Научная статья на тему 'REACTION OF CHLOROANHYDRIDES OF CYCLOALKANECARBOXILIC ACIDS WITH SOME ALLYLIC CHLORIDES'

REACTION OF CHLOROANHYDRIDES OF CYCLOALKANECARBOXILIC ACIDS WITH SOME ALLYLIC CHLORIDES Текст научной статьи по специальности «Химические науки»

CC BY
64
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Kimya Problemleri
Scopus
CAS
Область наук
Ключевые слова
CHLOROANHYDRIDES OF CYCLOALKANE CARBOXYLIC ACIDS / 3-CHLOROPRENE / 2-METHYL-3-CHLOROPROPEN / 2 3-DICHLOROPROPENE / 3 3-DICHLOROPROPENE / 2- AND 2 4-SUBSTITUENTS FURANS / 1-R-3 4-DICHLORO-2-BUTENE-1-ONES / 1 -R-3 4 4-TRICHLOR-1-BUTANONES

Аннотация научной статьи по химическим наукам, автор научной работы — Guseinova V.A., Zaidova G.A., Mammadov E.I.

The reactions of electrophilic addition of cycloalkane carboxylic acid chlorides with allyl chlorides were studied. It was found, that depending on the chloride structures, 2- and 2,4-substituted furans, 1-R-3,4-dichloro-2-butene-1-ones and 1-R-3,4,4-trichloro-1-butanones were obtained.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «REACTION OF CHLOROANHYDRIDES OF CYCLOALKANECARBOXILIC ACIDS WITH SOME ALLYLIC CHLORIDES»

CHEMICAL PROBLEMS 2021 no. 3 (19) ISSN 2221-8688

179

UDC 547.057.2/.4.51.7/.8

REACTION OF CHLOROANHYDRIDES OF CYCLOALKANECARBOXILIC ACIDS

WITH SOME ALLYLIC CHLORIDES

V.A. Guseinova, G.A. Zaidova, E.I. Mammadov

Azerbaijan Technical University, H. JavidAve. 25, AZ1073, Baku, Azerbaijan, e-mail: huseynova.vaqifa@mail.ru

Received 08.09.2021 Accepted 23.11.2021

Abstract: The reactions of electrophilic addition of cycloalkane carboxylic acid chlorides with allyl chlorides were studied. It was found, that depending on the chloride structures, 2- and 2,4-substituted furans, 1-R-3,4-dichloro-2-butene-1-ones and 1-R-3,4,4-trichloro-1-butanones were obtained.

Keywords: chloroanhydrides of cycloalkane carboxylic acids; 3-chloroprene; 2-methyl-3-chloropropen; 2,3-dichloropropene; 3,3-dichloropropene; 2- and 2,4-substituents furans; 1-R-3,4-dichloro-2-butene-1-ones; 1 -R-3,4,4-trichlor-1-butanones. DOI: 10.32737/2221-8688-2021-3-179-185

Introduction

Five-membered heterocyclic compounds with one or two heteroatoms are often found among natural compounds, and therefore, the development of new simple methods for the synthesis of such structures is one of the important problems of modern organic chemistry [1-3]. 1,4-difunctional compounds, most especially, 1,4-haloketones, were successfully used to construct a five-membered heterocycle with one or two heteroatoms [4-10].

As is known, the electrophilic addition of chloroanhydrides of carboxylic acids to 3-chloro-

\ /C1 R'

Ia-h IIa,b

and 2-methyl-3-chloropropenes in the presence of AlCl3 occurs regiospecifically, various products were obtained in keeping with Markovnikov's rule depending on the structure of carboxylic acids. So, when taking chloroacetic-, chloropropionic-and chlorobutyric anhydrides, the mixtures of saturated and unsaturated chloroketones were mainly obtained, but when taking chlorocarboxylic anhydrides which have bulky radicals (>C4), the main reaction products were 2-and 2,4-substituted furan derivatives [7,11].

R= C-C5H9 (a); C-C6H11 (b); 1-Cl-c-C5Hg (c); 1-Cl-c-C6H10 (d); 4-Cl-c-C6H10 (e); 2-Me-c-C6H10 (f); 2-Me-4-Cl-c-C6H (g); 1,4-Ch-c-C6H9 (h).

www.chemprob.org

CHEMICAL PROBLEMS 2021 no. 3 (19)

R=H (IIa,IIIa-h); CH3 (IIb, IVa-h).

The structures of furans III and IV have been confirmed by IR and PMR spectroscopic data.

