Научная статья на тему 'Quantum nano-plasmonics for biosensing and bioimaging on the level of single molecules and virions'

Quantum nano-plasmonics for biosensing and bioimaging on the level of single molecules and virions Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
23
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Quantum nano-plasmonics for biosensing and bioimaging on the level of single molecules and virions»

*

ALT'23 The 30th International Conference on Advanced Laser Technologies

P-I-8

Quantum nano-plasmonics for biosensing and bioimaging on the level

of single molecules and virions

P.N. Melentiev,11.V. Doronin,2'3 A. A. Zyablovsky,2,3,4 E. S. Andrianov,2,3 D.S. Kudryavtsev,5 V. Mozhaeva,5 I. Ivanov,5 A. Siniavin,5,6 A. S. Kalmykov,1 A.S. Gritchenko,1 B.N. Khlebtsov,7 S.-P. Wang,8 B. Kang,9 V. I. Tsetlin,7 Victor I. Balykin1

1 Institute of Spectroscopy of Russian Academy of Sciences, Fizicheskaya str. 5, Troitsk, Moscow, 108840, Russia 2 Moscow Institute of Physics and Technology, Institutskiy per. 9, Moscow, 141700, Russia 3 Institute for Theoretical and Applied Electromagnetics, Izhorskaya str. 13, Moscow, 125412, Russia 4 Kotelnikov Institute of Radioengineering and Electronics RAS, Mokhovaya str. 11 -7, Moscow, 125009, Russia

5 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia 6 N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology,

Ministry of Health

7 Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of

Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia

8 State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, P. R. China

The detection and visualization of single atoms and molecules has always been one of the most important tasks of both fundamental scientific and practical importance: the study of the effects of quantum electrodynamics, the development of monatomic/single-molecule devices, the visualization of biological tissues, and much more. Recently, single molecule detection methods have been used to detect substances at very low concentrations: The molecules of an analyte are detected individually in a sample, which is known as the single-molecule counting method (SMCM).

Recent advances in quantum technology at the nanoscale have enabled the construction of nanoscale mesoscopic systems with quantum emitters, metal and dielectric nanostructures. These systems can exhibit profound quantum electrodynamic properties due to various physical mechanisms such as Foerster energy transfer, plasmonic field enhancement, and strong optical matter-wave coupling. In our study, we demonstrate the realization of ultrabright and optically stable plasmonic nanoemitters suitable for the detection and visualization of single biomolecules and virions.

In our study, we consider SMCM in sensing based on the use of ultrabright and optically stable plasmonic nanoemitters of light. The approach demonstrates sensitivity at the single-molecule level, enabling 5-minute-per-detection of practically important biomarkers of human diseases. As a practical implementation of SMCM, we demonstrate: (i) detection of biomolecules in ultralow concentrations of troponin in human blood - the most important biomarker for human cardiovascular disease - at a level of 10 - 20 fM, (ii) detection of SARS-COV -2 virus particles (human coronavirus). The fundamental limitations of the sensitivity of such approaches and the problems of their practical implementation are discussed.

i Надоели баннеры? Вы всегда можете отключить рекламу.