Научная статья на тему 'Рациональные схемы контроля прочности бетона по ГОСТ 18105'

Рациональные схемы контроля прочности бетона по ГОСТ 18105 Текст научной статьи по специальности «Строительство и архитектура»

CC BY
1980
190
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОНТРОЛЬ ПРОЧНОСТИ БЕТОНА / АНАЛИЗИРУЕМЫЙ ПЕРИОД / СХЕМА КОНТРОЛЯ / ФАКТИЧЕСКИЙ КЛАСС БЕТОНА ПО ПРОЧНОСТИ / CONTROL OF THE CONCRETE STRENGTH / THE ANALYZED PERIOD / CONTROL SCHEME / THE ACTUAL CONCRETE STRENGTH

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Несветаев Г.В., Кардумян Г.С., Коллеганов А.В.

Представлены предложения по рациональной организации контроля прочности бетона по ГОСТ 18105 для сборных изделий, товарной бетонной смеси и монолитных конструкций. Введено понятие «скользящий анализируемый период». Показана нецелесообразность применения контроля по схеме Б. Обоснована необходимость применения контроля по косвенным показателям и разработки экспресс-методов оценки прочности бетона при контроле товарных бетонных смесей. Предложена рациональная организация контроля прочности бетона монолитных конструкций с использованием прямых и косвенных методов. Показана необоснованность применения статистических методов контроля при контроле прочности бетонов монолитных конструкций.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Несветаев Г.В., Кардумян Г.С., Коллеганов А.В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

A rational scheme for the control of concrete strength according to GOST 18105

Offers on the rational organization of control of durability of concrete according to GOST 18105 for modular products, commodity concrete mix and monolithic designs are presented. The concept of "moving analyzed period"is introduced. It is shown that it is not reasonable to use the control scheme for the control of the indirect indicators and the development of rapid methods for assessing the strength of concrete in the control of commercial concrete mixtures. The rational organization of concrete strength control of monolithic structures using direct and indirect methods is proposed. The groundlessness of application of statistical methods of control at control of durability of concrete of monolithic designs is shown.

Текст научной работы на тему «Рациональные схемы контроля прочности бетона по ГОСТ 18105»

Рациональные схемы контроля прочности бетона по ГОСТ 18105

12 3

Г.В. Несветаев , Г.С. Кардумян , А.В.Коллеганов 1 Донской государственный технический университет, Ростов-на-Дону 2 АО «НИЦ «Строительство», НИИЖБ им. А.А. Гвоздева, Москва 3Северо-Кавказский федеральный университет, Ставрополь

з,

3

Аннотация: Представлены предложения по рациональной организации контроля прочности бетона по ГОСТ 18105 для сборных изделий, товарной бетонной смеси и монолитных конструкций. Введено понятие «скользящий анализируемый период». Показана нецелесообразность применения контроля по схеме Б. Обоснована необходимость применения контроля по косвенным показателям и разработки экспресс-методов оценки прочности бетона при контроле товарных бетонных смесей. Предложена рациональная организация контроля прочности бетона монолитных конструкций с использованием прямых и косвенных методов. Показана необоснованность применения статистических методов контроля при контроле прочности бетонов монолитных конструкций.

Ключевые слова: контроль прочности бетона, анализируемый период, схема контроля, фактический класс бетона по прочности.

Важная роль в обеспечении требований по безопасности, эксплуатационной пригодности и долговечности бетонных и железобетонных конструкций (п. 4.1 СП 63.13330) принадлежит бетону, качество которого, в т.ч. в первую очередь предел прочности на сжатие, определяется совокупностью рецептурных и технологических факторов [1], в связи, с чем невозможно переоценить значимость системы контроля прочности бетона. Основным документом, регламентирующим правила контроля прочности бетона, является ГОСТ 18105 (1986 (2003) г., 2010 г.). Следует отметить также ГОСТР 53231 - 2008. Несмотря на достаточно длительный период действия стандарта в редакции 2010 г. периодически возникают разногласия и спорные моменты между поставщиками товарной бетонной смеси, потребителями и контролирующими инстанциями, что в определенной степени свидетельствует, в т.ч., о несовершенстве стандарта. Разногласия возникают, в основном, из-за неправильной трактовки ГОСТ или нежелания проводить комплекс испытаний. В первую очередь определяют

прочность по ГОСТ 10180, 22690, 17624, 28570 и др. На этой стадии возникают вопросы, связанные с достоверностью испытаний (квалификация исполнителей, погрешность приборов). Далее возникают противоречия, связанные с выбором схемы контроля и объема испытаний.