In the Proton MR spectra of compounds III, the signals of the protons of the furan ring appear

in the form of three characteristic multiplets in the 5.72-7.17 ppm region; and in the spectra of furans IV, two protons of the furan ring correspond to two singlet signals in the 5.70-5, 82 and 6.93-7.05 ppm regions (table 1).

Table 1. PMR spectra of furans III, IV

Compound 5, m.d.

R (H; KCCB, J, Hz) R1 H3, 1H H5, 1H

IIIb 1,08-2,1m (10H, cycle); 2,58m (1H, cycle) 5.98 m (1H) 5,72 m 7,08 m

IIId 1,1-2,0m (10H, cycle) 6.08 m (1H) 5,80 m 7,10 m

IIIf 0,87d (3H,( >c_ch3 , j=6); 1,0-2,2m (10H, cycle). 6.12 m (1H) 5,85 m 7,15 m

IIIg 0,9g (3H,( >c_CH3 , J=6,2); 1,2-2,2m (9H, cycle); 4,12m (1H, >CHCl). 6.15 m (1H) 5,87 m 7,17 m

IVb 1,1-2,3m (10H, cycle); 2,61m (1H, cycle). 1.94 c (3H, CH3) 5,74 c 7,04 c

IVe 1,2-2,3m (10H, cycle); 4,08m (1H, >CHCl). 1.98 c (3H, CH3) 5,70 c 6,93 c

IVf 0,89d (3H,( >c_ch3 , j=6); 1,0-2,2m (10H, cycle). 2.0 c (3H, CH3) 5,78 br.s 7,02 c

IVg 0,85d (3H,( >c_CH3, j=6); 1,2-2,3m (9H, cycle); 4,05m (1H, >CHCl). 1.98 c (3H, CH3) 5,82 c 7,05 c

The IR spectra of compounds III, IV have the following absorption bands specific to the furan ring: (cm-1) 3110-3130-vch; 1590-1596 and 1508-1510-vc=c, vc = c; 870-890-sch.

Dichloroethane and methylene chloride were the most suitable solvents.

The highest yields of furans III,IV were achieved in the following ratio of the initial

components LILAlCb=1:L1:L05.

The reaction temperature significantly depends on the structure of allyl chlorides[9].

We used 2,3-dichloropropene (V) and 3,3-dichloropropene (VI) to determine the possibility of heterocyclization of 1,4-chloroketones in five-membered heterocyclic compounds as allylic chlorides.

R-above-mentioned radicals

As compared with chloride lib, there was a chlorine atom with -J-inductive effect instead of the methyl group in 2,3-dichloropropene. In contrast to chlorides Ila and lib, the addition of ChA CACA to 2,3-dichloropropene (V) in the

presence of AlCl3 occurs at a higher temperature (+20^+25°C), a violent evolution of hydrogen chloride was observed directly during the reaction and 1- R-3,4-dichloro-2-buten-1-ones (Vlla-h) is obtained with 72-83% yield (table 2).

Table 2. Properties of 1-R-3,4-dichloro-2-buten-1-ones (VIIa-h).

Compound R тboi1ing, C (mmHg) < d? Yield, %

VIIa C-C5H9 108-110(1) 1.5045 1.1986 76

VIIb C-C6H11 125-127(1) 1.5065 1.1724 78

VIIc 1-Cl-C-C5H8 149-153(4) 1.5205 1.3030 73

VIId 1-Cl-c-C6H10 170-174(5) 1.5245 1.2877 72

VIIe 4-Cl-c-C6H10 161-163(2) 1.5234 12864 83

VIIf 2-Me-c-C6H10 135-138(2) 1.5045 1.1671 83

VIIg 2-Me-4-Cl-c-C6H9 170-173(3) 1.5220 1.2805 80

VIIh 1,4-Cl2-C-C6H9 175-182(3) 1.5410 1.3886 73

The structure of ketones VII was confirmed by IR and PMR spectroscopy (table 3). Table 3. IR and PMR spectra of compounds VIIb,d-f

Compound R PMR spectrum, 5, m. d. (KCCB, J, Hz) IR spectrum (cm-1)

R -CH2-Cl, 2H br.s -CH= 1H, br.s

VIIb C-C6H11 0.9-2.2m (10H, cycle); 2.62m (1H, cycle) 4.72 6.53 3118,3075(Vch);1730,1705,1684 (Vc=o); 1618(Vc=c).

VIId 1-Cl-c- C6H10 1.0-2.1m (10H, cycle) 4.74 6.60 31 10,3070(Vch);1725,1700,1680 (Vc=o); 1616(Vc=c).

