Научная статья на тему 'REFINEMENT OF SOME BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS'

REFINEMENT OF SOME BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS Текст научной статьи по специальности «Математика»

CC BY
56
44
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Проблемы анализа
WOS
Scopus
ВАК
MathSciNet
Область наук
Ключевые слова
RATIONAL FUNCTIONS / POLYNOMIAL INEQUALITIES / POLAR DERIVATIVE / POLES / ZEROS

Аннотация научной статьи по математике, автор научной работы — Qasim Idrees

In this paper, we establish some Bernstein-type inequalities for rational functions with prescribed poles. These results refine prior inequalities on rational functions and strengthen many well-known polynomial inequalities.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «REFINEMENT OF SOME BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS»

122 Probl. Anal. Issues Anal. Vol. 11 (29), No 1, 2022, pp. 122-132

DOI: 10.15393/j3.art.2022.11350

UDC 517.53

IDREES QASIM

REFINEMENT OF SOME BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS

Abstract. In this paper, we establish some Bernstein-type inequalities for rational functions with prescribed poles. These results refine prior inequalities on rational functions and strengthen many well-known polynomial inequalities.

Key words: Rational Functions, Polynomial Inequalities, Polar Derivative, Poles, Zeros

2020 Mathematical Subject Classification: 30A10, 30C15, 30D15

1. Introduction. Let Vn denote the space of complex polynomials

n

f (z) := ajzj of degree at-most n ^ 1. Let T := {z : \z\ = 1}, D-

3=0

denote the region inside T and D+ the region outside T. For aj E C with

n

j = 1, 2,..., n, let w(z) = Y\(z — aj) and let

3 = 1

B(z) := TT (1 — aj Z) , Kn := Kn(ai,a2, ...,an):= ( ^t^T , P evA .

j=iV ^— ' {w[z) J

Then Kn is the set of rational functions with poles a1,a2,... ,an at most and with finite limit at infinity. B(z) E Kn is known as the Blaschke product. From now on, we shall assume that the poles a1,a2,... ,an are in D+. For the case when all the poles are in D-, we can obtain analogous results with suitable modifications of our method.

For r E Kn, let ||r|| = max\r(z)\ be the Chebyshev norm of r on T

and m = min \r(z)I.

z£T

© Petrozavodsk State University, 2022

Definitions and Notations:

n

1) For p(z) := ajzj, the conjugate transpose (reciprocal) p* of p is

3=0

defined by

p*(z) = znp(^j.

n

Therefore, if p(z) = Y\.(z — zj), then p*(z) = 1 [(1 — z]z).

3=1 j=!

p(z)

2) For r(z) = —-— G 'Rri, the conjugate transpose r* of r is defined by

w(z)

r*(z) = B(z)r(^0 .

p(z) p*(z)

Note that if r(z) = —-— G 'Rri, then r*(z) = —-— and, hence,

w(z) w(z)

r*(z) G nn.

n

3) For w(z) = Y\(z — aj), we denote by b the product of roots of w(z),

3 = 1

i. e., b = a1 x a2 x ■ ■ ■ x an.

n

4) If p(z) := Y1 ajzj, then p(z) is defined as

3=0

p(z) = Oq + a{z + a^z2 +----+ a^zn.

Note that p(z) = p(z).

If p G Vn, then, concerning the estimate of |p'(z)| on the unit circle T, we have the following well-known result due to Bernstein (see [6], p. 508, Theorem 14.1.1), which relates the norm of a polynomial to that of its derivative.

\\p'|| ^ n\\p\\. (1)

The inequality (1) is sharp and equality holds for polynomials having all zeros at the origin.

Since equality in (1) holds if and only if p(z):= czn, one would except a relationship between the bound n and the distance to the zeros of the polynomial from the origin. This fact was observed by Erdos, who conjectured the following fact later proved by Lax [3]:

If p GVn and p(z) = 0 in D-, then

'n

W\\ ^ 2 \\p\\.