В 2018 г. обсуждалась новая редакция ГОСТ 18105 - 2018 [2], которая, несмотря на некоторые позитивные моменты, в основном локальные, сохранила, к сожалению, ряд недостатков, присущих действующему ГОСТ, прежде всего - саму концепцию контроля прочности. Главное - поскольку существует четко различные области контроля прочности бетона бетонных и железобетонных конструкций, а именно: производство сборных изделий, производство товарной бетонной смеси и контроль прочности бетона монолитных конструкций, то и документов, регламентирующих контроль прочности, тоже должно быть три (вспомним ГОСТ 18105.0; 18105.1...). Особый случай составляет оценка прочности бетона эксплуатируемых, в т.ч. в течение длительного времени, конструкций, который в настоящей работе не рассматривается. Очевидно, что в обозримом будущем ситуация с нормами по правилам контроля прочности не изменится, но в рамках действующего ГОСТ 18105 вполне можно выстроить достаточно рациональную схему контроля для каждой из трех вышеуказанных областей.

Для предприятия, производящего сборные железобетонные изделия в условиях ритмичного производства, т.е. при наличии достаточного количества «единичных значений для определения характеристик однородности бетона по прочности», контроль прочности бетона после тепловлажностной обработки (ТВО) целесообразно проводить по схеме А [3]. В случае применения схемы Б по ГОСТ 18105 значения при неизменных условиях производства всегда будут получаться завышенными, как следует из представленных на рис. 1 данных.

Рис. 1 Зависимость коэффициента КТ в ф. (10) ГОСТ 18105 от числа единичных значений прочности бетона при скользящем коэффициенте вариации прочности соответственно: 0,1 - 10% и 0,13 - 13%

Поскольку, согласно табл. 2 ГОСТ 18105, коэффициент требуемой прочности КТ при контроле прочности по схеме А составляет соответственно 1,14 и 1,28 при среднем коэффициенте вариации прочности 10 и 13%, то очевидно, что при числе единичных значений до 60 величина КТ при контроле по схеме А всегда будет меньше, чем при контроле по схеме Б. Какой в таком случае смысл в «скользящем коэффициенте вариации прочности бетона за анализируемый период»? Значительно проще для учета результатов контролируемой партии, т.е. «сегодняшнего» состояния технологии, на что ориентирована схема Б, использовать понятие «скользящий анализируемый период». В этом случае для учета результатов подлежащей приемке партии включаем ее в анализируемый период. Число единичных значений прочности целесообразно в этом случае принять постоянным и равным, как предписывает стандарт, 30. Процедура вычислений при этом существенно упрощается. Согласно п. 4.3 ГОСТ

18105 «определение характеристик однородности бетона по прочности» требует не менее 30 единичных результатов. В условиях ритмично работающего предприятия при двухсменной работе этот период составит 15 рабочих дней (три недели). Каждый день в массив данных, включающий 30 единичных значений прочности, добавляются единичные значения прочности по контролируемой партии и из массива данных удаляются единичные значения вчерашнего «начала периода». Согласно п. 6.1 ГОСТ 18105 «продолжительность анализируемого периода для определения характеристик однородности бетона по прочности по схемам А и Б устанавливают от одной недели до трех месяцев», так что здесь все «в рамках закона». Применение контроля по схеме А с использованием «скользящего анализируемого периода» позволит вести контроль только по схеме А с более полным учетом возможных изменений в технологическом процессе и отказаться от применения схемы Б, что, в т.ч. положительно повлияет на воспроизводимость результатов контроля, полученных поставщиком и потребителем. Поскольку в партию включают продукцию, изготовленную в течение не менее одной смены (п. 5.1 ГОСТ 18105), а указаний на то, что анализируемый или контролируемый периоды должны начинаться первого либо иного числа какого-либо месяца, в стандарте нет, вышеописанный подход не противоречит ГОСТ 18105. Следует отметить, что контроль прочности бетона сборных изделий является наименее проблемной ситуацией, поскольку, во-первых, у предприятий с «историей» имеется богатый опыт, во-вторых, в спорных случаях всегда есть возможность задержать продукцию на предприятии до выяснения возникших вопросов.

