Научная статья на тему 'Разработка системы автоматического управления маршрутным движением беспилотного летательного аппарата в шахтных условиях'

Разработка системы автоматического управления маршрутным движением беспилотного летательного аппарата в шахтных условиях Текст научной статьи по специальности «Механика и машиностроение»

CC BY
195
75
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Уголь
Scopus
ВАК
CAS
GeoRef
Ключевые слова
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ / СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДВИЖЕНИЕМ / ШАХТНЫЕ УСЛОВИЯ / МОДЕЛИРОВАНИЕ / UNMANNED AERIAL VEHICLE / AUTOMATIC MOTION CONTROL SYSTEM / MINING CONDITIONS / MODELING

Аннотация научной статьи по механике и машиностроению, автор научной работы — Ким М. Л., Костеренко В. Н., Певзнер Л. Д., Ярыгин А. А.

Необходимость использования робототехнических средств для оценки поставарийного состояния горных выработок является первопричиной использования беспилотного летательного аппарата, предназначенного для доставки к месту аварии в шахте аппаратуры для измерения, визуализации и передачи данных об аварийной горной выработке. В шахтных условиях автономное движение беспилотного летательного аппарата по заданному маршруту обеспечивает система автоматического управления, результаты разработки которой представлены в статье. Показано, что система обеспечивает выбор рационального маршрута движения, отработку траекторного задания с достаточной точностью в ограниченном пространстве при наличии возмущений от шахтного потока воздуха.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

DESIGN AUTOMATIC CONTROL SYSTEM OF THE ROUTE MOVEMENT UNMANNED AERIAL VEHICLE IN MINE CONDITIONS

The need to use robotic tools to assess the post-accident state of mine workings is the primary reason for using an unmanned aerial vehicle to deliver equipment for measuring, visualizing and transmitting data to the site of a mine accident. In mines, the autonomous movement of an unmanned aerial vehicle along a given route is provided by an automatic control system, the development results of which are presented in the article. It is shown that the system provides the choice of a rational route of movement, the development of the trajectory task with sufficient accuracy in a limited space in the presence of disturbances from the mine air flow.

Текст научной работы на тему «Разработка системы автоматического управления маршрутным движением беспилотного летательного аппарата в шахтных условиях»

Оригинальная статья

УДК 622.86:778.35 © МЛ. Ким, В.Н. Костеренко, ЛД. Певзнер, А.А. Ярыгин, 2020

Разработка системы автоматического управления маршрутным движением беспилотного летательного аппарата в шахтных условиях

DOI: http://dx.doi.org/10.18796/0041-5790-2020-10-22-27 -

КИМ М.Л.

Главный технолог АО «СУЭК», 115054, г. Москва, Россия, e-mail: [email protected]

КОСТЕРЕНКО В.Н.

Начальник управления АО «СУЭК», 115054, г. Москва, Россия, e-mail: [email protected]

ПЕВЗНЕР Л.Д.

Доктор техн. наук, профессор кафедры «Автоматические системы» Института кибернетики РТУ-МИРЭА, 119571, г. Москва, Россия, e-mail: [email protected]

ЯРЫГИН А.А.

Научный сотрудник Физического факультета МГУ имени М.В. Ломоносова, 119991, г. Москва, Россия, e-mail: [email protected]

Необходимость использования робототехнических средств для оценки поставарийного состояния горных выработок является первопричиной использования беспилотного летательного аппарата, предназначенного для доставки к месту аварии в шахте аппаратуры для измерения, визуализации и передачи данных об аварийной горной выработке. В шахтных условиях автономное движение беспилотного летательного аппарата по заданному маршруту обеспечивает система автоматического управления, результаты разработки которой представлены в статье. Показано, что система обеспечивает выбор рационального маршрута движения, отработку траектор-ного задания с достаточной точностью в ограниченном пространстве при наличии возмущений от шахтного потока воздуха. Ключевые слова: беспилотный летательный аппарат, система автоматического управления движением, шахтные условия, моделирование. Для цитирования: Разработка системы автоматического управления маршрутным движением беспилотного летательного аппарата в шахтных условиях / М.Л. Ким, В.Н. Костеренко, Л.Д. Певзнер и др. // Уголь. 2020. № 10. С. 22-27. 001: 10.18796/0041-5790-2020-10-22-27.

