Научная статья на тему 'PURIFICATION OF HOT WATER BY ZEOLITE MODIFIED WITH MANGANESE DIOXIDE'

PURIFICATION OF HOT WATER BY ZEOLITE MODIFIED WITH MANGANESE DIOXIDE Текст научной статьи по специальности «Строительство и архитектура»

CC BY
84
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Magazine of Civil Engineering
Scopus
ВАК
RSCI
ESCI
Ключевые слова
HOT WATER / NATURAL ZEOLITE / MANGANESE DIOXIDE / HYDROGEN SULFIDE / BUILDINGS / CONSTRUCTIONS / ENERGY EFFICIENCY

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Chechevichkin A.V., Vatin N.I., Samonin V.V., Grekov M.A.

A new material is proposed for complex purification of hot water from iron and hydrogen sulphide – natural zeolite modified by manganese dioxide. It has been shown experimentally that this filtering material has high efficiency of water purification from iron and hydrogen sulphide, low mechanical degradability during operation, as well as low water consumption for washing during regeneration of the filtration media. The complex cleaning of hot water is proposed to carry out by means of two stages: the first – filtration cleaning from insoluble iron compounds with linear water velocity of 10–12 m/h, and the second – oxidation-catalytic purification from hydrogen-sulphide with velocity 1–2 m/h. Regeneration of a filtering material based on a manganese-modified natural zeolite can be carried out by back washing and chemical treatment with an oxidizer solution.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ОЧИСТКА ГОРЯЧЕЙ СЕТЕВОЙ ВОДЫ ЦЕОЛИТОМ, МОДИФИЦИРОВАННЫМ ДИОКСИДОМ МАРГАНЦА

Для комплексной очистки горячей сетевой воды от железа и сероводорода предложен новый материал – модифицированный диоксидом марганца природный цеолит. Экспериментально показано, что данный фильтрующий материал имеет высокую эффективность очистки воды от железа и сероводорода, низкую механическую разрушаемость в процессе эксплуатации, а также малый расход воды на промывку при проведении регенерации загрузки. Предложено комплексную очистку горячей сетевой воды проводить в два этапа: первого – фильтрационной очистки от нерастворимых соединений железа с линейной скоростью движения воды 10–12 м/час, и второго – окислительно-каталитической очистки от сероводорода со скоростью 1–2 м/час. Регенерация фильтрующего материала на основе модифицированного диоксидом марганца природного цеолита может проводиться методом обратной промывки и химической обработки раствором окислителя.

Текст научной работы на тему «PURIFICATION OF HOT WATER BY ZEOLITE MODIFIED WITH MANGANESE DIOXIDE»

doi: 10.18720/MCE.76.18

Purification of hot water by zeolite modified with manganese dioxide

Очистка горячей сетевой воды цеолитом, модифицированным диоксидом марганца

A.V. Chechevichkin, N.I. Vatin,

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia V.V. Samonin,

St. Petersburg Institute of Technology (Technical University), St. Petersburg, Russia M.A. Grekov,

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Инженер А.В. Чечевичкин,

д-р техн. наук, директор Инженерно-

строительного института Н.И. Ватин,

Санкт-Петербургский политехнический университет Петра Великого, г. Санкт-Петербург, Россия д-р техн. наук, заведующий кафедрой В. В. Самонин,

Санкт-Петербургский государственный технологический институт (технический университет), г. Санкт-Петербург, Россия главный инженер М.А. Греков, Санкт-Петербургский политехнический университет Петра Великого, г. Санкт-Петербург, Россия

Key words: hot water; natural zeolite; Ключевые слова: горячая сетевая вода; manganese dioxide; hydrogen sulfide; buildings; природный цеолит; диоксид марганца;

Abstract. A new material is proposed for complex purification of hot water from iron and hydrogen sulphide - natural zeolite modified by manganese dioxide. It has been shown experimentally that this filtering material has high efficiency of water purification from iron and hydrogen sulphide, low mechanical degradability during operation, as well as low water consumption for washing during regeneration of the filtration media. The complex cleaning of hot water is proposed to carry out by means of two stages: the first - filtration cleaning from insoluble iron compounds with linear water velocity of 10-12 m/h, and the second - oxidation-catalytic purification from hydrogen-sulphide with velocity 1-2 m/h. Regeneration of a filtering material based on a manganese-modified natural zeolite can be carried out by back washing and chemical treatment with an oxidizer solution.