Несколько иная ситуация при производстве товарной бетонной смеси. Производитель передает потребителю продукцию, реальные свойства которой де-факто будут известны через довольно длительный период

времени. Для контроля прочности бетона при производстве товарной бетонной смеси в условиях ритмично работающего производства также целесообразно применять схему А и «скользящий анализируемый период». Поскольку результат по прочности в этом случае будет получен только через месяц, очевидно, что никакое оперативное вмешательство в технологический процесс в этом случае невозможно, как, впрочем, фактически невозможна и приемка партии в момент отгрузки потребителю. Общим принципом обеспечения качества в этом случае является обеспечение соответствия каждой партии продукции некоторому «эталону», свойства которого заведомо соответствуют требованиям. Как известно, это достигается обеспечением, во-первых, операционного контроля качества компонентов, точности дозирования и качества перемешивания, во-вторых, контролем косвенных показателей качества (например, подвижность и средняя плотность бетонной смеси, содержание вовлеченного воздуха). Контроль указанных показателей наряду с операционным контролем технологического процесса позволит сделать некоторое заключение о соответствии бетонной смеси «эталону». В третьих, может быть целесообразным применение экспресс-методов оценки прочности бетона, особенно если в технологическом процессе используется, например, цемент новой партии. Это могут быть, например:

- прогрев в воде (ГОСТ 22783) либо пропаривание по стандартному режиму, что позволит получить результат на следующие сутки;

- прогноз проектной прочности по ее кинетике в ранний период [4], что позволит получить результат через 4 суток.

Возможны другие варианты. Понятно, что указанные методы имеют ограничения по применению. Так, прогревные методы могут быть реализованы в случае использования цемента с достаточно постоянным и известным коэффициентом эффективности цемента при пропаривании.

Прогноз по кинетике прочности в ранний период может быть реализован в случае отсутствия влияния химических добавок в составе бетонной смеси на кинетику прочности в ранний период, что не всегда имеет место. Но в случае применения в условиях конкретного производства работающего экспресс-метода появляется возможность, при необходимости, некоторого оперативного вмешательства в технологический процесс.

Важным моментом при производстве товарной бетонной смеси является обоснованное назначение уровня контролируемой прочности бетона, значение которого должно устанавливаться с учетом возможного влияния на показатели однородности бетона по прочности технологии бетонных работ и, что особенно важно, схемы контроля прочности бетона в конструкциях у потребителя. В табл. 1 для примера представлены значения величины требуемой прочности бетона Ят при контроле по различным схемам.

Таблица №1

Расчетные значения Ят для бетона класса В25, МПа

Показатель Схема контроля

А1 В1 Г

Расчет Ят Ят = Кт В Кт = 1,322 Ят = Кт В Ят = В/0,8

Величина Ят 1,14-25=28,5 1,32-25 = 33,0 25/0,8 = 31,3

Примечания: 1 - коэффициент вариации прочности бетона при схеме А и В принят 10%; 2 - расчет Кт по п. 6.5 ГОСТ 18105

Очевидно, что при значении Ят = 29 МПа у производителя товарной бетонной смеси, работающего по схеме контроля А, партия будет принята (Ят> Ят). Но у потребителя, работающего по схеме контроля В или Г, даже при Ят = 29 МПа (что маловероятно) партия приемке не подлежит. П. 4.3 ГОСТ 7473 допускает возможность поставки бетонной смеси с указанием минимальной средней прочности бетона в поставляемой партии Ят, но при