VIIe 4-Cl-c- C6H10 1.2-2.1m(8H, cycle); 2.66m (1H, >CHCl cycle); 4.04m (1H, >CHCl cycle). 4.75 6.70 31 10,3080(Vch);1734,1702,1691 (Vc=o); 1610(Vc=c).

VIIf 2-Me-C-C6H10 0.88d (3H,( >c_CH3 , J=6); 1.1-2.4m (10H, cycle) 4.64 6.60 3 105,3040(Vch);1710,1694,1680 (vc=o); 1608(Vc=c).

As a continuation of the study, 3,3-dichloropropene (VI) was taken. Chloroanhydrides of Ib,e were added to chloride VI according to Markovnikov's rule at a temperature of -10^-15oC in the presence of

A1C13 and the resulting compounds 1-R-3,4,4-trichloro-1-butanones (VIIIb,e) turned out to be stable substances: they did not eliminate HCl and do not cyclize to furan derivatives during distillation.

Experimental part

IR and PMR spectra were recorded on a "UR-20" spectrometer in the form of a thin layer and on a Briker AM-360 instrument (360 MHz), respectively, HMDS or TMS was chosen as an internal standard.

1.Obtaining the initial allylic chlorides. 3-Chloropropene (IIa) and 2-methyl-3-chloropropene (IIb) among initial allylic chlorides were in the form of commercial preparations.

2,3-Dichloropropene (V) has been obtained by dehydrochlorination of 1,2,3-trichloropropane with KOH in absolute alcohol [11]. Physicochemical constants of dichloride V: tboiiing-93-95°C; nf-1.4600; df -1.2084, yield 87%.

3,3-dichloropropene(VI) was obtained from acrolein and PCb according to the known method illustrated in [12]: t boiling -83-84°C, n|f-1.4462; cii° -1.1689.

2. Synthesis of chloroanhydrides of

cycloalkanecarboxylic acids

2.1. Obtaining chloroanhydrides Ia,b,e-g. 2.2. Obtaining chloroanhydrides Ic,d,h. The

appropriaste 1 -chloro-substituted

chloroanhydrides of cycloalkanecarboxylic acids (Ic,d,h) were obtained by chlorination of chloroanhydrides Ia,b,e.

The general technique for obtaining chloroanhydrides Ic,d,h. A weighed portion of the chloroanhydride (Ia,b,e) was placed in a specially prepared chlorinator and heated up to a temperature of 60-70°C. A weak flow of chlorine obtained by the interaction of concentrated hydrochloric acid with KMnO4 was passed through the chlorinator. The flow of chlorine was stopped when the weight of the chlorinator with the content is 5-10% less than theoretical. After repeated distillation, a-chloro-substituted chloroanhydrides Ic, d, h have been obtained (table 4).

Table 4. Some characteristics of chloroanhydrides Ia-h.

Compound Tboiling, " C (mmHg) < d? Yield, %

Ia 158-160 1.4650 1.1034 92

Ib 181-183 1.4760 1.0945 94

Ic 75-80 (15) 1.4920 1.2931 76

Id 108-112(15) 1.4960 1.2527 80

Ie 105-108(15) 1.4955 1.2498 90

If 78-80(15) 1.4766 1.0969 86

Ig 138-140(15) 1.5164 1.3595 88

Ih 130-135(20) 1.5150 1.3860 78

3. Acylation of 3-chloro— and 2-methyl-3-chloropropenes (IIa,b).

3.1. Synthesis of furans IIIa-h. First 34.7g (0.26mol) of AICI3 and then 36.6g (0.25mol) of chloroanhydride of cyclohexanecarboxylic acid (lb) were added to 100 ml of dry dichloroethane at -20°C. After that, 20.7g (0.27mol) of 3-chloropropene were gently added at a temperature of -15^-20°C. The reaction mixture was stirred until achieving the room temperature and decomposed with 5% HCl, the organic layer was separated, and the aqueous layer was extracted with ether (2*100 mL). The combined organic

4. Synthesis of 1-R-3,4-dichloro-2-buten-1-ones (Vlla-h). 0.1mol of chloroanhydride of cycloalkanecarboxylic acid (Ia-h) was added dropwise with stirring to a suspension consisting of 14.7g (0.11mol) of aluminum chloride and 70 ml of dichloroethane, cooled down to -15°C. Then the temperature was raised up to +20° C and 13.3g (0.12mol) of 2,3-dichloropropene were added dropwise. In this case, a violent evolution of hydrogen chloride occured. The reaction

layers were washed with water, then with 5% NaHCO3 solution and dried over CaCh. The solvents were removed, and the residue is distilled in the vacuum, as a result of that 2-cyclohexylfuran was obtained (Illb, table 5). Furans IIIa,c-h were obtained by the analojical method, the characteristics of which are shown in Table 5.

