Научная статья на тему 'РАЗРАБОТКА КРИОГЕННО-ПНЕВМАТИЧЕСКОЙ УСТАНОВКИ ДЛЯ МЕТАНИЯ ОБЪЕКТОВ'

РАЗРАБОТКА КРИОГЕННО-ПНЕВМАТИЧЕСКОЙ УСТАНОВКИ ДЛЯ МЕТАНИЯ ОБЪЕКТОВ Текст научной статьи по специальности «Прочие технологии»

CC BY
17
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МЕТАТЕЛЬНАЯ УСТАНОВКА / РАБОЧЕЕ ТЕЛО / КРИОГЕННО-ПНЕВМАТИЧЕСКАЯ УСТАНОВКА / ОЦЕНКА СКОРОСТИ

Аннотация научной статьи по прочим технологиям, автор научной работы — Келимханов Алимхан Кайратулы, Жаксыбеков Данияр Муратулы, Алдияров Абдурахман Уалиевич

Тела, ускоренные пневматическими установками, могут найти применение практически во сферах деятельности, например, для газодинамических исследований, изучения процессов соударения, при работах по обеспечению защиты жизни. Какого бы рода экспериментов ни проводились с летящими телами, каждый из них требует знание определенных процессов и характеристик. В работе приведена криогенно-пневматическая метательная установка, принцип работы, а также разработана схема для оценки скорости полета снаряда.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по прочим технологиям , автор научной работы — Келимханов Алимхан Кайратулы, Жаксыбеков Данияр Муратулы, Алдияров Абдурахман Уалиевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

DEVELOPMENT OF A CRYOGENIC-PNEUMATIC INSTALLATION FOR THROWING OBJECTS

Bodies accelerated by pneumatic installations can find applications in practically all fields of activity, e.g. for gas dynamic research, the study of collision processes and life-safety applications. Whatever type of experiments on flying bodies, each of them requires knowledge of certain processes and characteristics. The paper presents a cryogenic-pneumatic propellant, the principle of operation, as well as s scheme for estimating the velocity of the projectile flight.

Текст научной работы на тему «РАЗРАБОТКА КРИОГЕННО-ПНЕВМАТИЧЕСКОЙ УСТАНОВКИ ДЛЯ МЕТАНИЯ ОБЪЕКТОВ»

РАЗРАБОТКА КРИОГЕННО-ПНЕВМАТИЧЕСКОЙ УСТАНОВКИ ДЛЯ МЕТАНИЯ ОБЪЕКТОВ

Келимханов Алимхан Кайратулы

магистрант,

Казахский национальный университет имени аль-Фараби Республика Казахстан, г. Алматы Е-mail: Akelimkhanov@gmail. com

Жаксыбеков Данияр Муратулы

магистрант,

Казахский национальный университет имени аль-Фараби Республика Казахстан, г. Алматы Е-mail: Daniyar131017@gmail.com

Алдияров Абдурахман Уалиевич

канд. физ.-мат. наук, доцент, Казахский национальный университет имени аль-Фараби Республика Казахстан, г. Алматы

DEVELOPMENT OF A CRYOGENIC-PNEUMATIC INSTALLATION FOR THROWING OBJECTS

Alimkhan Kelimkhanov

Master student, al-Farabi Kazakh National University Kazakhstan, Almaty

Daniyar Zhaxybekov

Master student, al-Farabi Kazakh National University Kazakhstan, Almaty

Abdurakhman Aldiyarov

Candidate of Physical and Mathematical Sciences, associate professor,

al-Farabi Kazakh National University Kazakhstan, Almaty

АННОТАЦИЯ

Тела, ускоренные пневматическими установками, могут найти применение практически во сферах деятельности, например, для газодинамических исследований, изучения процессов соударения, при работах по обеспечению защиты жизни. Какого бы рода экспериментов ни проводились с летящими телами, каждый из них требует знание определенных процессов и характеристик.

В работе приведена криогенно-пневматическая метательная установка, принцип работы, а также разработана схема для оценки скорости полета снаряда.

ABSTRACT

Bodies accelerated by pneumatic installations can find applications in practically all fields of activity, e.g. for gas dynamic research, the study of collision processes and life-safety applications. Whatever type of experiments on flying bodies, each of them requires knowledge of certain processes and characteristics.

The paper presents a cryogenic-pneumatic propellant, the principle of operation, as well as s scheme for estimating the velocity of the projectile flight.

Ключевые слова: метательная установка, рабочее тело, криогенно-пневматическая установка, оценка скорости.

Keywords: throwing installation, working medium, cryogenic-pneumatic installation, assessing the velocity.