этом в стандарте отсутствуют какие-либо ограничения по максимальному значению этой величины. Можно ли указать для бетона класса В 25 значение Ят = 33 МПа? Вероятно, да, поскольку именно это значение приведено в п. 4.3 ГОСТ 7473. А 38 МПа? А 46 МПа? Прямого ответа в стандарте нет. Можно, конечно, принять в данном примере предельное максимальное значение величины Ят = 1,43-25 = 35,8 МПа (согласно табл. 2 ГОСТ 18105 -2010 или табл. А.1 ГОСТ 18105 - 2018 максимальный коэффициент вариации прочности составляет 16%, в этом случае кт = 1,43). Но в практике часто возникают разногласия и по более обоснованным положениям норм, поэтому это положение стандарта должно быть четко оговорено. В случае тендера на поставку товарной бетонной смеси ее стоимость является ключевым моментом, но, поскольку повышение минимальной средней прочности бетона в поставляемой партии Ят связано с повышением стоимости бетонной смеси, вероятность поставки смеси, не позволяющей обеспечить требуемую прочность бетона в монолитной конструкции, возрастает. Что далее? Дорогостоящие мероприятия по усилению?

Самым сложным моментом является контроль прочности бетона монолитных конструкций, поскольку, помимо возможной поставки некачественной бетонной смеси, на прочность бетона монолитной конструкции существенное влияние оказывают технологические факторы -укладка (возможность, например, расслоения), уплотнение (возможность недоуплотнения), уход за твердеющим бетоном (тепломассоперенос, массообмен и др.). Очевидно, что в случае поставки некачественной бетонной смеси получить качественный бетон монолитной конструкции невозможно, а поставка качественной бетонной смеси еще не гарантирует получение качественного бетона монолитной конструкции. Согласно п. 11.1.2 ГОСТ 7473 производитель гарантирует в проектном возрасте нормируемые показатели качества бетона «...при соответствии режимов

твердения бетона нормальным по ГОСТ 10180». В монолитной конструкции это практически нереально. В этой ситуации ключевую роль играет входной контроль на объекте, который часто игнорируется потребителем. При этом схема входного контроля у поставщика и потребителя должны быть одинаковой. Это позволит выявить факт поставки некачественной бетонной смеси, правда, постфактум.

В новой редакции ГОСТ 18105, п. 8.5.5 предусматривает контроль по схеме В в случае «...если при контроле по схеме Г условие (17) не выполняется». Положение, с учетом представленных в табл. 2 данных, дискуссионное. На захватке 1 и 3 применение схемы Г недопустимо, поскольку Ут > 9% (п. 5.5 ГОСТ 18105-2018), но на захватке 1 контроль по схеме Г, как и по схеме В, дает положительный результат, тогда как на захватке 3 практически при такой же неоднородности бетона по прочности обе схемы контроля дают отрицательный результат. В связи с этим выбор применения схемы контроля В вместо применения контроля по схеме Г только на основании п 5.5 ГОСТ 18105-2018 вряд ли оправдан. Влияние оказывают единичные значения прочности, и, как следует из данных табл. 2, при практически равных значениях Ут значения Ят могут быть различными в одном и том же диапазоне изменения единичных значений прочности. Причиной этого может быть, в том числе, поставка бетонной смеси различными производителями [5]. В этом случае целесообразно провести контроль для каждой отдельной конструкции, что предусмотрено п. 8.1.2 новой редакции ГОСТ 18105.

Таблица №2

Фактический класс бетона в зависимости от неоднородности бетона по

прочности и схемы контроля

Захватк а Количество колонн Диапазон прочности, МПа МПа §т, МПа Ут, % Вф, МПа

Схема Г Схема В

1 12 32 - 43 37,5 3,5 9,3 30,6 31,2

2 39,0 2,8 7,2 31,2 34,0

3 34,9 3,3 9,5 27,9 29,0

Фактический класс бетона по прочности на сжатие при числе участков 6< п <15 предлагается определять по ф. (14) ГОСТ, которая может быть приведена к виду

= ^■а-^-ад (1)

Выражение в скобках, по сути, является коэффициентом, значение которого при контроле по схеме Г составляет 0,8. На рис. 2 представлена зависимость величины этого коэффициента по ф.(1) в зависимости от числа участков и однородности значений прочности.

