Научная статья на тему 'REFINED METHODS FOR CALCULATING AND DESIGNING ENGINEERING STRUCTURES'

REFINED METHODS FOR CALCULATING AND DESIGNING ENGINEERING STRUCTURES Текст научной статьи по специальности «Строительство и архитектура»

CC BY
76
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
VERTICAL CYLINDRICAL TANK / RIGID BUS / DESIGN

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Mushchanov V.P., Orzhekhovskii A.N., Zubenko A.V., Fomenko S.A.

В статье рассмотрено совершенствование методов расчета различных конструкций инженерных сооружений, которое осуществляется на основных этапах проектирования: 1) формирование нагрузок (для конструкций вертикальных цилиндрических резервуаров); 2) совершенствование проектных решений (для конструкций жесткой ошиновки); 3) оценка надежности принятых проектных решений вероятностно-статистическим методам (на примере рамно-консольных покрытий над трибунами стадионов). Основной целью исследования, проведенного при решении первой проблемы, является улучшение метода нормирования ветровой нагрузки на поверхности цилиндрического резервуара объемом 20000–50000 м3 с учетом типа крыши (провисающей мембраны) и блочности (группа из 4 резервуаров). Решение второй задачи рассмотрено на примере новых демпфирующих устройств для уменьшения колебаний, создаваемых ветровым потоком конструкции для конструкции жесткой ошиновки балочного типа. В нормативных документах формулируются только общие требования, но в то же время нет конкретных рекомендаций по рациональному определению размеров осцилляторов и данных об эффективности их применения. Третья проблема решена на примере оценки надежности проектно-конструкторских решений рамно-консольных покрытий над трибунами стадионов с учетом случайного характера основных факторов проектирования.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Mushchanov V.P., Orzhekhovskii A.N., Zubenko A.V., Fomenko S.A.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

УТОЧНЕННЫЕ МЕТОДЫ РАСЧЕТА И ПРОЕКТИРОВАНИЯ ИНЖЕНЕРНЫХ СООРУЖЕНИЙ

The enhancement of calculation of different structures for engineering constructions which is carried out on the main stages of design, has been considered in this paper: 1) the formation of loads (for structures of vertical cylindrical tanks); 2) improving the design solutions (for structures of rigid bus); 3) assessing the reliability of the adopted design decisions by probabilistic and statistical methods (on the example of frame-cantilever coatings above the stands of stadiums). The main aim of the research carried out in solving the first problem is to improve the method for normalizing the wind load on the surface of a cylindrical tank with a volume of 20000–50000 m3, taking into account the type of roof (sagging membrane) and the block arrangement (a group of 4 tanks). The solution of the second problem has been considered on the example of new damping devices to reduce oscillations generated by the wind flow of the rigid jumper construction of girder type. The normative documents formulate only general requirements, but at the same time, there are no specific recommendations on rational sizing of oscillation dampeners and data on their application efficiency. The the third problem has been solved on the example of reliability estimation of design project solutions of frame-consol cover structures over stadium tribunes, taking into account the casual character of the main design factors.

Текст научной работы на тему «REFINED METHODS FOR CALCULATING AND DESIGNING ENGINEERING STRUCTURES»

doi: 10.18720/MCE.78.8

Refined methods for calculating and designing engineering structures

Уточненные методы расчета и проектирования инженерных сооружений

V.P. Mushchanov, A.N. Orzhekhovskii, A.V. Zubenko, S.A. Fomenko,

Donbas National Academy of Civil Engineering and Architecture, Makiyivka, Donetsk region, Ukraine

Д-р техн. наук, проректор по научной работе, заведующий кафедрой В.Ф. Мущанов,

ассистент А.Н. Оржеховский, ассистент А.В. Зубенко, ассистент С.А. Фоменко,

Донбасская национальная академия строительства и архитектуры, Макеевка, Донецкая область, Украина

Key words: vertical cylindrical tank; rigid bus; Ключевые слова: вертикальный frame-cantilever coating; design; calculating цилиндрический резервуар; жесткая ошиновка;

рамно-консольное покрытие; проектирование; расчет

Abstract. В статье рассмотрено совершенствование методов расчета различных конструкций инженерных сооружений, которое осуществляется на основных этапах проектирования: 1) формирование нагрузок (для конструкций вертикальных цилиндрических резервуаров); 2) совершенствование проектных решений (для конструкций жесткой ошиновки); 3) оценка надежности принятых проектных решений вероятностно-статистическим методам (на примере рамно-консольных покрытий над трибунами стадионов). Основной целью исследования, проведенного при решении первой проблемы, является улучшение метода нормирования ветровой нагрузки на поверхности цилиндрического резервуара объемом 20000-50000 м3 с учетом типа крыши (провисающей мембраны) и блочности (группа из 4 резервуаров). Решение второй задачи рассмотрено на примере новых демпфирующих устройств для уменьшения колебаний, создаваемых ветровым потоком конструкции для конструкции жесткой ошиновки балочного типа. В нормативных документах формулируются только общие требования, но в то же время нет конкретных рекомендаций по рациональному определению размеров осцилляторов и данных об эффективности их применения. Третья проблема решена на примере оценки надежности проектно-конструкторских решений рамно-консольных покрытий над трибунами стадионов с учетом случайного характера основных факторов проектирования.