Аннотация. Для комплексной очистки горячей сетевой воды от железа и сероводорода предложен новый материал - модифицированный диоксидом марганца природный цеолит. Экспериментально показано, что данный фильтрующий материал имеет высокую эффективность очистки воды от железа и сероводорода, низкую механическую разрушаемость в процессе эксплуатации, а также малый расход воды на промывку при проведении регенерации загрузки. Предложено комплексную очистку горячей сетевой воды проводить в два этапа: первого -фильтрационной очистки от нерастворимых соединений железа с линейной скоростью движения воды 10-12 м/час, и второго - окислительно-каталитической очистки от сероводорода со скоростью 1-2 м/час. Регенерация фильтрующего материала на основе модифицированного диоксидом марганца природного цеолита может проводиться методом обратной промывки и химической обработки раствором окислителя.

Introduction

Installations and systems for preparation and transportation of hot water, as well as for distribution to use objects form a technical base of network hot water supply of buildings and structures.

Hot water systems are inextricably linked to the heat supply systems of buildings and structures. There are closed and open heat supply systems [1, 2], whose equipment for various reasons undergoes severe corrosion. For a closed system, corrosion reduction is achieved by addition various chemical reagents into the water and minimizing the entry of oxygen into the water [1, 3-6].

constructions; energy efficiency

сероводород;здания; сооружения; энергетическая эффективность

Closed heat supply system provides higher energy efficiency of heat supply and hot water supply of buildings. Recently, closed heat supply systems [7, 8] have been used for the purposes of hot water supply [7, 8], in which cold drinking water is heated in heat exchangers of local heat points in buildings (including residential ones).

Both in closed and open systems of hot water supply [7, 9], due to a variety of physicochemical and microbiological processes [7, 9], there is a significant contamination of water with corrosion products [1], which can make it unsuitable for both practical use . Water contamination with corrosion products is very significant [3] and therefore complex cleaning of network hot water is currently extremely urgent.

One of the main measures to reduce corrosion in hot water and heat supply networks is to reduce dissolved oxygen in the water. This leads to the creation of anaerobic conditions in which microbiological corrosion plays an important role.

Anaerobic bacteria (mainly from Desulfovibrio and Desulfomaculum [1, 10]) intensively develop in anoxic environment at pH 5-9 when sulphates, organically substances and phosphorus are present in water (especially at elevated temperature) and hydrogen sulphide is released [1, 10].) Sulphure, in turn (in the form of hydrosulphide ions) is involved in the formation of an insoluble iron (II) sulphide corrosion product having a loose structure. This structure facilitating the development of sulfate-reducing bacteria is the basis for the formation of massive deposits in the pipelines and equipment elements. Even more anaerobic conditions are created between the surfaces of the metal and deposits, which ensure a high rate of microbiological corrosion, not only of steel, but also of aluminum and its alloys and even of brass [2, 12].

Corrosion products (mainly insoluble iron compounds) not only reduce the efficiency of the use of heating equipment, but also greatly impair the quality of the hot water consumed. This making hot water less suitable for use in domestic and industrial uses [12].

There are methods of removing iron from waters of various classes [13-20] which are not use for cleaning network hot water for various reasons:

- addition of chemical reagents (treatment with oxidants and coagulants) is unacceptable when water is disassembled by consumers;

- mesh filters, hydrocyclones and magnetic separators have low cleaning efficiency;

- fibrous filter media are difficult to regenerate.

The most suitable way, from the point of view of the ratio of cleaning efficiency, cost and ease of operation, is the filtration of hot water through the feed of fine-grained materials. These materials (quartz sand, natural zeolite, etc.) have high adhesion to suspended and insoluble iron compounds (iron III hydroxide, carbonate and iron sulphide II). Filtering through these materials allow to reduce such indicators of contamination of hot water, as turbidity, color and iron concentration, but practically does not affect the water content of substances that cause its unpleasant smell (primarily hydrogen sulphide).

To purify waters from various pollutants, natural zeolite is widely used [21-29], and filtering materials based on which have a number of advantages over traditionally used quartz sand loads: low bulk density, which helps to reduce the water consumption for regeneration by backwashing, high mud capacity (i.e., the amount of obtain suspended matter per unit volume of the layer), ion exchange capacity, etc.

Hydrogen sulphide have a high toxity to animals and humans, and high corrosive activity to plumbing equipment [1, 30]. In blood hydrogen sulphide is rapidly redused the oxidized power of haemoglobin and can act upon the central nervous system. Humans exposed to high concentration of hydrogen sulphide show simptoms of gastro-intestinal upset, anorexia, nausea, amnesia, delirium, hallucinations, low blood pressure and epileption convulsions [30, 31].