Очевидно, что значение выражения в скобках ф.(1) будет не менее 0,8 при коэффициенте вариации прочности не более 0,1. Получается, что контроль по схеме Г априори полагает достаточно высокую однородность бетона по прочности? Всегда ли это имеет место? Надо отметить, что в редакции ГОСТ 18105 - 2018 в п. 5.5 четко оговорены условия применения схемы Г, согласно которым при числе единичных значений до 15 коэффициент вариации прочности не должен превышать 9%, что является весьма важным и своевременным дополнением к предыдущей редакции. Однако, как показано выше, ориентация только на показатель однородности бетона по прочности не всегда оправдана.

Рис. 2 Зависимость величины выражения в скобках в ф.(1)в зависимости от числа участков и однородности значений прочности 0,13 - 0,1 - коэффициент вариации прочности бетона;

Г - при схеме контроля «Г»

Не совсем логичным выглядит требование п. 7.5 ГОСТ 18105 - 2010 (п. 8.4.1 ГОСТ 18105 - 2018). Поскольку, согласно п. 5.8 ГОСТ 18105 - 2010 «... проводят сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии» (п. 8.1.4 ГОСТ 18105 - 2018), не совсем понятно, зачем применять статистические методы, которые предназначены для оценки качества всей партии продукции по результатам испытаний некоторой выборки из этой партии, при сплошном контроле, когда оценивается качество каждой единицы продукции? Рационально использовать, например, следующую схему. Заходим на захватку, содержащую, например, п колонн. Выполняем контроль прочности всех конструкций неразрушающими методами. Сравнение различных методов неразрушающего контроля прочности бетона производилось неоднократно [6

- 12]. Методы различаются по трудозатратам, естественно, стоимости, продолжительности испытаний, диапазону контролируемой прочности, точности. В любом случае, в зависимости от вида конструкции, в нашем случае целесообразно применять метод контроля с наименьшими значениями стоимости и продолжительности испытаний, например, ультразвук, при этом градуировка прибора не требуется, поскольку на данном этапе выполняем всего лишь ранжирование конструкций по скорости распространения ультразвука. При этом особое внимание следует уделить влажности бетона конструкций, она не должна существенно различаться [13]. Выявляем, например, две конструкции, в которых скорость ультразвука минимальная. Определяем предел прочности бетона в этих конструкциях прямыми методами, лучше всего по кернам. В случае если «самая минимальная» прочность в одной из конструкций выше нормируемого класса по прочности, конструкцию, естественно, следует принимать. Естественно, все остальные конструкции на захватке тоже, поскольку значения прочности бетона в этих конструкциях не ниже. Поскольку стандарт в новой редакции предусматривает приемку бетона по прочности для каждой отдельной конструкции, такой подход правомерен. Если результат отрицательный, придется продолжить определение прямыми методами. Целесообразно в этом случае определить прочность в конструкциях с потенциально максимальной и некоторыми «средними» значениями прочности, что позволит построить градуировочную зависимость и определить прочность бетона в каждой конструкции. Далее целесообразно провести приемку бетона по прочности для каждой отдельной конструкции.

Понятно, что для учета возможных ошибок измерения следует применять некоторый коэффициент безопасности, обоснованное назначение которого играет важную роль, при этом очень важно учесть и риск потребителя, и риск производителя [14], а также возможность ошибок,

связанных с методикой и объемом выборки при измерениях [15,16]. Как известно, основная задача измерений - обеспечить достоверность определения прочности бетона в конструкции. К сожалению, положения стандарта по этому вопросу для монолитных конструкций не всегда последовательны и однозначны. Например, п. 8.1.6 ГОСТ 18105 - 2018 указывает: «При выявлении зон конструкций, прочность бетона которых ниже средней прочности более чем на 15 %, следует проводит локализацию этих зон, а оценку прочности в таких зонах выполнять отдельно от основной конструкции». Локализовали. Дальше что? Как быть с прочностью всей конструкции?