Библиографическое описание: Келимханов А.К., Жаксыбеков Д.М., Алдияров А.У. РАЗРАБОТКА КРИОГЕННО-ПНЕВМАТИЧЕСКОЙ УСТАНОВКИ ДЛЯ МЕТАНИЯ ОБЪЕКТОВ // Universum: технические науки : электрон. научн. журн. 2022. 4(97). URL: https://7universum.com/ru/tech/archive/item/13496

Изучение быстропротекающих процессов стало возможным благодаря развитию экспериментальных, баллистических методов исследования, а также техники эксперимента.

Существующие в настоящее время пневматические установки нашли применение в научных исследованиях в области аэродинамики и физики твердого тела [1].

Значительное расширение области применения пневматических установок стало причиной их использования и поставило новые задачи, суть которых заключается в необходимости разработки систем по совершенствованию этих установок.

Явление выстрела является результатом преобразования химической энергии в механическую работу метания тела, что представляет с собой сложный термодинамический и газодинамический процесс . Исследование явлений выстрела требует подробного изучения основных закономерностей, которым подчиняются газы, как в отношении изменения свойств при переходе из одного состояния в другое, так и в отношении происходящего при этом преобразования энергии. При процессе превращения энергии из одного вида в другое совершается работа [2].

Пневматические газовые пушки представляют собой экспериментальные устройства, состоящие из двух основных частей: цилиндрического ствола (трубы) и камеры высокого давления. Метание снаряда в газовой установке, как и в любой другой артиллерийской установке, происходит за счет

расширения рабочего газа в основной установке. Основной задачей теории метания является определение влияния таких параметров, как площадь ствола S, масса снаряда т, масса газа и др. на скорость снаряда и показать наиболее перспективные направления создания метательных устройств [3].

Криогенно пневматическая установка - один из видов газовой установки рабочим телом которого является азот. Эта лабораторная установка, в которой в качестве топлива используется жидкий азот. Она была разработана для метания хрупких снарядов, движущихся на относительно небольших скоростях (50^200 м/с). Установка состоит из стального ствола и испарительной камеры, где и происходит сам процесс расширения жидкого азота.

В процессе разработки криогенно -пневматической установки возникают две важные задачи: газодинамические и конструктивные. В газодинамические задачи входят: подбор заряда, выбор оптимального веса инициирующего элемента реакции расширения газа и т.п. В то время как конструктивные задачи включают в себя выбор параметров частей установки. Вопрос решения газодинамических и конструктивных задач возможен при учете определенных характеристик. В случае использования криогенно-пневматической установки применяется инженерная методика нахождении связи между скоростью метания и параметрами заряжания. По этой же методике определяются оптимальные геометрические параметры и размеры криогенно-пневматической установки [4].

Рисунок 1. Криогенно-пневматическая установка во время эксперимента

На рисунке 2 описана схема экспериментальной установки.

1 - емкость, 2 - крышка с упором, 3 - штатив, 4 - кожух с тензодатчиками, 5. - рамка с разрывными контактами, 6. - снаряд, 7 -испаритель

Рисунок 2. Схема экспериментальной установки

Криогенно-пневматическая установка выполнена из стали и имеет длину ствола 4 метра. Устройство включает в себя испаритель, где находится жидкий азот с термитом, отделенные специальной диафрагмой, где в дальнейшем происходит процесс расширения. Также установка имеет кожух с тензорезисторами расположенные на определенных расстояниях между собой. Рамка с разрывными элементами закреплен снаружи ствола и само устройство закрепляется на штативе.

При разработке криогенно-пневматической установки были учтены следующие оптимальные параметры: степень расширения, максимальное давление, вес снаряда, форма камеры и длина ствола.

В данной экспериментальной работе азот используется в качестве рабочего тела. Суть методики применения азота заключается в использования его свойств для процесса метания снаряда с помощью криогенно-пневматической установки. В рабочей части цилиндрического ствола установки находятся рабочее тело в виде жидкого азота, выступающего как испаряющийся элемент и за счет расширения, которого создается высокое давление в рабочем объеме ствола. Величина максимального рабочего давления в камере ограничена конструктивными и эксплуатационными параметрами.

Инициатор зажигательной системы является термит. Они разделены между собой между собой перегородкой в виде полиэтиленовой упаковки каждой составляющей. При запуске данной системы в рабочем объеме ствола криогенно-пневматической установки происходит процесс объемного расширения азота, за счет, которого происходит метание снаряда. Сам процесс объемного расширения характеризуется коэффициентом объемного расширения и термическим коэффициентом давления. Коэффициент объемного расширения показывает долю увеличения объема газа при повышении ее температуры на

1 кельвин, в то время как термический коэффициент показывает долю увеличения давления при таком же изменении температуры [5].

