Научная статья на тему 'Разработка газочувствительного элемента на основе пленок оксидов меди для датчика аммиака'

Разработка газочувствительного элемента на основе пленок оксидов меди для датчика аммиака Текст научной статьи по специальности «Нанотехнологии»

CC BY
343
108
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АЗОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ / АТМОСФЕРНЫЙ ВОЗДУХ / СЕНСОРЫ / ОКСИДЫ МЕДИ / GAS-SENSITIVE ELEMENT / ATMOSPHERIC AIR / SENSORS / COPPER OXIDES

Аннотация научной статьи по нанотехнологиям, автор научной работы — Моисеева Татьяна Анатольевна, Мясоедова Татьяна Николаевна, Петров Виктор Владимирович, Кошелева Наталия Николаевна

Освещена актуальность проблемы создания газочувствительного элемента для анализа состава атмосферного воздуха. Показано, что наиболее перспективными материал для создания высокочувствительных сенсоров являются оксиды меди. Для формирования данного материала состава CuOx в виде пленки была разработана технология на основе цитратного золь-гель метода. Полученные материалы проявили газовую чувствительность к аммиаку в диапазоне концентрация 25-150 ppm при температуре 180°С. Сенсорные элементы, созданные на их основе тонких пленок, могут быть использованы в датчиках контроля воздуха рабочей зоны промышленных предприятий.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Моисеева Татьяна Анатольевна, Мясоедова Татьяна Николаевна, Петров Виктор Владимирович, Кошелева Наталия Николаевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Development of Gas Sensitive Element Based on Copper Oxides Films for Ammonia Detection

This paper is devoted to development of gas sensors air control. It is shown that copper oxides are the promising materials for high sensitive sensors. The CuOx film material was syntheses by means of citrate sol-gel technique. The sensors fabricated on the basis of CuOx film material were sensitive to ammonia gas in the range of 25-150 ppm. Working temperature was determined as 180 °C. Such sensors can be used for work area air control of industrial enterprises.

Текст научной работы на тему «Разработка газочувствительного элемента на основе пленок оксидов меди для датчика аммиака»

Разработка газочувствительного элемента на основе пленок оксидов меди для датчика аммиака

Т. А. Моисеева *, Т.Н. Мясоедова *, В.В. Петров х, Н.Н. Кошелева 2

!Южный федеральный университет, г. Ростов-на-Дону ФГБОУ ВПО «Воронежский государственный технический университет»

В последнее время большое число научных исследований проводится в области разработки материалов для датчиков контроля состава атмосферного воздуха [1]. Особый интерес уделяется сенсорам газов резистивного типа на основе неорганических пленок оксидов металлов, в том числе оксидов меди (СиО и Си20) [2-4]. Преимуществами оксидов меди перед другими оксидами является их низкая стоимость, химическая стойкость, простота изготовления пленок. Для использования пленок оксидов меди в качестве чувствительного слоя в сенсорах газов необходимо придание им следующих характеристик: быстроты реакции при воздействии газа, стабильности электрических характеристик во времени, широкого диапазона чувствительности, высокой селективности. Все выше перечисленное достигается путем применения соответствующего метода изготовления, а также подбором необходимых технологических режимов. Так, основными методами изготовления пленок оксидов меди являются электрохимическое осаждение, золь-гель метод, термическое окисление, вакуумное напыление [5, 6]. В данной работе образцы пленок состава Си0х для создания сенсора аммиака на их основе изготавливались цитратным золь-гель методом, преимущества которого описаны ранее в работе [7].

Для получения пленок состава Си0х был приготовлен золь на основе этиленгликоля с добавками спиртово-водного раствора ^02 и лимонной кислоты для закисления золя с целью образования вязкого раствора. Этиленгликоль добавляли в избытке, поскольку гидроксильные группы стабилизируют в растворе металл-цитратные комплексы и способствуют образованию низкомолекулярных олигомеров. Далее приготовленные растворы выдерживались в течение 24 часов для приобретения пленкообразующих свойств при pH=4. Готовый раствор наливали в чашку Петри, куда помещалась термически окисленная кремниевая пластина, предварительно обработанная в азотной кислоте. Пластина выдерживались в растворе в течение нескольких дней при комнатной температуре при периодическом перемешивании. В завершении образцы проходили двухступенчатую термическую обработку: сушка при 200 0С и отжиг при 500 0С. Указанная температура отжига позволяет стабилизировать структуру пленки и придать заданные электрофизические характеристики, например, ширину запрещенной зоны [7]. Разработанная технологическая схема формирования пленки состава Си0х представлена на рис.1

Рис.1. - Технологическая схема формирования пленок Си0х Поверхность полученных материалов была исследована методом растровой электронной микроскопии (РЭМ) (рис.2).

