RENEWABLE SOURCES OF ENERGY: ADVANTAGES
AND DISADVANTAGES
1 2 Jaloliddinova N.D. , Sultonov R.A.
'Jaloliddinova Nozima Doniyorjon qizi - Student, POWER ENGINEERING FACULTY, TEACHING ELECTRIC ENGINEERING DEPARTMENT;
2Sultonov Ro 'zmatjon Anvarjon o 'g 'li -Teacher, POWER ENGINEERING FACULTY, ELECTRIC TECHNIQUE, ELECTRIC MECHANICS AND ELECTRIC TECHNOLOGIES DEPARTMENT, FERGHANA POLYTECHNIC INSTITUTE, UZBEKISTAN, FERGHANA CITY
Abstract: the article under discussion describes the renewable sources of energy, their advantages and disadvantages. The authors of the article discuss in details all pros and cons of renewable sources of energy and conclude that the environmental impacts of most renewable energy technologies is manageable if there is a careful prior analysis and design. Keywords: ecosystem, energy, oil-tanker, conventional, technologies, require, nuclear, waste, remedy, biomass, reduce, dispose, convert.
Our present energy system is still revealing numerous sustainability deficits, in particular with respect to its impacts on ecosystems. It is based on energy carriers with limited availability. It burdens our atmosphere, our soil, and water with pollutants and greenhouse gases, and moreover, leaks in oil pipelines, oil-tanker accidents, area-devastating coalmining, an unresolved question of how to dispose of nuclear waste, and the possibilities of reactor accidents. The list of environmental problems in the field of energy is long.
Renewable energy is largely compatible with our climate and resources. However, the installations needed to convert these flows of energy must first be constructed, operated, and finally be dismantled at the end of their useful service life. Raw materials and energy are necessary for these purposes. What are the effects on the environment compared to using conventional energy? Two key parameters can clarify this question: the energy payback time, i.e. the time needed by an energy system to generate the same amount of energy required for its construction, operation, and disposal; and the cumulated greenhouse gas emissions.
A wealth of alternative energy sources, from wind and solar energy to hydroelectricity and biomass fuel offer a way to power homes, vehicles or businesses without using fossil fuels. That means renewable energy sources can help reduce the amount of greenhouse gas emissions we put into the air. Wind power and solar power are fairly self-explanatory; they use the power of the wind or the sun to generate electricity. This electricity is generally stored in batteries and can be distributed like traditional utility electricity [1, p.p.2-6].
The use of hydroelectric power can create severe ecological problems. In the case of run-of-river power stations, the migration of the fish can be impeded by an interruption in the natural flow of the water. The construction of weirs, discharge channels, and dammed-up waters, together with reduced flow rates, turbulence, and dragging power of the waters, can cause changes in the water structure, transportation of sediments, and the ecological balance of the waters and the surroundings. Furthermore, dam-type hydroelectric power stations can lead to conflicts of use with farming and to flooding of large open spaces. At the same time, however, these are also protect against high water and provide drinking water.
The use of biomass must be carefully analysed with particular regard to the required surface areas. Today and in the near future primarily residuals and waste material are used as bio-energy carriers. In the long-term, the cultivation of biomass for energy purposes will compete with the ecologically desirable reduced intensification of agriculture. Emissions from conventional biomass-fuelled power plants are generally similar to emissions from coal-fired power plants, with the difference that biomass facilities produce very little sulphur
dioxide or toxic metals (cadmium, mercury, and others). The most serious problem is their particulate emissions, which must be controlled with special devices. More advanced technologies, such as the whole-tree burner (which has three successive combustion stages) and the gasifier/combustion turbine combination, should generate much lower emissions, perhaps comparable to those of power plants fuelled by natural gas. Facilities that burn raw municipal waste present a unique pollution-control problem. This waste often contains toxic metals, chlorinated compounds, and plastics, which generate harmful emissions. Since this problem is much less severe in facilities burning refuse-derived fuel pelletized or shredded paper and other waste with most inorganic material removed-most waste-to-energy plants built in the future are likely to use this fuel [1, p.p.2-6].
Wind power plants are usually installed at windy and exposed sites. Planning the installation must therefore, as a matter of fact, consider all the needs of nature protection as well as compatibility with bird flight routes and similar aspects. Compliance is assured by legislative requirements and the designation of high-priority and suitable areas. Wind turbines occupy only a small fraction of the land area required for their erection, the rest can be used for other purposes or left in its natural state. For this reason, wind power development is ideally suited to farming areas. In other settings, however, wind power development can create serious land-use conflicts. In forested areas it may mean clearing trees and cutting roads, a prospect that is sure to generate controversy, and near populated areas, wind projects often run into stiff opposition from people who regard them as unsightly and noisy, or who fear their presence may reduce property values.
