моза отличаются учетом связанных пространственных колебаний при движении по рельсовому пути с реальными параметрами возмущений, наличием упругодиссипативных связей между секциями и рамой локомотива, особенностями взаимодействия тормоза с рельсами при наличии промежуточной среды и вихревых токов. Разработанные параметры секционного тормоза для шахтных локомотивов использованы при изготовлении опытно-
КОРОТКО ОБ АВТОРАХ
промышленной партии тормозов шахтных локомотивов Э10, которые в настоящее время работают на шахте ГКХ «Павлоградуголь», шахта «Тернов-ская»; Днепропетровский электровозостроительный завод использовал методические рекомендации по выбору параметров секционного рельсового тормоза при модернизации электровоза К10; Дружковский машиностроительный завод использовал методические рекомендации по выбору параметров секционно-
го рельсового тормоза при модернизации электровоза АМ8Д; Украинский электровозостроительный НИИ использовал методические рекомендации по выбору параметров рельсовых тормозов. Внедрение результатов работы дает фактический экономический эффект 75 тыс. грн в год на один электровоз при эксплуатации шахтных локомотивов К10 при продольном уклоне рельсового пути 30-50
Салов В.А. - профессор, кандидат технических наук, НГА Украины г. Днепропетровск. Сердюк В.А. - аспирант, НГА Украины г. Днепропетровск.
© И.А. Таран, А.В. Ильчаков, 2002
УАК 622.62
И.А. Таран, А.В. Ильчаков
РАЗРАБОТКА НАУЧНЫХ ОСНОВ СОЗААНИЯ ТОРМОЗНЫХ СИСТЕМ ШАХТНОГО РЕАЬСОВОГО ТРАНСПОРТА
Для безотказной и безопасной эксплуатации высокопроизводительного шахтного рельсового транспорта требуется создание шахтных локомотивов, обеспечивающих повышенные тяговотормозные характеристики, высокую устойчивость против схода с рельсового пути. Интенсивность вибраций и ударов на ходовую часть локомотива, опасность схода с рельсового пути, воздействие на путь возрастают с увеличением массы локомотива и скорости движения. Создание тормозных устройств, обладающих ограниченными размерами с необходимой характеристикой для обеспечения безопасности движения шахтных локомотивов, является технической задачей, решение которой возможно при использовании теоретико-экспериментального подхода проектирования оптимальных ходовых частей.
Опыт эксплуатации тормозных систем шахтных локомотивов показал, что на эффективность их работы влияют следующие факторы: уширение рельсовой колеи, уменьшение ширины колесной пары за счет износа реборд колес, радиусы закруглений рельсового пути, изломы пути в плане, наличие промежуточной среды в виде дисперсии породы и полезного ископаемого. Уширение рельсовой колеи и уменьшение ширины колесной пары влияют на зазоры между рельсовыми нитями и нями колес. Зазоры между рельсовыми нитями и гребнями колес вызывают поперечные виляющие движения электровоза, а вместе с ним и рельсового тормоза.
Согласно данным литературы максимальные значения уширений рельсовой колеи составляют 7-8-кратные значения допусков, предусмотренных правилами безо-
пасности, что составляет 28-32 мм. При таких уширениях рельсовой колеи смещение продольных осей тормоза и рельса составит 19-21 мм и тормоз может не сработать. Срабатывание тормоза произойдет при наезде на рельс при меньших смещениях осей тор-тормоза и рельса, но при этом увеличится время срабатывания.
Надежная работа рельсовых тормозов зависит от параметров магнитной системы, вихревых токов, тепловых и динамических нагрузок, а также от работоспособности системы передачи тормозного усилия, устойчивости движения по рельсу.