There are several techniques for removing the hydrogen sulphide from different types of water, including, aeration, ozonation, ion exchenge, reverse osmosis, biological treatment and chemical oxidation [11, 13, 14, 25, 31-34].

This methods of water purification from hydrogen sulphide and other sulfur compound (except reverse osmosis and ion exchange, witch are extremely expending), are not also use for hot water supply, since they are associated with the dosage of reagents in water and the removal of chemical reaction products, as well as with technical difficulties.

It is very promising to use filter materials based on natural manganese-containing ores (mainly pyrolusite) for this purpose [11, 34], but these materials have low mechanical strength and they are very expensive.

Recently, filtering materials modified by manganese dioxide [35-43], including those based on natural zeolites [44-46], have been developed and are being used for deionization and demanganation of natural waters. Such materials combine the advantages of manganese dioxide (high oxidation-catalytic capacity) and natural zeolite (good filtration and mechanical characteristics). The use of these materials for the complex (filtration-catalytic) purification of hot water from the compounds of iron and hydrogen sulphide is very promising.

The purpose of this work was testing of a modified by manganese dioxide natural zeolite for complex cleaning of network hot water. For its implementation the following tasks were solved:

- comparison of physical and chemical properties and performance characteristics of various granular filter materials;

- determination of parameters of hot water treatment from iron and hydrogen sulphide by various granular materials, including materials modified by manganese dioxide;

- study of the optimizing possibility of the technology of complete cleaning of hot water in real operation conditions.

Methods

Experimental studies of the processes of cleaning hot water were carried out on the installation, the scheme of which is presented in Fig.1.

The installation considered of a cylindrical stainless steel filter, having drainage slottedflow distributorsin the upper and lower parts of the filter.

Filtering granular materials were loaded inside the filter housing to a height of 750 mm, with a 250 mm height space provided for top loading for regeneration by backwashing. The filter had a water flow control system, in the forward (up-down) and reverse directions, consisting of the corresponding tapes, valves for precise adjustment of the flow rate of water during operation and during washing, as well as water sampling tapes for analysis before and after purification.

Figure 1 Experimental installation for studying filtering-catalytic properties of granular materials. 1, 2 - network taps; 3, 4, 5, 6 - taps controlling the operation of the filter; 7, 8 - control valves;

9, 10 - sampling taps; 11, 12, 13, 14 - draining taps; 15 - the cock of air release; 16 - filter housing; 17 - removable filter cover; 18, 19 - upper and lower slotted distributors; 20 - filtering material; 21, 22 - model manometers; 23 - thermometer; 24 - tank for collection of wash water; 25 - flowmeter

What is more, the unit was equipped with a thermometer to monitor the water temperature, a flowmeter and standard manometers to monitor the pressure before and after the filter. Moreover the installation had a tank 200 dm3 volume to collect water during the backwashing of the filter. The accuracy of the determination was: the volume of the transmitted water ± 0.5 x 10-3 m3, temperature ± 0.5 °C, pressure ± 0.01 bar.

The linear velocity of water flow through the filter media was the same in all experiments and was 10 ± 0.4 m/h. The linear velocity of backwash Vbw (m/h) for each filter material was defined as the rate of start of the entrainment of the particulate material in a separate experiment with a visual control of the light opening in the glass column.

Filtering granular materials were used in the form of identical fractions of 0.8 + 1.2 mm, which were obtained with the help of a set of appropriate certified sieves and analyzer AP-20 (manufactured by "Vibrotechnik", RF).

Loss of materials during the backwashing was determined after passing through the filter loaded (in the direction from bottom to top) 120 liters (= 22 filter volumes) of cold purified tap water that was collected in a suitable tank (see Fig. 1) and settled in it within three days. After draining the water from the vessel, the precipitate was removed, concentrated, dried at a temperature of 70 ± 5 °C and weighed.

The losses in washing P, (% mass) were determined by the formula:

ml

P= —• 100% (1)

Ml

where m1 - mass of air-dry sludge, g

M1 - mass of air-dry granular material in the filter, g

The dirt capacity of the burden layer of granular material GE (g / kg, mg / dm3) was determined similarly after the filter operation and washing were completed and calculated by formula (1).