ВВЕДЕНИЕ

Целесообразность создания системы автоматического управления движением беспилотного летательного аппарата в шахтных условиях [1, 2, 3, 4] определяется необходимостью получения информации о поставарийном состоянии горных выработок для принятия управленческих решений руководителем ликвидации аварии при реализации мероприятий по спасению людей и ликвидации ее последствий. В системе в качестве управляемого объекта используется модель четырехмоторного дрона с известными физическими характеристиками [5].

АНАЛИТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ

БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА

Аналитическая модель движения беспилотного летательного аппарата сформирована на основе расчетной схемы, представленной на рис. 1, в которой квадрокоптер рассматривается как твердое тело с определенными аэродинамическими свойствами и известными допущениями [6].

Описание модели движения твердого тела производится в системе отсчета Б, связанной с телом, а не в глобальной системе Ш. В этом случае уравнения Эйлера движения твердого тела в системе отсчета Б, связанной с квадрокоптером, принимают вид:

'JA 4

J2(Ú2 =

Уз®з, V

(J2 -J3)(ú2(ú3 +M1 (J3-JI)(Ú](Ú3+M2 (<Jl-J2)a,2(ül+Mi j

, (1)

где 3. , М. - момент сил, действующий на дрон вдоль оси /', г = 1; 4г ю - угловая скорость в вдоль оси /' системе отсчета &

Движение твердого тела описываем современным ква-тернионным методом модельного представления [7]. Кватернионы поворота - это трехмерные векторы [8] единичной длины: такие, что + + + =1. Кватернион описывает систему отсчета Б, связанную с квадрокоптером и задает ортогональное преобразование векторов х = дХдт, где х, X представлены чисто мнимыми кватернионами.

Угловая скорость дрона в глобальной системе координат Ш и в системе координат связанной с ним, определяется соотношениями ю = дтщ, й = где ю - мгновенная угловая скорость в системе отсчета Ш, а ю - мгновенная угловая скорость в системе отсчета & квадрокоптера, которую измеряют бортовые датчики.

В этих условиях кинематику угловых параметров дрона в кватернионном виде описывает уравнение:

<7 = 0,5щ = 0,5<7СО = 0,5

0 со2 Ч

СО! 0 <а3 -ю2 <h

ю2 -®з 0 ч2

ш3 со2 о )

(2)

Поступательная динамика движения дрона описывается в глобальной системе координат Ш с использованием вектора V = (х,у,г). Поступательное ускорение определяется положением, скоростью и общей тягой четырех винтов дрона. Уравнения движения по закону Ньютона для твердого тела в глобальной системе координат Ш принимают вид:

(3)

где g - ускорение свободного падения,//г - сила вязкого трения.

Четыре двигателя создают аэродинамическую силу, которая определяется для каждого мотора формулой Жуков-

'0 4 ( г \ ffi*

У = я 0 т q + 0 + ffry

Л JfrZ,

-F4, M4, ю4 Í {S} F3, Mз, Ю1

4 Zo

{W} Fi, M1, юц, ^^í F2, M2, Ю2

0 ^^ Y¡>[ 0

X0 Yo уГ^Ф X е Y

Рис. 1. Расчетная схема беспилотного летательного аппарата

Fig. 1. Computational model of unmanned aerial vehicle

ского Р = 0,5pAv2 = 0,5рЛ(£ю)2 , где р - плотность воздуха, А - площадь ротора, V- скорость набегающего потока воздуха, ю: юшш < ю <юшах - частота вращения ротора мотора, к - коэффициент пропорциональности между скоростью воздуха и частотой вращения ротора двигателя.

При составлении модели движения квадрокоптера из всех возможных аэродинамических сил, воздействующих на дрон, оставлена только сила вязкого трения, которая в силу малости числа Рейнольдса определяется соотношением Е = - к& , где & - площадь сечения дрона по направлению набегающего потока, V - скорость набегающего потока воздуха.

Основным ограничением внешней среды является ограничение пространственного перемещения, для моделирования которого использовался метод штрафных функций в виде экспоненциального «барьера», который задает потенциал, действующий на объект, значение которого равно нулю в области, где перемещения разрешены, и в запретной зоне в зависимости от дистанции до границы экспоненциально возрастает ^(х) = Р0(еа'1 -1), где ё - расстояние от положения квадрокоптера до границы запрещенной области.