В настоящее время для изучения быстропроте-кающих процессов существуют множество методов определения скорости, опирающихся на последних достижениях электроники, импульсной техники, оптики, техники высоких напряжений и др. Не исключение, что выстрел из орудия представляет собой один из таких процессов, что требует получение наиболее точных и практических результатов измерений. Одна из основных технических наук, которая изучает закономерности явлений и процессов, протекающих при выстреле, является внутренняя баллистика. Как наука внутренняя баллистика включает в себя: изучение и анализ условий и факторов, от которого зависит процесс выстрела из ствольного оружия [6].

Одним из основных параметров, характеризующих процесс выстрела, является скорость полета снаряда. Определение скорости является сложной задачей и перспектива дальнейшего развития методов определения скорости снаряда имеет существенно важное значение [7].

В результате исследования криогенно-пневматической установки была разработана система определения скорости снаряда. Система состоит из прямого метода определения скорости, который заключается в измерении интервала времени, за который снаряд пролетает определенный участок трассы. В обращенном эксперименте в качестве измерительных приборов использовались тензо-резисторы и рамы измерители. В результате экспериментальных работ были получены следующие данные.

На рисунке 3 показан элемент массива цифровых данных каждая строчка которой показывает запись 1/5000 доли секунды. Из-за огромного количества

№ 4 (97)

А1

цифровых данных необходимо было перевести эти данные в графическую форму. При переводе данных в графическую форму был получен экспериментальный график. Ниже приведены результаты графического

апрель, 2022 г.

моделирования экспериментов. Каналами 22, 21, 23 показаны результаты, полученные при использовании тензорезисторов, а каналы 27, 26, 28, 25 показывают данные рамочных измерителей.

Long Хат?

Sparklinss

2400

2401

2402

2403

2404

2405

2406

2407

240S

2409

2410

2411

2412

2413

2414

2415

2416

2417

241S

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

А (X)

B(Y)

соо

DO)

EOQ

РОО

Время, 5 Канал 19 Канал 16 Канал 27 Канал 26 Канал 2$

1 \ I ' . J

0,479S 0,4S 0.4S02 0.4S04 0,4S06 0.4S0S 0,4SI 0.4S12 0.4S14 0.4S16 0.4S1S 0,4S2

0,0577 0,0577 0,059 0,0564 0.0577

-4,SlE-4

3,3528

0.4S22 0.4S24 0.4S26 0.4S2S 0,4S3 0.4S32 0.4S34 0.4S36 0.4S3S 0,4S4 0.4S42 0,4844 0.4S46

0,0577 0,059 0,059 0,059 0,0602 0,059 0,059 0,059 0,059 0,059 0,059 0,0577 0,059 0,0602 0,059 0,059 0,059 0,059 0,059

-5,01E-4 -4.S1E-4 -4.22E-4 -4,SlE-4 -5.4E-4 -5,01E-4 -5.01E-4 -4.42E-4 -4.81E-4 -5.01E-4 -4.S1EJ -4.62E-4 -5.01E-4 -5,01E-4 -},62E-5 -4Д2Е-4 -4.81E-4 -4.S1E-4 -4,81E-4

3,3503 3,3566 3,3591 3,3617 3,3604 3,349 3,3452 3,3515

0.4S4S 0,4S5 0,4S52 0.4S54

0,059 0,0602 0,0602 0,0602 0,0602

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

-4.S1E-4 -4.81E-4 -4.S1E-4 -4.42E-4 -4.62E-4 -5.2E-4 -4.8IE-4 -4.S1E-4 -4.81E-4

3,3579 3,3617 3,3528 3,349 3,3528 3,3591 3,3515 3,3604 3,3553 3,3414 3,349 3,352S

3,3579 3,3591 3,3617 3,3515

3,3515 3,3528 3,3528 3,3579 3,3591 3,3617 3,3553 3,3477 3,349 3,3541 3,3591 3,3566 3,3541 3,3477 3,3553 3,3553 3,3566 3,3617 3,3452 3,3414 3,3477 3,3528 3,3579 3,3591

3,3579

ceo

HO")

Канал 25 Канал 22

100 Канал 21

J00 Канал 23

r'^—^lk—i I' ^^^L^g^g II IlL-- Г1Г

3,3541 3,3604 3,3617

3.3629

3,349 3,3541 3,3591 3.352S

3,3553 3,3503 3,349 3,3566 3,3604

3,3503 3,3439 3,3503 3,3553 3,3604 3,3553 3,3503 3,349 3,3566 3,3591 3,3566 3,3553 3,349 3,3465 3,3528 3,3566 3,3579 3,3617 3.352S 3,3477 3,3515 3,3566 3,3617 3,3541