The mechanical strength of the samples of granular materials was estimated as the mechanical destructibility of MD, (% mass), which was determined by the formula:

MD = 100% - MR (s) (2)

where MR (s) - mechanical abrasion resistance determined according to Russian State Standard GOST 16188-70 4 [47].

The iron content in the filtration media of the granular material, CFe,, (mg / g) was calculated after processing of its sample with 20% nitric acid and the determination of the total iron content in the resulting solution by the photocolorimetric method with thiocyanate ion [48] using the formula:

C*e = m (3)

where m2 is the mass (mg) of dissolved iron in the sample M2 (g) of the filtration media of granular material.

The residual iron content in the filtration media RCFe (mg / g) after the filter operation cycle was determined:

RCFe=CFe-C0Fe (4)

where CFe - iron content in the filtration media of granular filter material after the cycle of its operation and backwashing, mg/g;

C0Fe - iron content in a pure filtration media before the filter starts to work mg/g.

The studies used hot network water of a closed heating system of an industrial facility with a water temperature of 55±5 °C, in which the concentration of iron (total) was 0.35-0.57 mg/dm3, and hydrogen sulphide 0.18-0.23 mg/dm3. This water had a redox potential of -18 ± 5 mV (for the cold water it was 123 ± 15 mV). Determination of hydrogen sulphide content in water was carried out by reaction with NN-dimethyl-n-phenylenediamine by photocolorimetric method [49].

The efficiency of water purification by the main polluting components (total iron and hydrogen sulphide) EFe (mass %) and Eh2s (mass %), respectively, was calculated by the formula:

Cin — Cpur

E =-• 100% (5)

Cm

where E-efficiency of water purification by iron and hydrogen sulphide, respectively,% mass;

"Cm", "Cpur" - concentration of pollutants in the initial (before cleaning) and purified (after purification) water, mg/dm3.

The content of manganese dioxide in the studied materials was determined by the oxalate method [46, 50].

Quartz sand (veined crushed quartz, Karelia), zeolite sand (the breed of the Badinskoye deposit, Eastern Siberia), the same zeolite sand, but modified with manganese dioxide, as well as a number of commercial materials based on manganese dioxide were used as research objects. The latter were investigated: MnO2-coated semi-burnt dolomite (brand MZHF, RF), synthetic deferrizing material (Birm brand, USA), and manganese ore-pyrolusite (Pirolox brand, USA) which used to remove iron and manganese from groundwater.

Results and discussion

Evaluation of possibility of using for the complex treatment of hot water of various granular filtering materials was carried out according to a number of indices take a great importance in the actual operation of filters.

Table 1 compares the various characteristics of the materials studied in the work.

Table 1. Comparison of the properties of the studied granular filter materials

№ Filter material Bulk density kg/dm3 MD, % mass P, % mass RC Fe, mg/g DC E, % mass Vbw, m/hour

g/ kg g/ dm3 for iron-ion for hydrogen sulphide

1 Gangue quartz (Karelia) 1.30 0.02 0.03 0.53 0.37 0.75 45.00 3.00 53.00

2 Zeolite (Badinskoye deposit) 1.00 0.31 0.18 2.87 1.09 1.09 67.00 8.00 37.00

3 Modified MnO2 zeolite 1.07 0.07 0.03 0.36 1.04 1.11 67.00 68.00 39.00

4 MZHF 1.38 3.36 0.16 0.41 0.63 0.87 56.00 15.00 58.00

5 Birm 0.75 1.82 0.08 1.23 1.61 0.21 61.00 64.00 25.00

6 Pirolox 1.98 2.64 0.07 0.48 0.59 0.16 65.00 70.00 75.00

It can be seen from the table that the use of zeolite sand has advantages over the use of quartz sand, namely: lower bulk density and more efficient iron purification. Zeolite sand, in contrast to quartz and manganese-modified zeolite sand, has a higher mechanical destructibibility. This is evidenced by higher losses during backwashing.

Modified by manganese dioxide, zeolite has high water purification efficiency on iron and hydrogen sulphide. The quartz and zeolite sands are not removed the hydrogen sulphide from hot water.

Commercial materials based on manganese dioxide (except for MZHF, for which practically all the indicators are the worst) have values of the efficiency of iron purification and mud capacity close to the modified zeolite. These materials also have higher values of mechanical breakdown rates, washing losses and backwashing rates. This makes their practical use for a real cleaning of network hot water very problematic. In addition, these materials have high cost.

Figure 2 shows dependence of change in purification efficiency on the iron and hydrogen sulphide content indicators for the three materials studied during one filter cycle, which corresponded to a transmission of 20 m3 (3640 filter volumes) of water.