Аннотация. The enhancement of calculation of different structures for engineering constructions which is carried out on the main stages of design, has been considered in this paper: 1) the formation of loads (for structures of vertical cylindrical tanks); 2) improving the design solutions (for structures of rigid bus); 3) assessing the reliability of the adopted design decisions by probabilistic and statistical methods (on the example of frame-cantilever coatings above the stands of stadiums). The main aim of the research carried out in solving the first problem is to improve the method for normalizing the wind load on the surface of a cylindrical tank with a volume of 20000-50000 m3, taking into account the type of roof (sagging membrane) and the block arrangement (a group of 4 tanks). The solution of the second problem has been considered on the example of new damping devices to reduce oscillations generated by the wind flow of the rigid jumper construction of girder type. The normative documents formulate only general requirements, but at the same time, there are no specific recommendations on rational sizing of oscillation dampeners and data on their application efficiency. The the third problem has been solved on the example of reliability estimation of design project solutions of frame-consol cover structures over stadium tribunes, taking into account the casual character of the main design factors.

1. Introduction

Most of the researches aimed at improving the energy efficiency of buildings are closely related to arrangements for thermal modernization, usage of modern thermal insulating materials and improving the efficiency of utilities system.

However, the solution of energy efficiency problem is impossible without the improvement of technological solutions throughout the whole process chain "energy generation - transportation -consumption".

The methods of calculating and designing the structures for engineering constructions of the fuel and energy complex play an important part in this scheme. Such methods should ensure the creating of effective constructive forms which would meet all reliability requirements for high responsibility of buildings.

The enhancement of calculation of different structures for engineering constructions which is carried out on the main stages of design, has been considered in this paper:

1) the formation of loads (for structures of vertical cylindrical tanks);

2) improving the design solutions (for structures of rigid bus);

3) assessing the reliability of the adopted design decisions by probabilistic and statistical methods (on the example of frame-cantilever coatings above the stands of stadiums).

The main aim of the research carried out in solving the first problem is to improve the method for normalizing the wind load on the surface of a cylindrical tank with a volume of 20-50 thousand m3, taking into account the type of roof (sagging membrane) and the block arrangement (a group of 4 tanks). Existing methods for calculating the wind load on buildings and structures, using aerodynamic formulas were developed in the early 70-ies in the V.A. Kucherenko Central Scientific Research Institute for Building Structures based on the works of A. Davenport and A. Vaiz and implemented in SNiP II-6-74 [1]. In 1985, with the release of SNiP 2.01.07-85 [2], expressions describing the dynamic response of structures under the action of the wind were simplified [3]. The main theoretical information on building aerodynamics and methods for determining the wind load on buildings and structures have been presented in the works [4-6]. In works of Ye.V. Gorokhov [7], R.I. Kinash [8], Y. Uematsu [9], Y. Zhao [10], Y. Zhang [11, 12] the issues of wind effects on buildings and structures and experimental simulation of the interaction of wind flow with engineering constructions in a wind tunnel have been considered. In books of P.G. Eremeev [13, 14] the results of model experimental studies of wind and snow loads on technically complex large-span coatings with complex geometry have been presented. The research of numerical modeling of wind influences has been considered in studies of A. Michalski, T. Okaze, K. Togbenou, A. Mochida [15-18] and others. At the same time, the issues of the normalization of wind loads on reservoirs in the form of a sagging roof and block arrangement (a block of 4 tanks [19]) remain open and require further study.

The solution of the second problem has been considered on the example of new damping devices to reduce oscillations generated by the wind flow of the rigid jumper construction of girder type. The normative documents [20, 21] formulate only general requirements in the form of parameter values of strain-stress state of a designed construction and general recommendations in the form of oscillation suppression methods which are able to furnish these requirements. At the same time, there are no specific recommendations on rational sizing of oscillation dampeners and data on their application efficiency.

The solution of the third problem is devoted to the development of the existing heart of the reliability theory and probability calculation of enhanced responsibility constructions. In this case this problem has been solved on the example of reliability estimation of design project solutions of frame-consol cover structures over stadium tribunes, taking into account the casual character of the main design factors. In spite of the fact that the basic problems of the reliability theory have been solved in the works of A.R. Rzhanitsyn [22], V.V. Bolotin [23], V.D. Raizer [24], the peculiar features of different influences have been considered in the works of S.F. Pichugin [25], A.V. Perelmuter [26], S.A. Timashev [27], A.M. Ayzen [28], V.P. Mushchanov [29-32], M. Krejsa, P. Janas [33] and others, the practical realization problems of the requirements given in the normative documents [34-36] are often unsolved.

The main motivation that prompted the authors to carry out this research is the desire to ensure an increase in the efficiency and reliability of the industrial structures of the fuel and energy complex and engineering facilities used by improving the calculation, design and construction procedures.

In this regard, the main purpose of this study is to clarify certain provisions for the calculation, design and construction of structures of engineering structures in the form of vertical cylindrical tanks, rigid buses of open switchgears and stationary canopies over the stands of stadiums.

Objectivity and reliability of the obtained results is confirmed by good conformity between the data of theoretical and experimental studies and their implementation in design practice.