Turan [7] considered the polynomial having all zeros in T U D- and proved the following reverse inequality: If p GVn has all zeros in T U D-, then

W\\ > I\\p\\. (3)

Dubinin [2] proved the following strengthened version of inequality (3).

n

Theorem A. If p(z) := ajzj is such that p(z) = 0 in D+, then

3 = 1

m > 2

, v ,an\ — V |OqI n +

(4)

In 1995, Li, Mohapatra, and Rodriguez [5] extended inequality (2) to rational functions with prescribed poles. Besides other things, they proved the following results:

Theorem B. If r G Rn, such that r(z) = 0 for z G D-, then, for z gT :

i r'(z)i ^ max i ^

Equality holds for r(z) = aB(z) + / with |a| = 1 = 1.

Theorem C. Suppose r G Rn and all the zeros of r lie in T U D-. Then,

for z G T,

| r'(z)\ > 2[IB '(z)l — (n — t)]max | r(z)l

where are the number of zeros of ( ).

Recently, Wali and Shah [8] used the lemma of Dubinin [2] and proved the following result:

( )

t

Theorem D. Suppose that r(z) = ——— G Rn, where p(z) := ajzj,

W(Z) j=Q

t ^ n, r has exactly n poles a1,a2,... ,an and all the zeros of r lie in T U D-. Then, for z gT ,

=)\ > UlB'(z)l — (n — t) + ^ Z^01 \ |r(z)l.

2 1'*"* ' ,/M

)

The result is sharp and the equality holds for r(z) = B(z) + A with |A| = 1.

In this paper, we find some inequalities for rational functions, which, in particular, refine Theorem B and Theorem D for a particular class of rational functions. We also deduce some polynomial inequalities, which strengthens the prior inequalities, including inequality (4) and improves many other inequalities concerning the polar derivative of a polynomial.

Our first result gives a refinement of Theorem B for a particular class of rational functions.

viz)

Theorem 1. If r(z) = —— E'R", where p(z) :=Y1 ajzj, riz) = 0 f°r

w(z) i=0

all z E D- and |a01 ^ |6| ■ \a"\, then for z E T,

1 ,, \Aa00\ - \Aa"j ilr(z)l — m)2i

|r|| — m),

\r'(z)\ ^ - \B'(z)\ — Vl 0

2L v\ao

\r|| — m)2 -

where ||r|| = max \r(z)\.

Equality is obtained for r(z) = B(z) + keta, with k ^ 1 and real a. Since r(z) does not vanish in D-, \a0\ ^ \a"\. Also, m ^ 0; hence, Theorem 1 is an improvement of Theorem B.

Remark 1. Let a,

and r(z)

p(z)

a > 1 V j = 1, 2,... ,n; then w(z) = (z — a)T

(z — a) B'(z) ^ nzn-1 as a ^ Further, let

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

so that B (z) =

|| H| = max

zeT

1 — az

z — a

P(z)

—ïzn as a —> oo. Also,

(z — a)"

be obtained at z = el, 0 ^ ( < 2n, and

m, = min |r(z)| = min

zeT zeT

p(z)

(z — a)"

be obtained at z = et/3, 0 ^ ¡3 < 2n; then, clearly,

||r|| = max

zeT

p(z) p(e%c-' )

(z — a)n (eiC- — a)n

max \ p(z)\

zeT =

\(e* — a)n\ = \(e* — a)n \

INI

n

and

m

mm

zeT

p(z) p(e113)

(z — a)n (ei/3 — a)n

>

m<n

min \ 'p(z)\

zeT =_

\(e W — a)n\ = \(e ^ — a)n\

where mv = min |p(z)\. v zar

Therefore, taking aj = a > 1, for all j = 1, 2,... ,n in Theorem 1, using the above observations, and letting a ^ ro, we get the following result:

n

Corollary 1. If p(z) := Y1 ajzj G Vn and p(z) = 0 in D-, then, for

3=0

zeT,

\p'(z)\ < 2

n —

«o| — V 10m\

Oq\

— mp).