При составлении модели движения беспилотного летательного аппарата предполагается, что достаточно точно известно его положение в пространстве. В шахтной поставарийной обстановке, когда существенно ухудшена видимость, основным методом, позволяющим определять текущее положение летательного аппарата, является метод позиционирования с использованием радиомаяков [9].

После а нал иза существующих систем упра вления траек-торным движением беспилотного летательного аппарата [8, 10, 11] сформулирована задача синтеза системы автоматического управления движением и сформирована иерархическая многоконтурная структура системы управления.

В этой структуре имеется: планировщик маршрута, предназначенный для того, чтобы в каждый текущий момент времени формировать маршрут до цели и корректировать его с учетом появления препятствий; блок управления положением дрона в пространстве контролирует линейные координаты квадрокоптера с целью удержания его вдоль спланированной траектории движения; блок управления угловым положением дрона позволяет выдерживать требуемые значения кватернионов; блок управления моторами, который формирует управляющие воздействия для бесколлекторных двигателей; блок управления частотой вращения моторов для формирования требуемой силы тяги моторов.

Каждый блок структуры, за исключением блока планировщика, представляется линейным блоком с контуром обратной связи и цифровым Рй или Р/О-регулятором.

Задача управления угловым положением дрона - выдерживать требуемое угловое положение. Структура блока, где решается задача управления угловым положением дрона, содержит блок гироскопа, блок акселерометра, блок

модуля IMU, конвертер кватернионов в углы Эйлера, блок задания желаемого положения с входом от планировщика траекторного движения, регулятор, преобразователь угловых ускорений в частоту вращения моторов, блок управления моторами.

Для определения углового положения используется программный модуль IMU (Inertial measurement unit), в котором гироскоп и акселерометр описываются кватернионами. Модуль IMU позволяет дрону относительно позиционировать себя в пространстве без использования внешних датчиков. Выходным сигналом из этого модуля является трехмерный вектор углового положения дрона в ква-тернионном представлении.

В блоке, где осуществляется преобразование кватернионов в углы Эйлера, полученный трехмерный вектор, характеризующий текущее угловое положение дрона, позволяет определить угловую ошибку положения путем сравнения с требуемым угловым положением дрона, которое продиктовано планировщиком траектории.

Сигнал ошибки поступает в PID-регулятор, где формируется управляющий сигнал в блок преобразования, где формируются сигналы задания частоты вращения роторов моторов.

В блоке управления угловым положением дрона использовалась линеаризованная модель уравнений (1) в виде:

\F2-FA)L 4

J2a>2 = {F.-F^L , (4)

У3<в3, ¿FI-F2+F3-FA) Y,

где Ь - расстояние от центра масс квадрокоптера до осей моторов, у - коэффициент преобразования подъемной силы в угловой момент мотора.

Соотношения (4) представляют три уравнения относительно четырех неизвестных подъемных сил Е. , поэтому для однозначного определения всех компонент вектора тяги моторов использовалось уравнение динамики по оси г:

тгът = F1 +F2 +F3 +F4 -mgcosa,

(5)

где а - угол наклона квадрокоптера относительно вектора силы тяжести.

После обозначения Тк = 0,25(тгзт +mgcosa) и предположения, что 3Х = 32 , получим путем преобразования уравнений (4) основные соотношения на требуемую тягу каждого двигателя:

Fx =Тн+<°и+®2<,+<аз<1>

Fi

Fl=Tk-<»U-<b2d+<bld>

(6)

Задача управления положением дрона в пространстве решается посредствам определения требуемого угла наклона дрона. Квадрокоптер имеет шесть степеней свободы - три пространственных и три угловых координаты, но только четыре силы, создаваемые моторами, поэтому невозможно напрямую осуществлять его движение к требуемой точке, подавая сигналы на моторы. В этом случае для решения задачи контроля позиции требовалось сме-

стить угловые координаты так, чтобы дрон обратился по направлению к требуемой точке. Требуемы й угол определяется путем двойного интегрирования требуемого углового ускорения, которое определялся в виде:

rid = riT + kid(riT -rt) + kld{riT -rt), i = 1,4.