П. 8.1.5 ГОСТ 18105 - 2018 предусматривает контроль прочности монолитных конструкций и групп по схеме В, отдельных зон конструкций -по схеме В или Г. При этом в соответствии с п. 3.1.5 единичное значение прочности бетона для монолитной конструкции - это «значение прочности бетона контролируемого участка конструкции». Такая схема предполагает в дальнейшем для каждой конструкции определение фактического класса бетона по ф.(14). Т.е. мы опять имеем сплошной контроль. Очевидно, что если минимальный фактический класс бетона отдельной конструкции в группе конструкций соответствует условию п. 8.5.2, ф.(17), то группу конструкций следует принимать. К сожалению, в п. 8 ГОСТ 18105 - 2018 имеют место неоднозначные положения. Выводы.

1. При контроле прочности бетона бетонных и железобетонных изделий и при проверке качества бетонных смесей целесообразно отказаться от двух схем контроля А и Б. Целесообразно ввести понятие «скользящий анализируемый период» и осуществлять контроль по схеме А.

2. Для контроля прочности бетона при проверке качества бетонных смесей целесообразно определить возможные эффективные методы оперативного контроля прочности и ввести их в стандарт.

3. Положения стандарта, касающиеся контроля прочности бетона монолитных конструкций целесообразно упростить, исключив возможность разночтения и необоснованное применение методов статистического контроля при сплошном контроле, сократить и изложить в более предписывающей редакции.

Литература

1. Виноградова Е.В. Проблемы управления качеством бетонных работ // Инженерный вестник Дона, 2012, №3. URL: ivdon.ru/ru/magazine/archive/N3y2012/1273.

2. Коревицкая М.Г., Бруссер М.И., Кузеванов Д.В., Анцибор А.В. Актуализация правил контроля и оценки прочности бетона по ГОСТ 18105 // Строительные материалы. 2018. №8. С. 66-68. DOI: doi.org/10.31659/0585-430X-2018-762-8-66-68.

3. Касторных Л.И., Трищенко И.В., Гикало М.А. Контроль и оценка прочности бетона на заводах сборного и товарного бетона // Инженерный вестник Дона, 2013, №4. URL: ivdon.ru/ru/magazine/archive/N4y2013/2320.

4. Несветаев Г.В., Жильникова Т.Н. Прогноз марочной прочности бетона по кинетике твердения в ранний период: акад. чтения им. Шухова, Белгород: БелГАСМ. - 2003. С. 341-343.

5. Качество бетона и стандартизация правил контроля его прочности. О новой редакции стандарта ГОСТ Р53231-2008 / Подмазова С.А., Куприянов Н.Н., Крылов Б.А., Сагайдак А.И. // Технологии бетонов. 2009. № 5. С. 22-25.

6. Коноплев С.Н. К вопросу о доминирующем методе контроля и оценки прочности бетона монолитных конструкций // Технологии бетонов. 2013. № 7 (84). С. 34-35.

7. Улыбин А.В. О выборе методов контроля прочности бетона построенных сооружений // Инженерно-строительный журнал. 2011. № 4 (22). С. 10-15.

8. Беленцов Ю.А., Харитонов А.М., Тихонов Ю.М. Оценка методов контроля прочности бетона по критерию надежности возводимых конструкций // Вестник гражданских инженеров. 2017. №6 (65). С. 147-151.

9. Снежков Д.Ю., Леонович С.Н. Повышение достоверности контроля прочности бетона неразрушающими методами на основе их комбинирования // Промышленное и гражданское строительство. 2018. №1. С. 25-32.

10. Коревицкая М.Г., Кузеванов Д.В. Совершенствование нормативной базы для механических методов неразрушающего контроля прочности бетона // Бетон и железобетон. 2016. №1. С. 18-20.

11. Букин А.В., Патраков А.Н. Определение прочности бетона методами разрушающего и неразрушающего контроля // Вестник Пермского государственного технического университета. Строительство и архитектура. 2010. №1. С. 89-94.

12. Гончаров А.А., Бидов Т.Х., Трескина Г.Е., Беккер Ю.Л. Исследование градуировочных зависимостей, используемых при контроле прочности бетона неразрушающими методами // Научное обозрение. 2015. №12. С. 6872.