2. Methods

General methods used in the performance of all problems given in the report are:

- calculus of approximations of constructional mechanics (method of finite-elements - MFE) with the use of universal program complexes "SCAD Office"[32], "LIRA";

- method of physical simulation with the use of the similarity theory;

- methods of mathematical statistics (while processing the results of experimental and numerical simulation);

Additionally used:

a. while solving the first problem - calculus of approximations of finite volumes (MFV) of simulation of turbulent flows with the use of program complex "SolidWorksFlowSimulation" [37];

b. while solving the second problem - the methods of mathematical physics and the methods of harmonic analysis (while processing data of field dynamic tests of structures with the help of vibrating machine) [38];

c. while solving the third problem - trial and error methods of investigation, and specifically destructive methods of definition of material strength characteristics.

3. Results and Discussion

3.1. Perfection of normalizing loads on structures of vertical cylindrical reservoirs

Some experimental and computational investigations have been done to solve this problem. The experimental investigations have been carried out in the meteorological wind tunnel MWT-1. While performing these investigations the main similarity parameter is Reynolds number:

£ • U(Ze)

Re =-— (1)

e V

where L - diameter; v = 1.510-5 m2/c = s - kinematic air viscosity, U(ze) =14.9 m/s - peak wind velocity, U(ze).

Similarity condition of aerodynamic processes in the field and on the model is the geometrical similarity. To supply this similarity, corresponding sizes of field structures Ih and models Im must be corresponded to the single scale of linear dimensions

Im

Mt = -p (2)

LH

According to the plan of experimental investigations of the reservoir model M 1:320 in the wind tube MWT-1 DonNACEA foresaw the definition of coefficients of the wind pressure (Cp) in 49 supporting points on the reservoir (Fig. 3). In the process of investigations the dependence Cpi = f(p) is defined within p = 0...360° in increments of Ap = 10°. The results have been presented on 6 directions (p = 0°, 45°, 90°, 150°, 180°, 270°) (Fig. 1).

Calculus investigations were conducted with the use of the finite volume method (MFV) of simulating turbulent flows with the use of program complex "SolidWorksFlowSimulation". As the test calculations of Japanese Institute showed, the size of calculation domain in vertical direction for isolated structures had to be minimum 5H. While investigating groups of structures it should be necessary to use the blockage coefficient. This coefficient is equal to cross area of structure - cross area of computational domain ratio. The coefficient mustn't be more than 3 %. In our case for the group when the height of the structure is 78 mm the blockage percent will be 2.09 %. The width of the calculation domain must be given, so that the blockage coefficient would be less than 3 %. The distance along the flow to the structure must be minimum 5H. The distance behind the structure must be > 15H. The scheme of the domain is shown in Figure 2.

a)

Figure 1. Conducting experimental investigations: a - cross section of model; b - scheme of disposition of draining points; c - single model with draining taps; d - simulation of the group of reservoirs; e - schemes of conducting experiment

145

Figure 2. Visualisation of numerical investigation results

Figure 3 shows the data of the contrastive analysis of results of numerical and experimental investigations for the reservoir with the overhanging roof coating (single and in the group).

Model with overhanging roof (Re = 1.13E + 05) Isofields of coefficient distribution on the roof covering

Experimental method

Numerical method in calculative program

a)

Coefficient distribution profile on the roof covering

b)

Figure 3. The distribution of aerodynamic coefficients for the reservoir with the overhanging roof covering: a - single, b - in the group.

3.2 New approaches to the oscillation compression of girder electricity supply

constructions

The tasks of creating new rational damping devices and perfecting existing ways of oscillation suppression of rigid jumper constructions of open distribution devices in the wind flow are being considered nowadays. The rigid jumper is applied for transmission and distribution of electricity between high-voltage apparatuses both within open distributional devices (ODD) and close distributional devices (CDD) of quick-repaired factory-assembled transformer substations (see Figure 4). Known methods of wind resonance particles exclusion:

• the usage of elements having small bays;

• placing mould cores or wires into the pipes;

• installation of spiraling (screw-shaped) helical spoiler ailerons, this results in the asynchronous vortex separation along the length of cylinder;

• frequency drop of characteristic vibrations (for example, by installation of busbar overhauling weight);

• dampers in the shape of half-socked pipes, covering up to 40 per cent of the busbar length, this reduces the amplitude of wind vibration by several times;

• structural damping - energy dissipation at the site of busbar mounting (special structure of busbar clamp).

Figure 4. Outdoor switch gear construction having rigid busbar 110-750kV SJSC (ZAO) "ZETO"

Without revealing details of advantages and disadvantages, arguments of efficiency of one or another oscillation suppression method it will have been given the results of theoretic and experimental investigations, carried out by the authors for "dampener on ligament" (Figures 5-8).

Figure 5. "Dampener on ligament" structure of bending vibrations of pipe-busbar: 1 - pipe-busbar; 2 - damping checker filling; 3 - contact wire dropper

Figure 6. Design model of broaching construction (pipes)

Figure 7. Design model of dampener on ligament

Figure 8. Model of combined actions of "dampener on ligament" and pipe-busbar: y1, y2 - axis of motion of high-low nodes of pipe-busbar; y3, y4 - axis of motion of high-low nodes of damper; m - pipe bulk weight; m1 - ligament bulk weight, M - dampener weight

Mathematical model of being investigated dampener construction can be represented by motion equation

, \ -sr a , ■ t^ K cos A .... , .

yl (x, t) = e ■ Al (sin Kx-----snkx) ■ sin( wlt + )

У 2 ( LT't ) = e

-ST

к chX At - sin( ^t + ^2)

(3)

Perfectly elastic collision of pipe wall and stringed dampener has been taken in calculation. Motion speed following collision is determined according to the known hit theory formula:

Vu = Уц =

M - к - M2 +(1 + к)-M2 -V2 Mu + M2

(M2-к-Mu)-V2 +(1 + к)-Mu - V M1 + M2

(4)

V1, V2 are speed of rigid busbar and dampener on ligament up to collision; k is the coefficient that takes into account energy dissipation.