3.2. Synthesis of furans IVa-h. According to the above method, chloroanhydrides Ia-h were condensed with 2-methyl-3-chloropropene (IIb) at a temperature of -20^-25°C; and 2-cycloalkyl-4-methylfurans obtained (IVa-h, Table 5).

mixture was stirred for another 0.5 hour at a temperature of +20^+25°C until stopping the evolution of hydrogen chloride and poured onto ice acidified with HCl. The organic layer was separated, the aqueous layer extracted with ether (2*100 ml); the combined organic extracts were washed with water, then with 5% NaHCO3 solution and dried over CaCl2. The solvents were removed, and the residue was distilled to obtain 1-R-3,4-dichloro-2-buten-1-ones (VIIa-h), the

Table 5. Some characteristics of furans IIIa-h, IVa-h.

Compound Tboiling, " C (mmHg) < d? Yield, %

IIIa 47-49 (5) 1.4860 0.9922 86

IIIb 55-58 (5) 1.4870 0.9908 91

IIIc 88-90 (10) 1.4970 1.1290 56

IIId 108-110(5) 1.5105 1.1328 64

IIIe 102-105(5) 1.5095 1.1261 68

IIIf 82-85(5) 1.4825 0.9666 66

IIIg 110-112(4) 1.4920 1.0507 56

IIIh 119-121(5) 1.5180 1.2355 55

IVa 63-65 (15) 1.4840 0.9812 84

IVb 72-74 (15) 1.4855 0.9626 92

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

IVc 102-104 (5) 1.4980 1.1078 62

IVd 125-127(10) 1.5075 1.1098 66

IVe 135-137(25) 1.5060 1.1033 70

IVf 90-92 (5) 1.4815 0.9605 67

IVg 97-99(2) 1.4902 1.0582 61

IVh 131-133(3) 1.5165 1.2069 59

characteristics and yields of compounds are shown in Table 2.

5. Obtaining of 1-R-3,4,4-trichloro-1-butanones (VIIIb,e). The acylation of 3,3-dichloropropene with chloroanhydride of cyclohexane- and 4-chlorocyclohexanecarboxylic acids was carried out according to the 3.1 method at a temperature of -10^-15°C in the presence of AlCl3 and the trichlorobutanones VIIIb,e were obtained by distillation.

1-Cyclohexyl-3,4.4-trichloro-1-butanone

(VHIb): tboiiing.102-10573mm, n^-1,4865, dj11-1,2028. JK spectra (cm"1): 1705 (vc=o); 759,686 (ve-a). PMR spectra (S,m,d): 0,83-2,0 (11H,m),

2,42 (2н,m, eoeн2), 3,67 (lн,t, eнel), 6.02

(1H,m, CHCl2). Yield is 52%.

1-(4'-Chlorocyclohexyl)-3,4,4-trichloro-1-butanone(VIIIe): tboiiing.l 18-120/3mm,

nf 1,5030, dla 1,3164. IR spectra(cM_1): 1714(vc=o), 751,680(vc-ci). PMR spectra: 1,2-2,2(10H,m), 2,4(2H,m, eОeH2), 3,59(1H,t, eнel), 5,97(1H,m, CHCl2). Yield is 56%.

1. Joule J., Mills K. Chemistry of Heterocyclic

Compounds. Мoscow: Mir Publ., 2009, 728 P.

2. Yurovskaya M.A. Chemistry of Aromatic Heterocyclic Compounds. Мoscow: Binom Publ., 2015, 208 p.

3. Аnsari А., Ali А., Asif М. Review: biologically active pyrazole. New J. Chem., 2017, vol. 41, pp.16-41.

4. Ismailov V.M., Ibragimova G.G., Sadikhova N.N. Synthesis of functionally substituted derivatives of furan and resorcinol based on dimethyl 3-oxopentadioate. Zhurnal organicheskoi khimii. 2017, vol. 53, no. 6, pp. 933-935. (In Russian).

5. Kwiesien H., Wodnicka A. Five-Membered Ring Systems: Furans and Benzofurans. Progress in Heterosyslis Chemistry. 2020, no. 31, pp. 281-323.