3,3579 3,3541 3,3477 3,3541

3,3566 3,3604 3,3629 3.352S 3,3465 3,3503 3,3566 3,3604 3,352S 3,3515 3,3515 3,3591 3,3541 3,3617 3,3617 3,3439 3,3439 3,349 3,3541 3,3579 3,3617 3,3528 3,3477 3.352S 3,3591

1.115S5 1,11495 1,11154 1,10965 1,11029 1,11223 1,11453 1,11579 1,11132 1,10695 1.10S03 1,11044 1,11188 1,10609 1,10032 1,09903 1,09815 1.096S3 1,0977 1,09793 1,09329 1.0S646 1,08339 1.0S326 1.0SS42 1,09491 1,09506 1,09295 1.09244

Рисунок 3. Цифровые данные

В результате экспериментальных работ были получены следующие данные.

1,061 1,0534 1,0445 1,0863 0.9S76 1.064S 1,0344 1,0256 1,0331 1,026S 1,0623 1,0066 1,0673 1,023 1,0066 1,0623 1,0521 1,042 1,0344 1,0471 1,0167 1,0129 0,999 0,9914 1,0306 1,0597 1,0521 1,042 1,0344

1,09734 1.096S9 1,10117 1,1093 1,11527 1,11733 1,11022 1,10163 1,09803 1,09725 1,10454 1.099S5 1.0915S 1.0S937 1,0873 1.07S39 1,08316 1,0904 1,08391 1.0749S

1,07603 1,0S11S 1,0811 1,0S547 1.0S562 1,08333 1,08261 1.0S232 1.0S066

Рисунок 4. График преобразований цифровых сигналов эксперимента

На рисунке 4 показан график преобразований цифровых сигналов эксперимента. Как видно на графике каналы тензорезисторов показывают вполне корректные результаты, то есть выделяются моменты пролета снаряда определенных участков.

Однако также можно заметить, что до прохода снарядом этих тензорезисторов имеются определенные шумы (колебания) и на данный момент точные причин появления этих шумов не установлены. Каналы, отвечающие за рамочные измерители, имеют некоторые искажения. На графике канал первого

разрывного элемента можно заметить, что обрыв произошел значительно позже по времени и утверждается это значениями времени пролета тензорези-сторов.

Предположительно причиной этой проблемы стал свободный ход разрывного элемента. Данные остальных каналов вполне удовлетворительны.

Анализ данных графиков в дальнейшем использовалась при определении скорости метаемого тела.

Таблица 1.

Результаты полученных скоростей

Позиции разрывных элементов на установке 27-26 27-28 27-25 26-28 26-25 28-25

Расстояние между разрывными элементами, м 3,5 3,8 4,6 0,3 1,1 0,8

Разность времени разрыва каналов, с 0.017 0.020 0.028 0.003 0.011 0.008

Скорость снаряда эксперимента, м/с 205,9 190,0 164,3 100,0 100,0 100,0

Таким образом изложенные сведения дают данные, изучена внутренняя баллистика криогенно-

достаточно полное представление о разработанной пневматической установки, выведены некоторые

криогенно-пневматической установки. Были иссле- математические зависимости, а также получены

дованы процесс метания тел, получены расчетные теоретические выводы и практические рекомендации.

Список литературы:

1. Златин Н.А., Красильщиков А.П., Мишин Г.И. Баллистические установки и их применение в экспериментальных исследованиях. - М.: Наука, 1974. - 344 с.

2. Станюкович К.П., Горохов М.С. Газодинамические основы внутренней баллистики. - М.: Оборонгиз, 1957. -472 с.

3. Серебряков М.Е. Внутренняя баллистика ствольных систем и пороховых ракет. - М.: Оборонгиз, 1957. - 703 с.

4. Серебряков М.Е. Физический закон горения во внутренней баллистике. - М.: Оборонгиз, 1940. - 216 с.

5. Вьюков Н.Н., Акимов А.В., Аверин Н.Н. Устройство для измерения скорости полета пули и снаряда. 1997. - 5 с.

6. Бринк А.Ф. Внутренняя баллистика. - Изд. Морского Министерства, 1901. - 370 с.

7. Попов Н.Н. К вопросу сообщении телам высоких скоростей полета // Вестник МГУ. - 1962. № 4. - С. 27-37.

i Надоели баннеры? Вы всегда можете отключить рекламу.