Equality is obtained for p(z) = zn + 1.

Since mp ^ 0 and |a0| ^ |an|, it follows that Corollary 1 is an improvement of the result by Aziz and Dawood ( [1], Theorem 2). As a refinement of Theorem D, we present the following result:

Theorem 2. Ifr(z)

p(z) n

—— G Rn, where p(z):=J2 ^jz3, |b|■|аn| ^ |ao|,

W(Z) j=Q

r has exactly n poles at a1 ,a2,..., an, and r(z) = 0 for all z G D+, then, for z E T:

l r'(z^ > 2

^ '(*)| +

«n| — V K|

( | ( ) | + m) .

Equality is obtained for r(z) = B(z) + ke^, with k ^ 1 and real (. For a complex number a and for p GVn, let

Dap(z) := np(z) + (a — z)p'(z),

where Dap(z) is a polynomial of degree at most n — 1 and is known as the polar derivative of p(z) with respect to a. It generalizes the ordinary derivative in the sense that

V D»P(z) '( \

nm -= p(z).

a^x a

Assume that a, = a for all j = 1,2,...,n, with |a| > 1 and "

Piz) := aj^ is a polynomial of degree n. Then it can be easily shown ,=0

. ,, , —DaPiz) J( , n(1 — az)"-1ila\2 — 1)

that r (z) = -.-:—— and B (z) =-;-r—--.

w (z — a)n+1 (z — a)"+1

Using the above facts and those discussed in Remark 1, we get the following result from Theorem 2:

"

Corollary 1. If p(z) = Y1 aj^ with \a\n\an\ ^ |a0| is a polynomial °f

=0

degree n having all zeros in T U D-, then, for every finite complex number a satisfying |a|"|an| ^ |a01 and |a| ^ 1,

\DaP(z)\ > ^^^^^

, \fW\ - V\äö\

n +

+ mp).

2. Lemmas. To prove these theorems, we need the following lemmas. The first lemma is due to Li, Mohapatra, and Rodrigues [5]:

Lemma 1. If r G and z G T, then

\r"(z)\ + \r'(z)\ ^ \B'(Z)| max\r(z)\.

Equality holds for r(z) = uB(z) with u G T.

The next Lemma is due to Li [4]:

Lemma 2. Let r,s G and assume that s(z) has all zeros in T U D-and

\r(z)\ ^ \s(z)\ for ZGT.

Then,

\r'(z)\ ^ \s'(z)\ for ZGT. The next two lemmas are due to Wali and Shah [8]:

P(z)

w(z

r lie in D+, then, for z &T

Lemma 3. If r(z) = —— G Rn, where p(z) := aizj and all zeros of

w(z) i=0

^ ( z r'(z)\ 1 Re —V" ^ -V r(z) ) ^ 2

\B' (z)\-V<ao\^/\an\

VM

Lemma 4. If r(z)

^e Rn, where p(z) := ^ üjZj, and r has w(z) i=0

exactly n poles at a1,a2,... ,an and all zeros of r lie in D-, then for

zeT,

Re

( zr^z)\ V r(z) J

1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

> -2

\B' (z)\ +

V\aJi - VW\ \f\0J\

3. Proofs of the Theorems.

Proof of Theorem 1. Assume that all zeros of r(z) lie in D+; then m > 0 and

m < \r(z)\

for zeT. Let a and ß be two complex numbers, such that \a\ < 1 and \ß\ < 1; then

m\aß\ < \r(z)\

for z e T. Since all the poles of r(z) are in D+, r(z) is analytic in D-. Also, r(z) has no zero in T U D-, therefore, by Rouche's Theorem, R(z) = r(z) — aßm has no zero in T U D-. Therefore, by Lemma 3, for zeT:

i zR (z) \

Re ( 7 ) < -V R(z) ) 2

\B' (z)\ —

\J\ao + (—1)n+laßmb \ — \J\an — aßm\ ^\ao + (—1)n+1aßm\

(5)