(7)

С целью удержания высоты полета дрона на требуемом уровне тяга всех моторов должна быть равна, согласно (5): mgcosa + mrзт = Р. Для перемещения в горизонтальной плоскости необходимо выставить такие Ф, 8 - углы тангажа и крена так, чтобы проекция на горизонтальную плоскость вектора тяги Е была направлена в целевую точку. Таким образом, в каждый момент времени, для обеспечения требуемого углового ускорения ^¿(0 , значения углов тангажа и крена фД), 8Д) должны отвечать соотношениям:

Ъ =1 / g(rUd sinуj, - r2d cosV|/r ), б* = 11g(ru cosv|fT+r2d sin\|/r),

(8)

Для удержания положения дрона в окрестности желаемых углов синтезирован линейный РО-контроллер, который формирует управляющий вектор:

U = J

р£ф + ^о, А

еее + ^D.0^0 V^P,VE¥ + ^Av^v J

(9)

где 3 - матрица моментов инерции в системе отсчета Б, связанной с дроном, еф = Ф^- Ф, е8 = 8^- 8, еу = \\л- \ - угловые отклонения текущих значений углов тангажа, крена и рыскания от требуемых значений.

Параметры РО-контроллера определялись путем минимизации квадратичного функционала от вектора угловых ошибок и его производных:

G = j(A(xd (i) - x(t)f + B(xd (t) - x(t)f)dt,

В = /3/у,

где хл (X), х(Х) - текущий вектор естественных координат траектории задания и реального положения, хл{{), х(£) - текущий вектор производных естественных координат траектории задания и реального положения.

Поскольку управление по углам после линеаризации декомпозируется в три контроллера по трем угловым координатам, задача определения параметров РО-контроллера сводится к решению уравнений Риккати.

Планирование траекторного маршрута движения дрона, выполняемое в блоке «планировщик», реализовано на основе алгоритма кратчайшего пути Дейкстры [9]. Найденный кратчайший маршрут - совокупность прямолинейных отрезков, для сглаживания кривой будущего движения применена сплайновая аппроксимация полиномами седьмой степени. Для обеспечения гладкости кривой сплайны выбраны так, чтобы значения их производных до пятого порядка совпадали в узловых точках.

После генерации сплайнов и задания скорости движения формируются координаты скорости и ускорения как

функции времени. Эти функции используются в контроллере координат для реализации соотношений (7).

Основной целью комплексных модельных исследований синтезированной системы автономного движения беспилотного летательного аппарата по сформированному маршруту является проверка маневренных характеристик дрона в условиях шахтных выработок, для чего проводилась серия численных экспериментов с вариацией нагрузки, возмущений и наличием препятствий.

Математическая модель беспилотного летательного аппарата - объекта управляемого движения представлена системой обыкновенных нелинейных дифференциальных уравнений с ограничениями на состояния в виде допустимой области движения, что отражает пространственные ограничения движения в условиях шахтных выработок.

Экспериментальному моделированию предшествовал подбор квадратично оптимальных коэффициентов РО-контроллеров блоков системы. Подбор коэффициентов контроллеров осуществлялся при управляемом движении летательного аппарата с фиксированной весовой нагрузкой в условиях отсутствия возмущений. Найденные коэффициенты контроллеров блоков системы оставались неизменными в последующих экспериментах при изменении массы полезной нагрузки и наличии различных возмущений.

Маршруты модельных экспериментов формировались по топологическому фрагменту схемы шахтных выработок, взятых в качестве прототипа из системы выработок шахты им. В.Д. Ялевского АО «СУЭК-Кузбасс», изображенной на рис. 2.

Для достижения целей исследования выполнены модельные маршрутные пролеты по шахтным выработкам без нагрузки и с переменной нагрузкой; без возмущений и с возмущением в виде встречного и бокового постоянного потока воздуха; без препятствий и при наличии препятствий; выполнены модельные экстренные торможения полета дрона с различной массой.