Collision moment is determined out of following statements:

y [ f- ' Is y3 ( f-' )

- collision at the pipe top is the result;

- collision at the low point of pipe is the result

y2 ( f^ > ( f,t)

Completed numerical experiment has allowed determining the ration characteristic of dampener given type. By doing so controlled parameters are: A - beam vibration magnitude; t - blanking period of vibrations by factors affecting them: 1 - gaps between beam and dampener; 2 - vibration frequency of dampener; 3 - dampener net weight. Factors limiting control is given in Figure 9.

Change in the performance criterion k of the "thread-based damper" on affecting factors change is given in Figure 10.

Experimental data correspond to the theoretical evaluation and allow for the conclusion that the application of the "thread-based damper" enables us to reduce the amplitude of vibration in resonant mode by a factor of 1.5 and increase the logarithmic decrement by a factor of 2.

<

Figure 9. Numerical experiment controlled parameters

s L-=

rk- - -K So Ç f J-, IdaiLip — Ibcam

1 Idaiiip

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0 0.05 0.1 0.15 0.2 0-25 0.3 0.35 0.

C)

Figure 10. Change in the performance criterion k of the "thread-based damper" on affecting factors change: a) on damper natural vibration frequency change; b) on damper weight change;

c) on damper dimensions change

3.3 Probabilistic approaches to design reliability assurance of space framed structures being designed (by the example of the framed and cantilever structures of stadium stands roofs)

In terms of structural concepts, 36 % of the five-star stadium stands roofs are beam roofs and framed cantilever ones, 14 % of them are steel cable and beam roofs, 18 % of them are suspended shells and structures, 25 % of them are bar structures, 7 % of them are suspended roofs (cable nets and membrane shells). On the grounds of the survey made we can draw a conclusion that the framed cantilever roofs for stadium stands are more widely used in the world practice nowadays. It has also been identified that structural erection imperfections have negative effect on the structures further serviceability. The failure ratio resulted from these defects is high enough and cannot be neglected. The methods of erection procedure are of great concern for improving the erection procedure quality. The structural design variants of the stands roofs under consideration are given in Figure 11 and Table 1.

1 2 3

Figure 11. Design Diagram for Simulation Experiment

At the first stage the aggregate of the system bar elements to be recalculated is formed. It is more appropriate to make calculations for the most critical components as the system is redundant. For this purpose the iterative geometrically and structurally nonlinear structural analysis is made. As a result, the list of successively unserviceable members is being formed. The procedures of this stage are similar to those demonstrated in Figure 12. Following on from the data obtained, the group of the most critical structural members is selected to make recalculation of the condition load effect factor.

Figure 12. Control flow chart of condition load effect factor and cross section choice for framed and cantilever roofs over stadiums

The iterative structural analysis with regard to random values given is made for the elements selected in the previous stage. Hence, the sample collection of stresses for the group of bars in question is being formed. The sampling should be over the 104 to 108 range. The second random value in the analysis is the random value of the strength of constructional material (liquid limit). Two generalized

random values obtained are processed by mathematical statistics methods (their distribution law and density). Handling the density, laws and characteristics of distribution, the probable failure of the members selected is analyzed. The reliability characteristics obtained are compared to the normative values according to the importance of the structure. If the reliability requirements are satisfactory, the analysis is finished. If the reliability is not provided, the particular reliability factors are recalculated and the required probabilistic mean value of stress in the structural members is defined taking into account the required bars area. The structure with redefined cross section area is recalculated according to the algorithm described before. Iterations continue until the reliability conditions of the members considered are satisfied.

Table 1. Combinations of variable parameters of the system

Variant Angle of Dip a (Degrees) Framing Space Н (m) Overhanging Length L (m)

1 0 4 4

2 30 4 4

3 0 12 4

4 30 12 4

5 0 4 22

6 30 4 22

7 0 12 22

8 30 12 22

The condition load effect factor is defined as:

fP

v =1 (5)

Rl(1-Vrkr) '

where: ym - particular reliability factor for material strength; oV - mean square deviation of stresses in the structural member; [ir, - probabilistic mean value of stress in the structural members and probabilistic random mean value of strength of material (liquid limit), correspondingly; ka, kr - variation coefficients of two random values considered; Ry - normative value of design strength of structure's

material; - design value of stress in the structural member, derived from the deterministic structural design.

Whereas it is necessary to correct the condition load effect factor values, the simulation experiment for framed cantilever roofs over stadium stands has been made. The purpose of the experiment was to find the correct mathematical model connecting the condition load effect factor and the system's initial variable parameters such as: the overhanging length of cantilever girder (L), the base cantilever frame space (H) and the understressing ratio of the cross section (due to product mix grading and designing requirements) (Table 2).