В Национальной горной академии Украины, разработана и применена система подвешивания рельсового тормоза, связанная с буксовым подвешиванием электровоза, которая содержит двуплечие поводки, установленные на раме секции с помощью резинометаллических шарниров на опытных образцах секционного шахтного электровоза Э10, изготовленных ПО " Л угансктепловоз". Прижатие тормоза к рельсу в режиме торможения осуществляется за счет магнитного и гравитационного взаимодей-
ствия, устойчивость движения шахтного локомотива обеспечивается ребордами колесных пар движущимися по рельсу с вертикальной нагрузкой обеспечиваемой собственной неподрес-соренной массой.
При описании пространственных колебаний рельсовый экипаж представляется как дискретная нелинейная механическая система, состоящая из твердых тел, соединенных шарнирными, жесткими или упруго-
диссипативными элементами. Движение шахтного локомотива с
КОРОТКО ОБ АВТОРАХ
постоянной скоростью по участку упругого пути произвольного очертания в плане, описывается системой дифференциальных уравнений:
В качестве обобщенных координат используются линейные (подергивание, боковой относ и подпрыгивание) и угловые (виляние, галопирование и боковая качка) перемещения платформы, тележек, колесных пар, а также колес шахтного локомотива. В данной работе выполнено теоретическое описание процесса формирования тормозной силы
при движении шахтного локомотива с рельсовыми тормозами. Учтено изменение силы магнитного взаимодействия при возникновении колебаний в системе подвешивания и наличие упругодиссипативных связей между тормоза и рамой локомотива. В результате решения были получены зависимости тормозной силы от скорости движения шахтного локомотива, определены рациональные параметры упруго-диссипативных связей рельсового тормоза.
Таран И.А. — ассистент, НГА Украины г. Днепропетровск. Ильчаков А.В. - аспирант, НГА Украины г. Днепропетровск.
© С.Е. Блохин, О.В. Аерюгин, 2002
УАК 622.62
С.Е. Блохин, О.В. Аерюгин
ИСПОЛЬЗОВАНИЕ УПРУГО-АИССИПАТИВНЫХ СВЯЗЕЙ В СИСТЕМЕ ПОАВЕШИВАНИЯ ШАХТНОГО ЛОКОМОТИВА
а показатели эффективности работы шахтных локомотивов в значительной степени влияют конструкция, и параметры системы подвешивания ходовой части. Кроме этого, эксплуатационные характеристики локомотива, такие как сила тяги и торможения, значения динамических нагрузок, устойчивость и безопасность движения также зависят от системы подвешивания ходовой части, являющейся наименее долговечным узлом в механической части шахтного локомотива.
Недостаточно высокая надежность механизмов подвешивания транспортного средства в большой степени объясняется тем, что, с точки зрения структуры, эти механизмы построены нерационально, а их параметры не являются оптимальными. Поэтому выбор рациональной конструкции и оптимальных параметров системы подвешивания ходовой части шахтных локомотивов является актуальной задачей транспортного машиностроения.
Системы подвешивания ходовых частей подвижного состава рельсового транспорта подразделяются на имеющие и не имеющие упруго-
диссипативных связей. Современные магистральные локомотивы имеют, как правило, одну или две ступени подвешивания, в каждую из которых в общем случае входят три группы устройств: упругие элементы, которые служат для смягчения динамических нагрузок взаимодействия кузова с колесами экипажа; направляющие устройства, предназначенные для передачи продольных, боковых и вертикальных сил взаимодействия кузова и колесных пар и обеспечивающие заданную кинематику их взаимного перемещения; гасители колебаний, обеспечивающие затухание колебаний подрессоренных масс экипажа путем создания силы неупругого сопротивления перемещению и рассеиванию полученной энергии.
Рудничные локомотивы, в отличие от магистральных, имеют лишь одну ступень подвешивания - буксовую. На отечественных локомотивах в основном применяются системы подвешивания с фрикционными вертикальными направляющими элементами, в зарубежной практике применяются и системы подвешивания с упругонаправляющими элементами.
В Национальной горной академии Украины разработана система подвешивания с упругодиссипативными элементами, которая прошла испытания в шахтных условиях на серийно-