В каждом из экспериментов исследовались: отклонение реальной траектории движения от спланированной по всем трем осям; среднее по маршруту отклонение реальной траектории движения от спланированной; максимальное отклонение реальной траектории от спланированной за время полета; средняя по маршруту скорость полета.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

В экспериментальном моделировании движения по спланированному маршруту исследовалось движение на двух скоростях - 6 м/с и 10 м/с. Эксперимент проводился

при различных значениях массы дрона: от 0,6 кг до 1,2 кг. Проведенное экспериментальное моделирование позволило определить: максимальную массу полезной нагрузки, среднюю скорость, которую способен выдержать дрон с фиксированной массой полезной нагрузки, максимальный радиус полета при фиксированной скорости полета,

На рис. 3 приведены экспериментальные кривые, отражающие координатные отклонения от спланированной траектории при движении без полезной нагрузки на скорости 10 м/с и 6 м/с соответственно.

На рис. 4 приведены кривые отставания реального движения от задания на скорости 10 м/с без полезной нагрузки и на скорости 6 м/с с полезной нагрузкой соответственно.

Экспериментальное моделирование позволило выявить, что среднее отклонение от запланированной траектории в зависимости от массы полезной нагрузки дрона при полете на предельной скорости не превышает 1,2 м, а максимальное - не превышает 1,5 м. Но при пониженной до 60% от номимальной скорости среднее и максимальное отклонения за время полета от запланированной траектории - не больше 0,2 м и 0,8 м соответственно.

Для проверки маневренности системы управления движением дрона проведен эксперимент, в котором на маршруте устанавливались гипотетические препятствия в плоскости IX, которые квадрокоптер обходит сверху и снизу.

Наличие препятствий приводило к замедлению скорости прохождения трассы в области препятствия, так как указанные маневры невозможно пройти с максимально допустимым ускорением. Прохождение модельного участка дроном массой 0,6 кг без нагрузки заняло 15,3 с, а с нагрузкой - 20,1 с.

Одной из задач модельных экспериментов являлась задача оценки качества траекторного движения по маршру-

Рис. 2. Фрагмент схемы выработок шахты им. В.Д. Ялевского АО «СУЭК-Кузбасс» Fig. 2. A fragment of mine workings plan in V.D. Yalevsky's Mine, "SUEK-Kuzbass"JSC

i о

10

20

эо

time (sj

i<)

30 о me Is!

40

JO ta r-rte 1 s 1

40

50

w

1 о

о 5

t J 15 J

10

10

10

15 20

t> noe1 IsJ

3b

15 JO

time IsJ

?5

11 20 time IsJ

2b

JO

JO

JO

Рис. 3. Координатные отклонения от спланированной траектории без полезной нагрузки на скорости: а - 10 м/c; б - 6 м/с Fig. 3. Coordinate deviations from the planned trajectory withoutpayload at the speeds of 10 m/s (a) and 6 m/s (b)

б

а

ту при наличии возмущения в виде шахтного воздушного потока. Определялось максимальное отклонение движения дрона от траектории в зависимости от скорости и направления возмущающего воздушного потока. Определялась предельная величина скорости возмущающего потока, которая приводит к недопустимому отклонению от траектории движения для двух случаев - нагруженного и ненагруженного дрона.

Модельный эксперимент показал, что система автоматического управления позволяет дрону без полезной нагрузки выдерживать траекторию с допустимыми отклонениями при скорости встречного потока до 6 м/с, а для дрона с полезной нагрузкой 0,6 кг скорость бокового воздушного потока 4 м/с оказывается критической.

Результаты моделирования движения по маршруту навстречу возмущающему шахтному воздушному потоку показали, что система управления позволяет дрону без полезной нагрузки выдержать с допустимыми отклонениями от траектории встречный ветер до 12 м/с и с по-

лезной нагрузкой 0,6 кг выдерживать встречный поток до 8 м/с.

Исследования движения беспилотного летательного аппарата в шахтных условиях поставарийного состояния выработок требуют проверки не только на маневренность при облете различных препятствий, но и на способность при невозможности облета выполнить экстренное торможение. Модельный эксперимент экстренного торможения проводился с начальных скоростей 6 м/с и 10 м/с при различных нагрузках дрона.

Из-за наличия силы вязкого трения о воздух длина тормозного пути изменяется нелинейно в относительно небольшом диапазоне, при этом максимальные значения составили 14,2 м и 6,4 м соответственно.