6. Ismailov A.G., Mamedov E.I. Synthesis of furan derivatives by condensation of cycloalkanecarboxylic acid chlorides with allyl chloride. Zhurnal organicheskoi khimii. 1974, vol.10, no. 5, pp. 1129-1130. (In Russian).

7. Ibragimov I.I., Mamedov E.I., Ismayilov A.T., Aliev AG., Mekhtieva Sh.Z., Jafarov V.G., Belyaeva V.I. Chemistry of allylic type systems. II.Acylation of 3-bromo- and 2-methyl-1-propenes. Zhurnal organicheskoi

khimii. 1990, vol. 26, no. 8, pp.1648-1654. (In Russian).

8. Karayeva A.R. Synthesis and conversion of pyrazole derivatives. Chemical Problems. 2019, no. 4, pp. 584-590.

9. Mammadov E., Mammadov A., Huseynova V., Zaidova Q., Gasimova F. Temperature Dependence of the Reaction of Elektrophilic Addition of Acyl Chlorides to Allyl Chloride. 6th International Conference: Thermophysisal and Mechanical Properties of Advanced Materials (Thermam 2019). Izmir. Turkey. 2224 september 2019, pp. 54-55.

10. Kapaeva A.R., Aliev A.G., Hajili R.A., Mamedov B.A. Synthesis and properties of 3-alkyl-1-methoxycarbonyl-5-dialkylaminomethylpyrazolines and their functional derivatives. Zhurnal organicheskoi khimii. 2018, vol. 88, no. 5, pp. 858-961. (In Russian).

11. Zaidova GA, Mammadov EI, Ismayilova SQ Study of oxidation products of 3-chlorine, 2-methyl-3-chlorine and 2,3-dichloropropenes. AzTU. Scientific works. 2019, no. 2, pp. 101-104. (In Azerbaijani).

12. Buhler K., Pearson D. Organic syntheses. Мoscow: Mir Publ., 1973, part 1, pp. 379380.

TSiKLOALKANKARBON TURgULARIXLORANHiDRiDLdRiNiN BdZi ALLiL TiPLi

XLORIDLdRLd REAKSiYASI

V.d. Huseynova, Z.d. Zaidova, E.i. Мэштэйоу

Azdrbaycan Texniki Universiteti, AZ1073 Baki, H.Cavidpr. 107; e-mail: huseynova.vaqifa@mail.ru

Tsikloalkankarbon tur§ulari xloranhidridldrin allil tipli xloridldrld elektrofil birld§md reaksiyalari tddqiq edilmi§dir. Mtidyydn olunmu§dur ki, xloridldrin qurulu§undan asili olaraq 2- vd 2,4-dvdzlifuranlar, 1-R-3,4-dixlor-2-buten-1-onlar vd 1-R-3,4,4-trixlor -1-butanonlar alinir.

Agar sozlsr: tsikloalkankarbon tur§ularmm xloranhidridldri; 3-xlorpropen; 2-metil-3-xlorpropen; 2,3-dixlorpropen; 3,3-dixlorpropen; 2- vd 2,4-dvdzlifuranlar; 1-R-3,4-dixlor-2-buten-1-onlar; 1-R-3,4,4-trixlor-1-butanonlar.

РЕАКЦИЯ ХЛОРАНГИДРИДОВ ЦИКЛОАЛКАНКАРБОНОВЫХ КИСЛОТ С НЕКОТОРЫМИ ХЛОРИДАМИ АЛЛИЛЬНОГО ТИПА

В.А. Гусейнова, Г.А. Заидова, Э.И. Мамедов

Азербайджанский Технический Университет, AZ1073 Баку, пр. Г. Джавида, 107; e-mail:huseynova.vaqifa@mail.ru

Исследованы реакции электрофильного присоединения хлорангидридов циклоалканкарбоновых кислот с хлоридами аллильного типа. Установлено, что в зависимости от структуры хлоридов получаются 2- и 2,4-замещенные фураны, 1^-3,4-дихлор-2-бутен-1-оны и 1-R-3,4.4-трихлор-1-бутаноны.

Ключевые слова: хлорангидриды циклоалканкарбоновых кислот; 3-хлорпропен; 2-метил-3-хлорпропен; 2,3-дихлорпропен; 3,3-дихлорпропен; 2- и 2,4-замещенные фураны; l-R-34-дихлор-2-бутен-1-оны; 1-R-3,4,4-трихлор-1-бутаноны.

i Надоели баннеры? Вы всегда можете отключить рекламу.