Table2. Analysis of Generalized Parameters of Durability and Carrying Capacity Allowances

No. Diagram Safety Parameters Failure Probability Allowance (ßmax - ßmin)

ßmin ßmax Pf min Pf max д

1 4.47 7.01 0.824*10-4 0.773*10-8 2.54

2 4.49 6.98 0.772*10-4 0.259*10-7 2.49

3 4.52 7.12 0.835*10-4 0.528*10-8 2.6

4 4.89 7.48 0.568*10-6 0.156 *10-8 2.59

5 5.01 7.81 0.986*10-6 0.257*10-9 2.8

6 3.57 5.72 0.378*10-4 0.956*10-8 2.15

7 3.22 5.03 0.267*10-4 0.887*10-6 1.81

8 3.08 5.01 0.399*10-4 0.892*10-6 1.93

The relationship of the condition load effect factor, the overhanging length and the framing space takes the form of the equation:

yc = 0.9969 + 0.00191*H + 0.00295*L - 0.001025*H*L, (6)

where H - base frame space (m); L - overhanging length (m).

The application of the above mentioned estimations is quite difficult due to the certain mathematical complexity in use. For this reason in design practice these techniques are difficult to implement. It is therefore suggested to make integrated assessment of reliability and durability according to safety parameters spread assessment (failure range) p for upper and lower limits of the system reliability.

3.4 Discussion

For constructions of vertical cylindrical tanks on the basis of numerical simulation, the values of aerodynamic coefficients for wind influence on the roof of a vertical cylindrical reservoir in the form of a sagging shallow shell, both separately standing and located in the group, were obtained and experimentally confirmed. The testing of models on standard tanks with a convex spherical roof confirmed their adequacy and good conformation with the norms of a number of countries. However, further dissemination of the results to other reservoirs is needed, which is the task of further research.

For the design of a rigid bus the theoretical and experimental results obtained allowed us to justify the rational parameters of devices for damping the oscillations for the first time. Recommendations for their use are given in the regulatory documents of a number of countries [20, 21], but they do not contain any specific recommendations for design. Theoretically, the results obtained are confirmed by studies for systems of one mass [38]. At the same time, it is planned to expand the field of application of the results obtained, including for beam systems with a different cross-section.

The results of studies of the reliability of canopy structures above the tribunes of the cantilevered frame with through cross-section made it possible to propose for the design practice new values of the operating conditions coefficient yd for the elements of compressed chords that were absent in the standards [34-36] and provide, the most rational way the required level of reliability of this design with increased responsibility. In this regard, further research requires the question of rethinking the values of the reliability coefficients for the responsibility of the construction, the structure of which is rather complicated and contradictory.

4. Conclusions

1. The specified values of wind pressure aerodynamic coefficients for four reservoirs have been obtained by simulation modeling. It is to provide the specified assessment of the strain-stress state analysis of the structures compared to National Building Codes and Eurocodes applied nowadays.

2. On the grounds of theoretical and experimental research a new method of bending vibrations damping of rigid bar structures has been developed - "a thread-based damper". It allows to reduce vibration amplitudes in subresonance mode much simpler compared to the common compatibles. The rational parameters of the damper under consideration have been obtained

3. For the first time, on the grounds of the failure analysis of the steel framed and cantilever roofs over stadium stands it has been suggested the structural design algorithm taking into account the geometrical and structural non-linear conditions of the system. The algorithm provides the required reliability level for critical structures.

References

1. Gosstroy SSSR. SNiP II-6-74. Nagruzki i vozdeystviya [Building regulations II-6-74. Loads and effects]. Moscow: Stroyizdat, 1976. 58 p. (rus)

2. Gosstroy SSSR. SNiP 2.01.07-85. Nagruzki i vozdeystviya [Building regulations 2.01.07-85. Loads and effects]. Moscow: Stroyizdat, 1988. 36 p. (rus)

3. Nagruzki i vozdeystviya. Aktualizirovannaya redaktsiya SNiP 2.01.07-85*: SP 20.13330.2011 [Loads and effects. Updated version of Building regulations 2.01.07-85*: Set of rules 20.13330.2011]. Moscow: Gosstandart, 2011. 80 p. (rus)

4. Holmes J.D. Wind Loading of Structures. London and New

Литература

1. Госстрой СССР. СНиП II-6-74. Нагрузки и воздействия. М: Стройиздат, 1976. 58 с.

2. Госстрой СССР. СНиП 2.01.07-85. Нагрузки и воздействия. М: Стройиздат, 1988. 36 с.

3. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*: СП 20.13330.2011. М: Госстандарт, 2011. 80 с.

4. Holmes J.D. Wind Loading of Structures. London and New York: Taylor & Francis, 2007. 433 p.

5. Поддаева О.И., Кубенин А.С., Чурин П.С. Архитектурно-строительная аэродинамика. M.: Изд-во МИСИ - МГСУ,

York: Taylor & Francis, 2007. 433 p.

5. Poddaeva O.I., Kubenin A.S., Churin P.S. Arhitekturno-stroitelnaya aerodinamika [Architectural and construction aerodynamics]. Moscow: Izdatelstvo MISI - MGSU, 2015. 88 p. (rus)

6. Kondrov Ya.V., Pripadchev A.D, Gorbunov A.A. Aerodinamika zhylykh i promyshlennykh ob"ektov s vysokoy parusnost'yu [Aerodynamics of residential and industrial facilities with high windage]. Materialy Vserossiyskoy nauchno-metodicheskoy konferentsii (Universitetskiy kompleks kak regionally tsentr obrazovaniya, nauki I kul'tury) [Proceedings of conference]. Orenburg: Izdatelstvo OGU, 2017. Pp. 116-119 (rus)