По результатам экспериментов можно сделать следующие выводы: с учетом полезной нагрузки и нагрузки, вызванной требованиями безопасности, целесообразная скорость прохождения трассы - 6 м/с. Дрон с полезной нагрузкой может выдержать порывы встречного и бокового ветра соответственно 8 м/с и 4 м/с. Тормозной путь на рекомендованной скорости составляет порядка 6 м, что позволяет совершить экстренное торможение. Система управления позволяет успешно преодолевать препятствия в виде неглухих завалов. Дрон с полезной нагрузкой может пролететь дистанцию до четырех километров.

ЗАКЛЮЧЕНИЕ

Основным итогом модельных исследований является доказательство того, что беспилотный летательный аппарат, управляемый разработанной системой, может достаточно точно решать задачи автономного маневрирования в шахте и, как следствие, может быть использован во время ведения горноспасательных работ с целью дистанционного контроля рудничной атмосферы и разведки состояния аварийных выработок.

Список литературы

1. Горлов Ю.В. Анализ действующих в угольных шахтах систем локализации взрывов и оценка эффективности их применения. М., 2014. 91 с.

ю

15 20 time Is J

r>

so

Рис. 4. Отставания реального движения от задания:

а - на скорости 10 м/с без полезной нагрузки;

б - на скорости 6 м/с с полезной нагрузкой

Fig. 4. Delays of actual movement from the assigned schedule:

at 10 m/s, w/o payload (a), at 6 m/s with payload (b)

а

б

2. Безопасность ведения горных работ и горноспасательное дело / К.З. Ушаков, Н.О. Каледина, Б.Ф. Кирин и др. М.: Издательство МГГУ, 2008. 247 с.

3. О возможности использования мобильных робототех-нических летательных аппаратов при выполнении оперативного плана ликвидации аварии на шахтах / М.Л. Ким, А.С. Родичев, Л.Д. Певзнер и др. // Уголь. 2018. № 1. С. 3438. DOI: http://dx.doi.org/10.18796/0041 -5790-2018-1 -34-38. URL: http://www.ugolinfo.ru/Free/01018.pdf (дата обращения: 15.09.2020).

4. Певзнер Л.Д., Ким М.Л. Робототехнические средства и системы для решения задач ликвидации аварии в шахтах // Горный информационно-аналитический бюллетень (научно-технический журнал). 2016. № 1. С. 215-223.

5. Рэндал У. Биард, Тимоти У. МакЛэйн. Малые беспилотные летательные аппараты: теория и практика. М.: ТЕХНОСФЕРА, 2015.

6. Зенкевич С.Л., Галустян Н.К. Разработка математической модели и синтез алгоритма угловой стабилизации движения квадрокоптера // Мехатроника, автоматизация, управление. 2014. № 3. С. 27-32.

7. Джон Х. Конвей, Дерек А. Смит. О кватернионах и октавах. М.: МЦНМО, 2009.

8. Зенкевич С.Л., Галустян Н.К. Синтез и апробация алгоритма управления движением квадрокоптера по траектории // Мехатроника, автоматизация, управление. 2015. № 8. С. 530-535.

9. Таненбаум Э. Компьютерные сети. СПб.: Питер, 2002.

10. Управление параметрами полёта квадрокоптера при движении по заданной траектории / С.А. Белоконь, Ю.Н. Золотухин, А.С. Мальцев и др. // Автометрия. 2012. № 5. С. 32-41.

11. Белинская Ю.С., Четвериков В.Н. Управление четы-рехвинтовым вертолетом // Наука и образование. М.: Издательство МГТУ, 2012. С. 157-171.

SAFETY

Original Paper

UDC 622.86:778.35 © M.L. Kim, V.N. Kosterenko, L.D. Pevzner, A.A. Jarigin, 2020

ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol' - Russian Coal Journal, 2020, № 10, pp. 22-27

DOI: http://dx.doi.org/10.18796/0041-5790-2020-10-22-27

Title

DESIGN AUTOMATIC CONTROL SYSTEM OF THE ROUTE MOVEMENT UNMANNED AERIAL VEHICLE IN MINE CONDITIONS Authors'

Kim M.L.', Kosterenko V.N.', Pevzner L.D.2, Jarigin A.A.3

1 "SUEK" JSC, Moscow, 115054, Russian Federation

2 Russian Technological University (RTU-MIREA), Moscow, 119571, Russian Federation

3 Lomonosov Moscow State University, Moscow, 119991, Russian Federation

Authors' Information

Kim M.L., Chief technologist, e-mail: [email protected] Kosterenko V.N., PhD (Physico-Mathematical), Head of department, e-mail: [email protected]