13. Несветаев Г.В., Коллеганов А.В., Ивлев Л.Н. Перспективы использования метода ультразвукового прозвучивания при обследовании и проектировании усиления железобетонных конструкций // Безопасность труда в промышленности. 2008. №2. С. 62-66.

14. Тур В.В. Статистический контроль прочности бетона на сжатие в соответствии с требованиями СТБ EN 206-1:2000 и ГОСТ 18105-2010 (EN

206-1:2000; NEQ). Часть 4. // Технологии бетонов. 2015. № 5-6 (106-107). С. 46-51.

15. Jasiczak J, Kanoniczak M, Smaga A (2017) Division of Series of Concrete Compressive Strength Results into Concrete Families in Terms of Seasons within Annual Work Period. J Comput Eng Inf Technol 6:6. doi: 10.4172/23249307.1000187.

16. Jasiczak J, Kanoniczak M, Smaga A Standard term concrete families on the example of continuous production of spiroll boards. Construction and architecture Budownictwo i Architektura. 2014.13: pp.99-108.

URL: yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-e7360cdf-1657-4736-bc53-7cac27e75711.

References

1. Vinogradova E.V. Inzenernyj vestnik Dona (Rus), 2012, №3. URL: ivdon.ru/ru/magazine/archive/N3y2012/1273.

2. Koreviczkaya M.G., Brusser M.I., Kuzevanov D.V., Ancibor A.V. StroiteFny'e materialy . 2018. №8. pp. 66-68.

3. Kastorny'x L.I., Trishhenko I.V., Gikalo M.A. Inzenernyj vestnik Dona (Rus), 2013, №4. URL: ivdon.ru/ru/magazine/archive/N4y2013/2320.

4. Nesvetaev G.V., Zhilnikova T.N. Prognoz marochnoj prochnosti betona po kinetike tverdeniya v rannij period [The prediction of the design strength of concrete on the kinetics of hardening in the early period]: akad. chteniya im. Shuxova, Belgorod: BelGASM. 2003. pp. 341-343.

5. S.A. Podmazova, N.N. Kupriyanov, B.A. KryTov, A.I. Sagajdak. Texnologii betonov. 2009. № 5. pp. 22-25.

6. Konoplev S.N. Texnologii betonov. 2013. № 7 (84). pp. 34-35.

7. Uly'bin A.V. Inzhenerno-stroitefny'j zhurnal. 2011. № 4 (22). pp. 10-15.

8. Belenczov Yu.A., Xaritonov A.M., Tixonov Yu. M. Vestnik grazhdanskix inzhenerov. 2017. №6 (65). pp. 147-151.

9. Snezhkov D.Yu., Leonovich S.N. Promyshlennoe i grazhdanskoe stroitefstvo. 2018. №1. pp. 25-32.

10. Koreviczkaya M.G., Kuzevanov D.V. Beton i zhelezobeton. 2016. №1. pp. 1820.

11. Bukin A.V., Patrakov A.N. Vestnik Permskogo gosudarstvennogo texnicheskogo universiteta. Stroitefstvo i arxitektura. 2010. №1. pp. 89-94.

12. Goncharov A.A., Bidov T.X., Treskina G.E., Bekker Yu.L. Nauchnoe obozrenie. 2015. №12. pp. 68-72.

13. Nesvetaev G.V., Kolleganov A.V., Ivlev L.N. Bezopasnosf truda v promy'shlennosti. 2008. №2. pp. 62-66.

14. Tur V.V. Texnologii betonov. 2015. № 5-6 (106-107). pp. 46-51.

15. Jasiczak J, Kanoniczak M, Smaga Ä (2017) Division of Series of Concrete Compressive Strength Results into Concrete Families in Terms of Seasons within Annual Work Period. J Comput Eng Inf Technol 6:6. doi: 10.4172/23249307.1000187.

16. Jasiczak J, Kanoniczak M, Smaga Ä Construction and architecture Budownictwo i Architektura 2014.13: pp.99-108.

URL: yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-e7360cdf-1657-4736-bc53-7cac27e75711.

i Надоели баннеры? Вы всегда можете отключить рекламу.