Since \a0\ < \6\ ■ \an\, then

\ ao\ ■ \a\ ■ \ß \-m < \a\ ■ \ß \-m ■ \b\ ■ \ an\, \an\ ■\ do\ + \ do\ ■ \a\ ■ \ß \^m < \ an\ ■ K\ + \a\ ■ \ß \^m ■ \b\ ■ \an\,

>

"n \

\ an\ + \ a\

m

M ^ K\ + \a\ ■ \ß\ ■ \b\ ■ m' Choosing argument of ß in such a way that

\ao + (—1)n+1a ■ß ■ b ■ m\ = \ao\ + \a\ ■ \ß\ ■ \b\ ■ m,

we get

>

\an — a ■ ß ■ m\

K\ K + (—1)n+1a ■ß ■ b ■ m\' Hence, it follows from inequality (5) that

\/Ki — \/KT

Re

(zR(z)\ < 1

V R(z) ) < 2

\B' (z)\ —

VW\

(6)

a

n

a

n

Now, R*(z) = B(z)r(^ = B(z)r(^ , where R(z) = .

\zj \zj w(z)

Differentiating both sides gives

1 \ (1

( R*(z))' = B'(z)Rl- ) —

Since z E T, we have z = 1/z, and so

\( R*(z)) ' \ = (zB' (z)/B(z))R(z) — z R> (z) By ( [5], Lemma 1), we have

zB' (z)

zB' (z)

B (Z)

= \B' (z)\.

B(z)

Thus, from equation (7), we have

n R*(z))' | = UB' iz)\R(z) — z R (z)l Since R(z) = 0 on T, we have for z E T using inequality (6):

z(R*(z))' 2

R(z)

\B' (z)\ —

R ( )

R(z)

R ( )

R(z)

R ( )

R(z)

+ \B'(z)\2 — 2\B'(z)\ Re(>

VW\ — V\än\

+ \B' (z)\2 —\B' (z)\

\B' (z)\ —

R ( )

R(z)

(7)

+

VW\ — V\än\\ u'

\B' (Z)\.

This implies that for z eT,

\R' (z)\2 + ^ (z)\\R(z)\2

vK\

^ \(R*(z))'\.

(8)

Now, R*(z) = r*(z) — a/3m,B(z), so that R*'(z) = r*'(z) — aflmB'(z).

Since all zeros of r(z) lie in D+, all zeros of r*(z) lie in D-. Also, |mfЗBiz)| ^ | ^(z^ for z eT . Hence, by Lemma 2, we have

^(z))'| > \m$B'(z^

2

2

2

2

2

for z G T. Therefore, we can choose argument of a such that

|(r*(z))' — a/mB'(z)\ = |(r*(z))'| — \3| ■ \a\ ■ m ■ \B'(z)\. Hence, from inequality (8), we have for z gT :

\r'(z)\2 + ^^^^'^ — m ■ M ^ VM

2

^ |r*'(z)\ — \3| ■ \a\^m ^B'(z)\.

Letting |a| ^ 1 and \3\ ^ 1 gives

V '(*)? + \B' (z)\(\ t(z)\ — m)2

VK \

Applying Lemma 1, we have, for z GT:

V '(z)\2 + ^ ^^\B' (z)\(\r(z)\—m)2

VM

^ \(r*(z))'\ — m\B'(z)\.

2

<

^ \B'(z)\■ \\r\\ — \r'(z)\—m\B'(z)\.

Equivalently, for z G T:

\r'(z)l2 + ^ \B'^ — m)2 ^

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

^ [\B' (z)\■ \\r\\ — \r '(z)\—m\B' (z)\f . A simple manipulation gives, for z G T:

\r'(z)\ ^ 2

\b'(z)\ — — (lr(z)l — m)2

V« ' (U—m)2

\ — m) .