7. Gorokhov Ye.V., Kuznetsov S.G. Eksperimentalnyie metodyi opredeleniya vetrovyih nagruzok na zdaniya i sooruzheniya [Experimental methods of determination of the wind loading on building and structures]. Donetsk: Nord-Press, 2009. 169 p. (rus)

8. Kinash R.I., Kopyilov A.E. Issledovanie aerodinamicheskih parametrov sistemyi iz dvuh krugovyih tsilindrov [Investigation of aerodynamic parameters of a system of two circular cylinders]. Vestnik Donbasskoy natsionalnoy akademiya stroitelstva i arhitekturyi. 2007. No. 6(68). Pp. 32-40. (rus)

9. Uematsu Y., Koo C. Wind-tunnel study of wind loads on circular cylindrical structures. Journal of Wind Engineering.

2008. No. 33. Pp. 17-25. (jap)

10. Zhao Y. Wind loads on large cylindrical open-topped tanks in group. Journal of Thin-Walled Structures. 2014. No. 78. Pp. 108-120.

11. Zhang Y. Comparison of microburst-wind loads on low-rise structures of various geometric shapes. Journal of Wind Engineering and Industrial Aerodynamics. 2014. No. 133. Pp. 181-190.

12. Zhang Y. Study of microburst-like wind and its loading effects on structures using impinging-jet and cooling-source approaches [Online]. Syst. requirements: AdobeAcrobatReader. URL: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4194&co ntext=etd (date of reference: 15.06.2017).

13. Eremeev P.G. Prostranstvennye tonkolistovye metallicheskie konstruktsii pokryitiy. Nauchnoe izdanie [Dimensional metal thin sheet constructions of coverages. Scientific edition]. Moscow: Izdatelstvo ASV, 2006. 560 p. (rus)

14. Eremeev P.G. Sovremennyie stalnyie konstruktsii bolsheproletnyih pokryitiy unikalnyih zdaniy i sooruzheniy [Modern steel constructions of long-span coverages of unique building and structures]. Moscow: Izdatelstvo ASV,

2009. 336 p. (rus)

15. Michalski A., Gawenat B., Gelenne Ph., Haug E. Computational wind engineering of large umbrella structures. Journal of Wind Engineering and Industrial Aerodynamics. 2015. Vol. 144. Pp. 96-107.

16. Okaze T., Takano Y., Mochida A., Tominaga Y. Development of a new k-£ model to reproduce the aerodynamic effects of snow particles on a flow field. Journal of Wind Engineering and Industrial Aerodynamics.

2015. Vol. 144. Pp. 118-124.

17. Togbenou K., Li Y., Chen N., Liao H. An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum. Journal of Wind Engineering and Industrial Aerodynamics.

2016. Vol. 151. Pp. 48-59.

18. Ndione J., Yoshino H., Mochida A. New Method of Coupling Multizone and CFD for Building Simulation. Journal of Asian Architecture and Building Engineering. 2008. Vol. 7. No. 1. Pp. 125-129.

19. Derzhavny'j Komitet Ukrayiny' po nafty' i gazu. Proektuvannya skladiv nafty' i naftoproduktiv z ty'skom

2015. 88 с.

6. Кондров Я.В., Припадчев А.Д, Горбунов А.А. Аэродинамика жилых и промышленных объектов с высокой парусностью // Материалы Всероссийской научно-методической конференции (Университетский комплекс как региональный центр образования, науки и культуры). Оренбург: Изд-во ОГУ, 2017. С. 116-119.

7. Горохов Е.В., Кузнецов С.Г. Экспериментальные методы определения ветровых нагрузок на здания и сооружения. Донецк: Норд-Пресс, 2009. 169 с.

8. Кинаш Р.И., ^пылов А.Е. Исследование аэродинамических параметров системы из двух круговых цилиндров // Вестник Донбасской национальной академии строительства и архитектуры.

2007. № 6(68). С. 32-40.

9. Uematsu Y., Koo C. Wind-tunnel study of wind loads on circular cylindrical structures // Journal of Wind Engineering. 2008. № 33. Pp. 17-25. (jap)

10. Zhao Y. Wind loads on large cylindrical open-topped tanks in group // Journal of Thin-Walled Structures. 2014. № 78. Pp. 108-120.

11. Zhang Y. Comparison of microburst-wind loads on low-rise structures of various geometric shapes // Journal of Wind Engineering and Industrial Aerodynamics. 2014. № 133. Pp. 181-190.

12. Zhang Y. Study of microburst-like wind and its loading effects on structures using impinging-jet and cooling-source approaches [Электронный ресурс]. Систем. требования: AdobeAcrobatReader. URL: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4194&co ntext=etd (дата обращения: 15.06.2017).

13. Еремеев П.Г. Пространственные тонколистовые металлические конструкции покрытий: Научное издание. М.: Изд-во АСВ, 2006. 560 с.

14. Еремеев П.Г. Современные стальные конструкции большепролетных покрытий уникальных зданий и сооружений. М.: Изд-во АСВ, 2009. 336 с.

15. Michalski A., Gawenat B., Gelenne Ph., Haug E. Computational wind engineering of large umbrella structures // Journal of Wind Engineering and Industrial Aerodynamics. 2015. Vol. 144. Pp. 96-107.

16. Okaze T., Takano Y., Mochida A., Tominaga Y. Development of a new k-£ model to reproduce the aerodynamic effects of snow particles on a flow field // Journal of Wind Engineering and Industrial Aerodynamics.