Since solar power systems generate no air pollution during operation, the primary environmental, health, and safety issues involve how they are manufactured, installed, and ultimately disposed of. Energy is required to manufacture and install solar components, and any fossil fuels used for this purpose will generate emissions. Thus, an important question is how much fossil energy input is required for solar systems compared to the fossil energy consumed by comparable conventional energy systems. Although this varies depending upon the technology and climate, the energy balance is generally favourable to solar systems in applications where they are cost effective, and it is improving with each successive generation of technology. Materials used in some solar systems can create health and safety hazards for workers and anyone else coming into contact with them. In particular, the manufacturing of photovoltaic cells often requires hazardous materials such as arsenic and cadmium. Even relatively inert silicon, a major material used in solar cells, can be hazardous to workers if it is breathed in as dust. Workers involved in manufacturing photovoltaic modules and components must consequently be protected from exposure to these materials. Photovoltaic systems can take advantage of unused space on the roofs of homes and buildings and in urban and industrial lots. And, in solar building designs, the structure itself acts as the collector, so there is no need for any additional space at all.
In conclusion, any power technology has an impact on the environment, which must be evaluated very carefully in order to avoid harmful results. Wind plants may have a negative impact on bird habitats and, through visual effects and noise, on recreational and municipal areas. Geothermal hot dry rock technology will establish a water cycle from the depths, which will contain a lot of minerals harmful to the surface environment. Therefore, it must be secured that the water cycle used for extracting the heat from the ground is always returned and not infiltrated into surface or groundwater bodies. The disposal of biomass residues is in fact a positive contribution to the environment. Using wood for energy purposes is more critical considering the present over-exploitation of fuel wood in most arid regions. Plants must be carefully designed and distributed to not overexploit the natural resources. It must also be considered that traditional fuel wood would compete with fuel wood for electricity. All in all the environmental impacts of most renewable energy technologies is manageable if there is a careful prior analysis and design [2, p.p.45-60].
References
1. BoxwellM. Solar electricity handbook. Green stream Publishing, 2019. P.p.2-8.
2. Duffie J. Solar engineering of thermal processes. 4th edition. John Willey&Sons, 2013. P.p.45-60.
ИССЛЕДОВАНИЕ АЛГОРИТМОВ ОПРЕДЕЛЕНИЯ ГРАНИЦ ОБЪЕКТОВ НА ЗАШУМЛЕННЫХ ИЗОБРАЖЕНИЯХ
Фролов И.О.
Фролов Игорь Олегович - магистр, кафедра искусственного интеллекта и системного анализа, факультет компьютерных наук.
Донецкий национальный технический университет, г. Донецк, Украина
Аннотация: рассмотрена задача EDGE DETECTION и типы шумов, а также методы их подавления. Определены задачи по нахождению контура объекта на изображении. Выбраны алгоритмы и операторы для нахождения края объекта на изображении.
Ключевые слова: задача, шум, контур, изображение, операторы, край.
Общая постановка проблемы
Обнаружение края включает в себя множество математических методов, которые направлены на выявление точек на цифровом изображении, в которых яркость изображения резко изменяется или, более формально, имеет неоднородности. Точки, в которых яркость изображения резко изменяется, обычно организованы в набор изогнутых отрезков, называемых краями. Та же проблема обнаружения разрывов в одномерных сигналах известна как пошаговое обнаружение, а проблема обнаружения разрывов сигналов во времени известна как обнаружение изменений. Обнаружение кромок является основным инструментом в обработке изображений, машинном зрении и компьютерном зрении, особенно в областях обнаружения признаков и извлечения признаков.
Цели и задачи
Целью обнаружения резких изменений яркости изображения является регистрация важных событий и изменений в свойствах мира. Можно показать, что при довольно общих предположениях для модели формирования изображения разрывы в яркости изображения, вероятно, соответствуют:
— разрывы по глубине,
— разрывы в ориентации поверхности,
— изменения в свойствах материала и
— вариации освещения сцены.
В идеальном случае результат применения детектора края к изображению может привести к набору связанных кривых, которые указывают границы объектов, границы маркировки поверхности, а также кривые, которые соответствуют разрывам в ориентации поверхности. Таким образом, применение алгоритма обнаружения краев к изображению может значительно сократить объем обрабатываемых данных и, следовательно, может отфильтровывать информацию, которая может рассматриваться как менее релевантную, при сохранении важных структурных свойств изображения. Если этап обнаружения края является успешным, последующая задача интерпретации информационного содержания в исходном изображении,