These dependences confirm the foregoing, and also indicate that at the end of the filter cycle, the efficiency of purification by iron on the manganese dioxide-modified zeolite reaches its maximum value,

and by hydrogen sulphide falls to 25 %. The loss of head pressure at a linear rate of water filtration through a load of 10 ± 0.4 m/h at the end of the first filter cycle was not more than 0.1 bar. Thus, the values of filter cycle with high purification efficiency for loading with the manganese-modified zeolite is different for removing iron and hydrogen sulphide.

Figure 2 Dependence of iron and hydrogen sulphide purification efficiency (E)

on time for one filter cycle. - • -, -x-, - ▲ - - by iron, -o-, - * -, -A- - by hydrogen sulphide, -o-, - • - - quartz sand, -x-, - * - - natural zeolite, -A-, - ▲ - - manganese dioxide modified natural zeolite.

V, (m3) - the volume of transmission water

Figure 3 shows the same dependencies as in Figure 2, but over the time of operation corresponding to 5 filter cycles, i.e. passing through the filter = 100 m3 (or 18 200 filter volumes) of water without carrying out regeneration. The efficiency of purification from iron in this case grew and amounted to 90-91 % at the end of the work, and from hydrogen sulphide it fell to 10 %. The loss of head pressure at the end of the filter operation period was no more than 0.5-0.6 barr, which is a satisfactory result.

Figure 3.Dependence of iron and hydrogen sulphide purification efficiency (E) on time for five filter cycles without filter regeneration. - • - - by iron, -o- - by hydrogen sulphide.

Manganese-modified natural zeolite of Badinskoye deposit

Figure 4 shows the dependencies, similar to those shown in Figure 3, but for the mode of operation of the filter with periodic regeneration of the filtration media from the manganese-modified zeolite both from iron purification (backwash) and from hydrogen sulphide (chemical treatment + backwashing) for five filter cycles of 20 m3 each. The efficiency of purification from hydrogen sulphide in this case is restored after each filter cycle by treatment of the filtration media with a solution of potassium permanganate. The average iron cleaning efficiency during each filter cycle in this case is lower due to a strong decrease in the retention of iron capacity, after washing the filtration media of the filter.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Figure 4 Dependence of iron (- • -) and hydrogen sulphide (-o-) purification efficiency (E) on time for modified manganese dioxide natural zeolite with periodic regeneration of filter load

Thus, in the case of a real continuous operation of the filter with a modified zeolite material, the restoration of its iron cleansing ability (backwash at a linear speed of 40 ± 1 m/h) can be carried out after passing water in an amount of 18,000-15,000 filter volumes (or 17.0 m3 of water per kilogram of loading). For hydrogen sulphide, the restoration of its cleaning capacity (chemical treatment with oxidant solution + backwashing) must be carried out after passing 3 600 filter volumes (or 3.4 m3 water per kilogram of filtration media). Comprehensive cleaning of hot water must be carried out in two stages: the first -mechanical cleaning of iron and the second - contact oxidation of hydrogen sulphide. Regeneration of the filter load of the second stage of purification is five times more often than the first one.

Figure 5 shows the dependence of the purification efficiency on hydrogen sulphide during one filter cycle for different linear velocities of water flow through the filter loading. As a filtering material, the natural zeolite of the Badinskoye deposit, modified with manganese dioxide, was used. At low linear velocities of water movement (1-2 m/h), the efficiency of purification by hydrogen sulphide is 92-96 % mass, and will be maintained throughout the filter cycle (20 m3 of water). At high velocities (5-10 m/h), the cleaning efficiency is lower (81-76 % by weight) and decreases significantly towards the end of the filter cycle.

Figure 5. Influence the linear velocity of water flow in the filterefficiency of hydrogen sulphide purification efficiency (E) for loading the filter from the modified manganese dioxide of natural

zeolite (Badinskoye deposit). Linear velocitys: - • - - 10 m/h, - ▲ - - 5 m/h, -x- - 2 m/h, -o- - 1 m/h.

The properties of materials modified by manganese dioxide based on clinoptilolit - containing rocks of various deposits in Russia were also studied. The appearance of one of these materials is presented in Figure 6.

Figure 6 Appearance of the manganese-modified filter-catalyzed materials based on the natural zeolite of the Badinskoye deposit (Russia)

Table 2 shows the results of comparative tests of these materials for cleaning hot water from iron and hydrogen sulphide. The studied materials have high values of the efficiency of purification from iron and hydrogen sulphide at a high rate of passage of water through the loading of the filter, as well as similar rates of backwashing.