2015. Vol. 144. Pp. 118-124.

17. Togbenou K., Li Y., Chen N., Liao H. An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum // Journal of Wind Engineering and Industrial Aerodynamics.

2016. Vol. 151. Pp. 48-59.

18. Ndione J., Yoshino H., Mochida A. New Method of Coupling Multizone and CFD for Building Simulation // Journal of Asian Architecture and Building Engineering.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2008. Vol. 7. № 1. Pp. 125-129.

19. Державний комтет УкраТни по нафт i газу. Проектування складiв нафти i нафтопродую1в з тиском насичених парiв не вище 93,3 кПа ВБН В 2.2-58.1-94. КиТв, 1994. 150 с.

20. СОУ 40.1-32385941-38:2011 Загальн техжчж вимоги до проектування та експлуатацп конструкцш жорсткоТ ошиновки у вщкритих розподтьчих установках напругою вщ 110 до 750 кВ. КиТв: Об'еднання енергетичних пщприемств «ГР1ФРЕ», 2011. 21 с.

21. СОУ 40.1-32385941-39:2011 Проектування жорсткоТ ошиновки у вщкритих розподтьчих установках напругою вщ 110 до 750 кВ. КиТв: Об'еднання енергетичних пщприемств «ГР1ФРЕ», 2011. 84 с.

22. Ржаницын А.Р. Теория расчета строительных конструкций на надежность. М.: Стройиздат, 1978.

nasy'cheny'x pariv ne vy'shhe 93,3 kPa VBN V 2.2-58.194 [Designing of oil and oil products with a pressure of saturated vapor no higher than 93.3 kPa VBN V 2.2-58.194]. Kiev, 1994. 150 p. (ukr)

20. SOU 40.1-32385941-38:2011 Zagal'ni texnichni vy'mogy' do proektuvannya ta ekspluataciyi konstrukcij zhorstkoyi oshy'novky' u vidkry'ty'x rozpodil'chy'x ustanovkax naprugoyu vid 110 do 750kv [General technical requirements for the design and operation of hardwall structures in open-circuit switching installations from 110 to 750 kV]. Kyiv: Union of Power Enterprises "GRIFRE", 2011. 21 p. (ukr)

21. SOU 40.1-32385941-39:2011 Proektuvannya zhorstkoyi oshy'novky' u vidkry'ty'x rozpodil'chy'x ustanovkax naprugoyu vid 110 do 750kV [Designing of a hard bushing in open distribution installations with voltage from 110 to 750 kV].Kyiv: Union of Power Enterprises "GRIFRE", 2011. 84 p. (ukr)

22. Rzhanitsyin A.R. Teoriya raschyota stroitelnyih konstruktsiy na nadyozhnost [The theory of calculating building structures for reliability]. Moscow: Stroyizdat, 1978. 239 p. (rus)

23. Bolotin V.V. Metodyi teorii veroyatnostey i teorii nadYozhnosti v raschYotah sooruzheniy [Methods of probability theory and reliability theory in the calculations of structures]. Moscow: Stroyizdat, 1981. 351 p. (rus)

24. Rayzer V.D. Teoriya nadezhnosti sooruzheniy. Nauchnoe izdanie [Theory reliability of structures. Scientific edition]. Moscow: Izdatelstvo ASV, 2010. 384 p. (rus)

25. Pichugin S.F. Nadyozhnost stalnyih konstruktsiy proizvodstvennyih zdaniy. [Reliability of inductrial building steel structures]. Moscow: Izdatelstvo ASV, 2011. 456 p. (rus)

26. Perelmuter A.V. Izbrannye problemy nadezhnosti i bezopasnosti stroitelnykh konstruktsiy. Nauchnoe izdanie [Selected problems of reliability and safety of building structures. Scientific edition]. Moscow: Izdatelstvo ASV, 2007. 254 p. (rus)

27. Timashev S.A. Nadezhnost bolshih mehanicheskih sistem [Reliability of large mechanical systems]. Moscow: Nauka, 1982. 184 p. (rus)

28. Ayzen A.M., Rotshteyn D.M. K veroyatnostnoy otsenke snegovoy nagruzki [To the probabilistic estimation of the snow load]. Stroitelnaya mehanika i raschet sooruzheniy. 1981. No. 5. Pp. 7-9. (rus)

29. 29. Gorokhov Ye., Mushchanov V., Pryadko Iu. Ensuring the required level of reliability during the design stage of latticed shells with a large opening. Journal of Civil Engineering and Management. 2015. Vol. 21. No. 3. Pp. 282-289.

30. Gorokhov Ye., Mushchanov V., Pryadko Iu. Reliability provision of rod shells of steady roofs over stadium stands at stage of design work. Procedia Engineering. 2013. Vol. 57. Pp. 353-363.

31. Mushchanov V., Gorokhov Ye., Vardanyan A., Kashchenko M., Nemova D. Particular futures of calculation and design of long-span membrane roofs. Procedia Engineering. 2015. Vol. 117. Pp. 990-1000.

32. Priadko I.N., Mushchanov V.P., Bartolo H., Vatin N.I., Rudnieva I.N. Improved numerical methods in reliability analysis of suspension roof joints. Magazine of Civil Engineering. 2016. No. 5(65). Pp. 27-41.