Pevzner L.D., Doctor of Engineering Sciences, Professor of Automatic Systems department of Institute of Cybernetics, e-mail: [email protected] Jarigin A.A., Researcher of Physics department, e-mail: [email protected]

Abstract

The need to use robotic tools to assess the post-accident state of mine workings is the primary reason for using an unmanned aerial vehicle to deliver equipment for measuring, visualizing and transmitting data to the site of a mine accident. In mines, the autonomous movement of an unmanned aerial vehicle along a given route is provided by an automatic control system, the development results of which are presented in the article. It is shown that the system provides the choice of a rational route of movement, the development of the trajectory task with sufficient accuracy in a limited space in the presence of disturbances from the mine air flow.

Keywords

Unmanned aerial vehicle, Automatic motion control system, Mining conditions, Modeling.

References

1. Gorlov Yu.V. Analysis of blast isolation systems operating in coal mines and assessment of their application efficiency. Moscow, 2014, 91 p. (In Russ.).

2. Ushakov K.Z., Kaledina N.O., Kirin B.F. et al. Bezopasnost vedeniya gornyh rabot igornospasatelnoe delo [Mining safety and mining rescue activities]. Moscow, Moscow State Mining University Publ., 2008, 487 p.

3. Kim M.L., Rodichev A.S., Pevzner L.D. & Platonov A.K. O vozmojnosti ispol-zovaniia mobilnih robototehnicheskih letatelnih apparatov pri vipolnenii operativnogo plana likvidatsii avarii na shahtah [Possibility of using robotic flying systems for solving accident liquidation operating plan in the mine]. Ugol' - Russian Coal Journal, 2018, No. 1, pp. 34-38. (In Russ.). DOI: http://dx.doi.

org/10.18796/0041-5790-2018-1-34-38. Available at: http://www.ugolinfo.ru/ Free/01018.pdf (accessed 15.09.2020).

4. Pevzner L.D. & Kim M.L. Robotic tools and systems for emergency response in mines. Gorniy informatsionno-analiticheskiy bjulleten' (nauchno-tekhnicheskiy zhurnal) - Mining Informational and Analytical Bulletin (Scientific and Technical Journal), 2016, No. 1, pp. 215-223. (In Russ.).

5. Randal W. Beard & Timothy W. McLain. Small unmanned aircraft: theory and practice. Moscow, TECHNOSPHERA Publ., 2015. (In Russ.).

6. Zenkevich S.L. & Galustyan N.K. Development of mathematical model and designing of quadrocopter angle stabilization algorithm. Mekhatronika, Avtomatizatsiya, Upravlenie - Mechatronics, automation, control, 2014, No. 3, pp. 27-32. (In Russ.).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

7. John H. Conway & Derek A. Smith. On quaternions and octonions. Moscow, MCCME Publ., 2009. (In Russ.).

8. Zenkevich S.L. & Galustyan N.K. Design and testing of quadrocopter trajectory motion control algorithm. Mekhatronika, Avtomatizatsiya, Upravlenie -Mechatronics, automation, control, 2015, No. 8, pp. 530-535. (In Russ.).

9. Tanenbaum A. Computer Networks. St. Petersburg, Piter Publ., 2002. (In Russ.).

10. Belokon' S.A., Zolotukhin Yu.N., Maltsev A.S. et al. Control of quadrocopter flight parameters when moving along a specified trajectory. Avtometriya -Autometry, 2012, No. 5, pp. 32-41. (In Russ.).

11. Belinskaya Yu.S. & Chetverikov V.N. Control of four-rotor helicopter. Nauka i obrazovanie - Science and Education, Moscow, MGTU Publ., 2012, pp. 157-171. (In Russ.).

For citation

Kim M.L., Kosterenko V.N., Pevzner L.D. & Jarigin A.A. Design automatic control system of the route movement unmanned aerial vehicle in mine conditions. Ugol' - Russian Coal Journal, 2020, No. 10, pp. 22-27. (In Russ.). DOI: 10.18796/0041-5790-2020-10-22-27.

Paper info

Received July30,2020 Reviewed August 20,2020 Accepted September 9,2020

i Надоели баннеры? Вы всегда можете отключить рекламу.