Научная статья на тему 'Radon transform on the plane over a finite ring: a new inversion formula'

Radon transform on the plane over a finite ring: a new inversion formula Текст научной статьи по специальности «Физика»

CC BY
86
33
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
RADON TRANSFORM / FINITE FIELDS / RINGS OF RESIDUE CLASSES

Аннотация научной статьи по физике, автор научной работы — Vodolazhskaya E. V., Kuzovkin S. V.

The Radon transform R on the plane over a finite ring K assigns to a function f on K sums of its values on lines. We write a new inversion formula for a field and the ring of cosets modulo p^2.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Radon transform on the plane over a finite ring: a new inversion formula»

UDK 517.43

Radon transform on the plane over a finite ring: a

new inversion formula 1

© E. V. Vodolazhskaya, S. V. Kuzovkin

Derzhavin Tambov State University, Tambov, Russia

The Radon transform R on the plane over a finite ring K assigns to a function f on K sums of its values on lines. We write a new inversion formula for a field and the ring of cosets modulo p2.

Keywords: Radon transform, finite fields, rings of residue classes

In our previous talk [1] we described the image of the Radon transform and wrote an inversion formula for the plane over a finite ring when this ring is either a field or the ring of cosets modulo p2 with prime p. In this paper we present an inversion formula of essentially other structure for the same cases.

Let K be a finite ring with q elements, K2 = K x K the plane over K. A line on the plane K2 is the set t of points z = (x,y) E K2 satisfying the equation

ax + by = c,

where a,b,c E K and a and b are not zero divisors simultaneously. Let H denote the set of all lines.

For a finite set X, let L(X) denote the linear space of C-valued functions on X. Its dimension is equal to the number of elements of X.

The Radon transform R assigns to any function f E L(K2) the function Rf E L(H) whose value at a line t is equal to an "integral" of the function f over this line, i.e.

(Rf )(t) = Y f (z).

zel

The transform R is a linear operator L(K2) ^ L(H).

1 Supported by the Russian Foundation for Basic Research (RFBR): grant 09-01-00325-a, Sci. Progr. "Development of Scientific Potential of Higher School": project 1.1.2/9191, Fed. Object Progr. 14.740.11.0349 and Templan 1.5.07

1782

For points z,w E K2, let us denote by T(z,w) the number of lines passing through these points, (for w = z it is the number of lines passing through the point z). We obtain a kernel T(z,w), or a matrix T of order q2. Let us define an operator

zel

Theorem 1.1 Let us assume that the matrix T is invertible, denote by S the reciprocal 'matrix: S = T-1, let S(z,w) be its elements. Then

Therefore, the matrix T can be written as T = qE + / where E is the identity matrix, / denotes the matrix whose entries are equal to 1, Using formula (3), where a = q, ft = 1, r = q2, we obtain

Kq

formula

Now let K be the ring of cosets modulo p2, p is prime. Let D be the set of zero divisors: 0,p, 2p,..., (p — 1)p. Denote D2 = D x D. Then

Therefore, the matrix T can be written as matrix (4), where m = r = p2, the matrix C has the form (2) with a = p2 + p — 1, ft = p — 1, such that we have a = p3 in formula (5), Using (6), we get

M : L(H) ^ L(K2) bv

(M(F))(z) = Y, F(t).

f (z)= S (z,w)(M (Rf))(w).

(1)

weK 2

Proof, We have

(M(Rf))(z) =Y, T(z,w)f(w),

weK2

therefore

s(z,w)(M(Rf))(w) = S(z,w)H T(w,u)f(u)

weK2

weK2

ueK2

f(z).

Kq

f (z) = J+njfa2+q—i){M {Rf ))z — T,(m (Rf ))(w)}

J- \J- /

1783

K p2 p

inversion formula

f(z) =

1

5 + p4 — p3 + p — 1)(M (Rf ))(z)

p6(p + 1)

(p3 — p +1) Y (M(Rf))(w) — Y (M(Rf))(w)}-

t?ez+D2,w=z

wez+D2

In proofs of Theorems 2 and 3 we use formulae for some reciprocal matrices. These formulae can be checked immediately,

Cr

C = aE + ft/.

Then

C-1 = - E-

ft

a a (a + rft)

/.

(2)

(3)

Let A be the following mr x mr matrix written as a block matrix with blocks of order r:

C + / / . . . /

/ C + / ... /

(4)

\ / / ... C + / y

C

C/ = /C = a/,

(5)

a being a number. Then the reciprocal matrix C 1 satisfies the eondition /C

-1

a-1/

A

1

( C-1 + 11/ 11/ ...

^/ C-1 +1/ ...

V i/

where 1 = —{a(a + mr)}-1.

l/

l/ \ l/

C-1 +1/

(6)

References

1, E, V, Vodolazhskava, Radon transform on a finite plane. International Workshop "Polynomial Computer Algebra April 4-7, 2008, St.-Peterburg, Russia, 78-80.

1784

i Надоели баннеры? Вы всегда можете отключить рекламу.