Table 2. Comparison of the properties of MnO2 - modified materials obtained on the basis of clinoptilolite-containing rocks of various deposits

№ The deposit of zeolite rocks Mn02, content % (mass) MD, % (mass) RC Fe mg/g E, %mass V50, m3 Vbw, m/h

for iron-ion for hydrogen sulphide

1 Badinskoe (East Siberia) 0.36 0.07 0.36 67.00 68.00 17.50 40.00

2 Chuguevskoe (PrimorskyKrai) 0.42 0.11 0.42 61.00 70.00 23.00 46.00

3 Sokirnitskoe (Ukraine) 0.30 1.81 0.55 65.00 62.00 4.50 35.00

4 Shivirtuiskoe (East Siberia) 0.49 6.05 0.91 70.00 61.00 7.50 30.00

5 Kholinskoe (East Siberia) 0.46 4.24 0.74 69.00 69.00 8.00 34.00

From Table 2 it can also be seen that effective water purification from hydrogen sulphide for materials obtained from the rocks of the Shivirtuysky, Kholinsky and Sokirnitsky deposits is less prolonged than for materials based on the Badinskoye and Chuguevskoye deposits. The materials of the first group are characterized by a value of V50, (the volume of purified water with an efficiency of at least 50 %) is 4.5-8.0 m3, and for the second group it is 17.5-23.0 m3. All samples have similar values of the total content of manganese dioxide, but its spatial distribution within the material particles for these two groups is different. For samples of material based on rocks Badinskoye and Chuguyevskoye deposits, the manganese dioxide phase is located on the surface of particles of these materials [46] and is maximally available. For other samples of materials, manganese dioxide is distributed throughout the grain and its surface concentration is much lower.

Materials obtained on the basis of zeolite rocks of the Shivirtuysky, Kholinsky and Sokirnitsky deposits in addition have high values of mechanical destructibibility (MD), which will lead to a faster grinding and carrying away of the load in conditions of actual operation of the filters. The same samples also have an increased ability to accumulate iron inside of filtration media particles (RCFC index, Table 2). Insoluble iron compounds that are not removed by backwashing the filter with water will greatly reduce the oxidizing ability of these materials by hydrogen sulphide due to the blocking by iron compounds of the surface of the active layer of manganese dioxide.

The high efficiency of water hydrogen sulphide purification for material on base natural piroluzite ("Pirolox") corresponds the information [11, 14] about it application for this purposes.

The process of hydrogen sulphide removing from network hot water on MnO2-modified natural zeolite (on condition that dissolved oxygen is not present) was similar to process of chemical fixation [25,

27]. Moreover the non-catalitic oxidation process with "active oxygen" of MnO2 and formation manganese oxides of low valency also was possible [11, 14, 23].

To summarize, in this work for the experimental conditions similar such as real hot water networks conditions [3, 5, 10] good results on purification network hot water from suspended ferrum oxides and hydrogen sulphide was obtained.

The filtering materials base on MnO2-modified natural zeolites may be use for this purposes, as well as, materials traditionally used in groundwater purification practice [11, 13, 14]. This circumstance increases the possibilities of network hot water complex purification with use the standard filtering equipment.

Conclusion

The work has evaluated the possibilities of hot water cleaning with materials based on manganese dioxide-modified zeolite rocks in comparison with other filtering materials (including those containing manganese dioxide). Based on the results of the studies, the following conclusions are drawn:

Filtering materials based on manganese dioxide-modified zeolite rocks (from the most accessible deposits in Russia) provide good cleaning of hot water from its main pollutants - iron compounds and hydrogen sulphide.

In comparison with other granular filtering materials (quartz sand, unmodified natural zeolite), manganese dioxide-modified zeolite materials have a higher retention capacity for insoluble iron compounds and oxidative activity for hydrogen sulphide, as well as low mechanical breakdown during operation.

The advantage of manganese dioxide -modified zeolite rocks over commercial manganese dioxide-containing materials, traditionally used for deironing and demanganation of groundwater, lies in their less mechanical destructibibility (MD) during operation, as well as in the lower cost of water using for washing the load in the filter during its regeneration.

The complex purification of hot network water should be carried out in the form of a two-stage process: filtration and mechanical treatment of water from iron compounds with a linear rate of movement in the apparatus of 10-12 m/h, and sorption-oxidative purification from hydrogen sulphide at a linear speed of no more than 1-2 m/hour.