Анализ РЭМ изображений медьсодержащих пленок показал, что поверхность не является однородной. Более детальное рассмотрение позволяет сделать вывод о том, что неоднородности являются областями кристаллизации оксидов меди, средний размер кристаллитов которых составляет порядка 5-10 нм.

Для исследования газочувствительных характеристик пленок был сформирован лабораторный образец сенсорного элемента. Сенсорный элемент состоит из кремниевой подложки, диэлектрического слоя SiO2 толщиной 1 мкм, газочувствительной пленки состава СиОх и металлизированных контактов (рис. 3)

SiO:

Си Ох

Xj У:Св:№]

|рлгиТ

Рис.3.- Лабораторный образец сенсорного элемента

В результате исследования газочувствительных свойств была обнаружена реакции на аммиак при температуре 180°С в диапазоне концентраций 25-150 ppm, отличающаяся стабильностью и воспроизводимостью. Типичная динамика отклика сенсорного элемента, представлена на рис. 4, а, по которой установлено, что время отклика и время восстановления составляют 4-6 сек и 80-120 сек, соответственно.

На основе полученных данных был определен коэффициент газовой чувствительности (S) по известной формуле:

где Ог - проводимость сенсора при воздействии газа (Ом 1) , Оо - проводимость в воздухе (Ом-1).

Показано, что адсорбционная способность поверхности не превышает 100 ppm (рис.4б), что позволяет определять концентрацию аммиака в воздухе рабочей зоны на уровне ПДК равной (28 ppm).

о

г

d

время, сек.

а)динамика отклика на концентрацию NH3 100 ppm при

б) зависимость коэффициента газовой чувствительности от концентрации NH3 (

Рис.4.- Газочувствительные свойства сенсорного элемента на основе пленок CuOx при рабочей температуре 1800С

Таким образом, в работе показано, что посредством довольно простой технологии основанной на золь-гель методе, возможно сформировать пленки оксидов меди, которые обладают газочувствительностью к аммиаку. Сенсорные элементы, созданные на их основе, могут быть использованы в датчиках контроля воздуха рабочей зоны промышленных предприятий.

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.А18.21.2097 «Разработка автоматизированной системы мониторинга для контроля и прогнозирования состояния окружающей среды».

Литература

1. Петров В.В., Назарова Т.Н., Копылова Н.Ф., Вороной А.А. Исследование процесса получения и свойств наноразмерного материала состава SIO2SnOXCuOY, для сенсора газа //Известия Южного федерального университета. Технические науки. 2011. - Т. 117. - № 4. - С. 123 - 128.

2. S.C. Ray, Preparation of copper oxide thin film by the sol - gel-like dip technique and study of their structural and optical properties, Solar Energy Materials & Solar Cells, - 2001. -p.307 - 312.

3. Назарова Т.Н., Петров В.В., Заблуда О.В., Яловега Г.Э., Смирнов В.А., Сербу Н.И., Шматко В.А. Исследование физико - химических и электрофизических свойств материалов состава SIO2CuOX// Известия Южного федерального университета. Технические науки. -2011. - Т. 114. - № 1. - С. 103 - 108.

4. Please cite this article as: V. Dhanasekaran, T. Mahalingam, R. Chandramohan, Jin-Koo Rhee, J.P. Chu, Electrochemical deposition and characterization of cupric oxide thin films,Thin Solid Films, - 2012.

5. I. G. Casella and M. Gatta, J. Electroanal. Chem.2000. - №12. - 494с.

6. Петров В.В., Королев А.Н. Наноразмерные оксидные материалы для сенсоров газов. - Таганрог: Изд-во ТТИ ЮФУ, 2008. - 153 c.

7. O. Akhavan, H. Tohidi, A.Z. Moshfegh. Synthesis and electrochromic study of sol-gel cuprous oxide nanoparticles accumulated on silica thin film, Thin Solid Films. - 2009. - p. 700 -706.

i Надоели баннеры? Вы всегда можете отключить рекламу.