33. Krejsa M., Janas P., Krejsa V., Application of the DOProC method in solving reliability problems. Applied Mechanics and Materials. 2016. No. 821. Pp. 717-724.

34. DBN V 1.2-14-2009. Zagal'ni pry'ncy'py' zabezpechennya nadijnosti ta konstrukty'vnoyi bezpeky' budivel', sporud, budivel'ny'x konstrukcij ta osnov [General principles of maintenance of reliability and constructive safety of buildings, structures, building constructions and bases].

239 с.

23. Болотин В.В. Методы теории вероятностей и теории надежности в расчетах сооружений. М.: Стройиздат, 1981. 351 с.

24. Райзер В.Д. Теория надежности сооружений. Научное издание. М.: Изд-во АСВ, 2010. 384 с.

25. Пичугин С.Ф. Надежность стальных конструкций производственных зданий: Монография. М.: Изд-во АСВ, 2011. 456 с.

26. Перельмутер А.В. Избранные проблемы надежности и безопасности строительных конструкций. Научное издание. М.: Изд-во АСВ, 2007. 254 с.

27. Тимашев С.А. Надежность больших механических систем. М.: Наука, 1982. 184 с.

28. Айзен А.М., Ротштейн Д.М. К вероятностной оценке снеговой нагрузки // Строительная механика и расчет сооружений. 1981. № 5. С. 7-9.

29. Gorokhov Ye., Mushchanov V., Pryadko Iu. Ensuring the required level of reliability during the design stage of latticed shells with a large opening // Journal of Civil Engineering and Management. 2015. Vol. 21. № 3. Pp. 282-289.

30. Gorokhov Ye., Mushchanov V., Pryadko Iu. Reliability provision of rod shells of steady roofs over stadium stands at stage of design work // Procedia Engineering. 2013. Vol. 57. Pp. 353-363.

31. Mushchanov V., Gorokhov Ye., Vardanyan A., Kashchenko M., Nemova D. Particular futures of calculation and design of long-span membrane roofs // Procedia Engineering. 2015. Vol. 117. Pp. 990-1000.

32. Прядко Ю.Н., Мущанов В.Ф., Бартоло Х., Ватин Н.И., Руднева И.Н. Усовершенствование численных методов расчета надежности узлов висячих покрытий // Инженерно-строительный журнал. 2016. № 5(65). С. 27-41.

33. Krejsa M., Janas P., Krejsa V., Application of the DOProC method in solving reliability problems // Applied Mechanics and Materials. 2016. № 821. Pp. 717-724.

34. ДБН В 1.2-14-2009. Загальн принципи забезпечення надмност та конструктивно! безпеки будiвель, споруд, будiвельних конструкцм та основ. К.: МЫрепонбуд Укра'1'ни, 2009. 49 с.

35. ГОСТ Р 54257-2010. Надежность строительных конструкций и оснований. Основные положения и требования. М.: Стандартинформ, 2011. 20 с.

36. Eurocode. Basis of structural design: EN 1990:2002+A1. Brussels: Management Centre, 2002. 116 p.

37. Mushchanov V.P., Zubenko G.V., Moskalenko I.V. Numerical simulation of wind pressure on a vertical cylindrical tank surface // Metal constructions. 2013. № 3. Pp. 173-182.

38. Денисов Е.В., Фоменко С.А. Особенности применения конструкций жесткой ошиновки в открытых распределительных устройствах // Металлические конструкции. 2011. Т. 17. № 1. С. 13-23.

Kiev: Minregionbud Ukrayiny', 2009. 49 p. (ukr)

35. Russian State Standard GOST R 54257-2010. Nadyozhnost stroitelnyih konstruktsiy i osnovaniy. Osnovnyie polozheniya i trebovaniya [Reliability of building structures and foundations. Basic provisions and requirements]. Moscow: Standartinform, 2011. 20 p. (rus)

36. Eurocode. Basis of structural design: EN 1990:2002+A1. Brussels: Management Centre, 2002. 116 p.

37. Mushchanov V.P., Zubenko G.V., Moskalenko I.V. Numerical simulation of wind pressure on a vertical cylindrical tank surface. Metal Constructions. 2013. No. 3. Pp. 173-182.

38. Denisov E.V., Fomenko S.A. Osobennosti primeneniya konstruktsiy zhestkoy oshinovki v otkrytykh raspredelitel'nykh ustroystvakh [Features of application of rigid bus designs in outdoor switchgears]. Metal Constructions. 2011. Vol. 17. No. 1. Pp. 13-23.

Volodymyr Mushchanov,

+380503680804; volodymyr.mushchanov@mail.ru

Anatoly Orzhekhovskii,

+380958785180; aorzhehovskiy@bk.ru

Anna Zubenko,

+380508159347; zubienko_ anna@mail. ru Serafim Fomenko,

+380503680804; fomenko_sa@mail.ru

Владимир Филиппович Мущанов, +380503680804;

эл. почта: volodymyr.mushchanov@mail.ru

Анатолий Николаевич Оржеховский,

+380958785180;

эл. почта: aorzhehovskiy@bk.ru

Анна Васильевна Зубенко, +380508159347;

эл. почта: zubienko_anna@mail.ru

Серафим Александрович Фоменко, +380503680804; эл. почта: fomenko_sa@mail.ru

© Mushchanov V.P.,Orzhekhovskii A.N.,Zubenko A.V.,Fomenko S.A.,2018

i Надоели баннеры? Вы всегда можете отключить рекламу.