. 445 с.

10. Korytov M. S., Shcherbakov V. S., Titenko V. V. Analytical solution of the problem of acceleration of cargo by a bridge crane with constant acceleration at elimination of swings of a cargo rope // Journal of Physics: Conference Series. 2018. Vol. 944, № 1. 012062. https://doi. org/10.1088/1742-6596/944/1/012062

11. Denisova L. A., Meshcheryakov V. A. Control systems design: the technology of stochastic perturbations simulation // Journal of Physics: Conference Series. 2018. Vol. 1050, № 1. 012020. https://doi.org/10.1088/1742-6596/1050/1/012020

12. Boyarkina I. V., Tarasov V. N. Regularities of the working equipment elements mass reduction to the hydraulic power cylinder piston for the bucket boom machines size standard // Journal of Physics: Conference Series. 2017. Vol. 858. № 1. 012006. https://doi.org/10.1088/1742-6596/858/1/012006

13. Shcherbakov V. S. Korytov M. S., Shershneva E. O. Influence of an obstacle on load displacement by a gantry crane // Russian Engineering Research. 2016. Vol. 36, № 3. Р. 194-197. https://doi.org/10.3103/S1068798X16030151

14. Vasilyev V. I., Ovsyannikov V. E., Ziganshin R. A., Terekhov A. S. Peculiar features of formation of surface roughness profile upon mechanical processing of iron parts of handling machines after diffusion alloying // International Journal of Mechanical Engineering and Technology. 2018. Vol. 9, № 3. Р. 1061-1067. Link

15. Трубоукладчик / В. Н. Зарубин [и др.]. М:. Высш. школа, 1984. 134 с.

16. Korneyev S. A., Korneyev V. S., Voronov E. A., Chernyavskiy D. I., Romanyuk D. A. Thermodynamically matched description of highly elastic couplings load characteristics considering misalignment of the attached shafts // AIP Conference Proceedings. 2018. 030006. https://doi. org/10.1063/1.5051867

17. Кран-трубоукладчик: пат. 703490 СССР / Харкун Б. И., Верейнов О. В., Уткин В. И., Шевеленко В. И., Слисков В. И., Захарчук Б. З. № 2562360/29-11; заявл. 02.01.78; опубл. 15.12.79, Бюл. № 46.

Статья поступила в редакцию 3 сентября 2018 г.

"[email protected]

https://o rcid. org/0000-0001 -8936-5679 ""[email protected]

https://o rcid. org/0000-0003-3503-131X

*** И [email protected]

https://orcid.org/0000-0001 -8012-8511

i Надоели баннеры? Вы всегда можете отключить рекламу.