To ensure the consistency of the oxidation capacity of the filtering of manganese dioxide-modified zeolite rocks by hydrogen sulphide, it must be periodically regenerated with an oxidizer solution.

3.

4.

References

Sukhotin A.M., Bogachev A.F., Palmskiy V.G. et al. Korrozionnaya stoykost oborudovaniya khimicheskikh proizvodstv. Korroziya pod deystviyem teplonositeteley, khladogentov i rabochikh tel [Corrosion resistance of chemical production equipment. Corrosion under the influence of heat carriers, coolants and working bodies]. Leningrad: Khimiya, 1988. 360 p. (rus)

Grishkova A.V., Gavrilov V.B. K voprosu o vliyanii vodno-khimicheskogo rezhima sistem tsentralizovannogo teplosnabzheniya na rabotu sistem otopleniya i goryachego vodosnabzheniya [On the impact of the water-chemical regime of district heating systems on the operation of heating and hot water supply systems]. Vestnik PNIPU. Stroitelstvo i arkhitektura. 2014. No. 1. Pp. 63-71. (rus)

Mezenova D.V., Starodubceva O.S. Analiz prichin nesootvetstviya kachestva goryachej vody trebovaniyam sanitarnyh pravil [Analysis of the reasons for the inconsistency of the quality of hot water with the requirements of sanitary regulations]. Mediko-social'nye i psihologicheskie aspekty bezopasnosti promyshlennyh aglomeracij: materialy mezhdunarodnoj nauchno-prakticheskoj konferencii [Proceedings of international scientific and practical conference]. Ekaterinburg: UrFU, 2016. Pp. 42-47. (rus)

Kukushkin A.N., Vinogradov V.N., Gromov Ye.B., Shatova I.A. Eksperimentalnoye issledovaniye fazovogo sostava i povedeniya produktov korrozii stali v parovom trakte energobloka pri mikrodizirovaniii oktadetsilamina [Experimental study of the phase composition and behavior

Литература

1. Сухотин А.М., Богачев А.Ф., Пальмский В. Г. и др. Коррозионная стойкость оборудования химических производств. Коррозия под действием теплоноситетелей, хладогентов и рабочих тел. Л.: Химия, 1988, 360 с.

2. Гришкова А.В., Гаврилов В.Б. К вопросу о влиянии водно-химического режима систем централизованного теплоснабжения на работу систем отопления и горячего водоснабжения // Вестник ПНИПУ. Строительство и архитектура. 2014. № 1. С. 63-71.

3. Мезенова Д.В., Стародубцева О.С. Анализ причин несоответствия качества горячей воды требованиям санитарных правил // Медико-социальные и психологические аспекты безопасности промышленных агломераций: материалы международной научно-практической конференции. Екатеринбург: УрФУ, 2016. C. 42-47.

4. Кукушкин А.Н., Виноградов В.Н., Громов Е.Б., Шатова И.А. Экспериментальное исследование фазового состава и поведения продуктов коррозии стали в паровом тракте энергоблока при микродизировании октадециламина // Энергосбережение и водоподготовка. 2002. №3. С. 3-9.

5. Жилин В.Н., Ильин Д.Н. Очистка воды без водоподготовки и защита систем водотеплоснабжения от коррозии и отложений // Промышленная энергетика. 2010. №6. С. 14-19.

6. Рыженков А.В., Лукин М.В., Погорелов С.И. и др.

of the corrosion products of steel in the steam tract of the power unit during the microdisplacement of octadecylamine]. Energosberezheniye i vodopodgotovka. 2002. No. 3. Pp. 3-9. (rus)

5. Zhilin V.N., Ilin D.N. Ochistka vody bez vodopodgotovki i zashchita sistem vodoteplosnabzheniya ot korrozii i otlozheniy [Purification of water without water treatment and protection of water supply systems against corrosion and deposits]. Promyshlennaya energetika. 2010. No. 6. Pp. 14-19. (rus)

6. Ryzhenkov A.V., Lukin M.V., Pogorelov S.I. et al. Rezultaty raboty po povysheniyu effektivnosti sistem tsentralizovannogo teplosnabzheniya na osnove PAV-tekhnologiy za 2003-2013 g. [Results of work on increasing the efficiency of district heating systems based on SAW technologies for 2003-2013]. Nadezhnost i bezopasnost energetiki. 2014. No. 2(25). Pp. 18-22. (rus)