This proves the result when r(z) = 0 for z G T; but if r(z) = 0 for z G T, then the inequality is trivially true. This proves the result completely. □

Proof of Theorem 2. Assume that r G Rn has all zeros in D-, so that m > 0. Hence, for every complex numbers a, 3 with |a| < 1 and \3\ < 1,

m\a/3\ < \r(z)\ for z gT.

2

Therefore, by Rouche's Theorem, all zeros of R(z) = r(z) + maß lie in D-. Hence, using Lemma 4, we have for, zeT:

z R' (z)

R(z)

> Re

1

> -2

(—

\R(

( )

)

\B' (z)\ +

>

+ aßm\ — \J\a0 + (—1)na • ß • b • m\ an + aßm\

Since |6| ■ \an\ ^ \a0\, it can we easily shown (as in Theorem 1) that

|ao + (—1)na ■ 3 ■ m ■ b\ ^ \ao\ \an + a/m\

Therefore, from inequality (9), we have

\R'(z)\ > 2

^ \r'(z)\ > 2

\B' (z)\ +

\B' (z)\ +

V\âaÀ — V\aaö\

an\ — \/\a o\

\R(z)\ ^ \ r(z) + aßm\.

Choosing argument of a, such that \r(z) + aßm\ = \r(z) \ + \a\ we get

\r'(z)\ > 2

\B (z)\ +

an\ — \/\ao\ \f\aj\

(\r(z)\ + \a\^\ß\^m).

Letting \a\ ^ 1 and \ß\ ^ 1 gives, for zeT:

\r'(z)\ > 2

\B' (z)\ +

V\0n\ — VW\

(\r(z)\ + m),

• m,

which proves the result when r(z) = 0 for z G T. But the inequality above is trivially true if r(z) = 0 for z G T: this proves the theorem completely. □

Acknowledgement. The author is highly thankful to the referees for their valuable comments and precious suggestions.

an

References

[1] Aziz A., Dawood Q. M. Inequalities for a polynomial and its derivative, J. Approx. Theory, 1988, vol. 54, pp. 306-313.

DOI: https://doi.org/10.1016/0021-9045(88)90006-8

[2] Dubinin V. N. Distortion theorems for polynomials on the circle, Sb. Math., 2000, vol. 191, No. 12, pp. 1797-1807.

[3] Lax P. D. Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S), 1944 vol. 50, pp. 509-513.

[4] Xin Li. A comparizon inequality for Rational Functions, Proc. Amer. Math. Soc., 2011, vol. 139, No. 5, pp. 1659-1665.

DOI: https://doi .org/S0002-9939(2012)11349-8

[5] Xin Li, Mohapatra R. N., Rodgriguez R. S. Bernstein inequalities for rational functions with prescribed poles, J. London Math. Soc., 1995, vol. 51, pp. 523-531. DOI: https://doi.org/10.1112/jlms/51.3.523

[6] Rahman Q. I., Schmeisser G. Analytic Theory of Polynomials, Oxford University Press, New York, 2002.

[7] Turan P. Uber die ableitung von polynomen, Compositio Math., 1939, vol. 7, pp. 89-95.

[8] Wali S. L., Shah W. M. Some applications of Dubinin's Lemma to rational functions with prescribed poles, J. Math. Anal. Appl, 2017, vol. 450, pp. 769-779. DOI: https://doi.org/10.1016/jjmaa.2017.01.069

Received August 14, 2021. In revised form,, December 28, 2021. Accepted December 30, 2021. Published online January 25, 2022.

Department of Mathematics,

National Institute of Technology, Srinagar,

India, 190006

E-mail: idreesf3@gmail.com

i Надоели баннеры? Вы всегда можете отключить рекламу.