7. Zakhvatova M.A., Grishkova A.V. Neobkhodimost perevoda otkrytykh sistem teplosnabzheniya na zakrytyye [Necessity of transferring open heat supply systems to closed ones]. Sovremennyye tekhnologii v stroitelstve. Teoriya ipraktika. 2016. Vol. 1. Pp. 414-418. (rus)

8. Makotrina L.V. Sravneniye nekotorykh razdelov sistemy goryachego vodosnabzheniya SNIP 2.04.01-85 «Vnutrenniy vodoprovod i kanalizatsiya zdaniy» s novymi normativnymi dokumentami [Comparison of some sections of the hot water supply system SNIP 2.04.01-85 "Internal water supply and sewerage of buildings" with new regulatory documents]. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedizhimost. 2014. No. 5(10). Pp. 80-86. (rus)

9. Sharapov V.I. Preimushchestva i nedostatki otkrtykh i zakrytykh sistem teplosnabzheniya [Advantages and disadvantages of open and closed heat supply systems]. Nadezhnost i bezopasnost energetiki. 2012. No. 19. Pp. 65-68. (rus)

10. Sharapov V.I., Zamaleyev M.M. Puti predotvrashcheniya sulfidnogo zagryazneniya teplovykh setey [Ways to prevent sulphide contamination of heat networks]. Energosberezheniya i vodopodgotovka. 2014. No. 5(91). Pp. 13-17. (rus)

11. Zemskov A.N., Gaydin A.M., Sabirova L.B. Sposoby borby s serovodorodom v podzemykh vodakh [Methods to combat hydrogen sulphide in groundwater/. Izvestiya vuzov. Gornyy zhurnal. 2015. No. 4. Pp. 67-74. (rus)

12. Sharapov V.I., Zamaleyev M.M. Resheniye problem bakteriologicheskogo zagryazneniya sistem teplosnabzheniya [Solving the problems of bacteriological contamination of heat supply systems]. Teploenergetika. 2015. No. 9. Pp. 77. (rus)

13. Klyachko V.A., Apeltsin N.E. Ochistka prirodnykh vod [Purification of natural waters]. Moscow: Stroyizdat, 1971. 579 p. (rus)

14. Zolotareva Ye.F., Ass G.Yu. Ochistka vod ot zheleza, margantsa, ftora i serovodoroda [Purification of water from iron, manganese, fluorine and hydrogen sulphide]. Moscow: Stroryizdat, 1975. 176 p. (rus)

15. Zhurba M.G., Savelyev S.P., Urusov D.Yu. i dr. Usovershenstvovaniye tekhnologii obezzhelezivaniya i demanganatsii podzemnykh vod g. Ulyanovska [Improvement of technology of deironing and demanganization of underground waters in Ulyanovsk]. Vodosnabzheniye i sanitarnaya tekhnika. 2013. No. 2. Pp. 40-45. (rus)

16. Tarasenko S.Ya. Obezzhelezivaniye i demanganatsiya podzemnykh vod khozyaystvenno-pityevogo naznacheniya [Iron removal and demagnetization of groundwater for domestic and drinking purposes]. Vestnik uchebno-metodicheskogo obyedineniya po obrazovaniyu v oblasti prirodoustroystva i vodopolzovaniy. 2014. No. 6. Pp. 283299. (rus)

17. Vatin N.I., Chechevichkin V.N., Chechevichkin A.V. Features of water purification from Vuoksa river during the

Результаты работы по повышению эффективности систем централизованного теплоснабжения на основе ПАВ-технологий за 2003-2013 г. // Надежность и безопасность энергетики. 2014. № 2(25). С. 18-22.

7. Захватова М.А., Гришкова А.В. Необходимость перевода открытых систем теплоснабжения на закрытые // Современные технологии в строительстве. Теория и практика. 2016. Т. 1. С. 414-418.

8. Макотрина Л.В. Сравнение некоторых разделов системы горячего водоснабжения СНИП 2.04.01-85 «Внутренний водопровод и канализация зданий» с новыми нормативными документами // Известия вузов. Инвестиции. Строительство. Недижимость. 2014. № 5(10). С. 80-86.

9. Шарапов В.И. Преимущества и недостатки откртых и закрытых систем теплоснабжения // Надежность и безопасность энергетики. 2012. № 19. С. 65-68.

10. Шарапов В.И., Замалеев М.М. Пути предотвращения сульфидного загрязнения тепловых сетей // Энергосбережения и водоподготовка. 2014. № 5(91). С. 13-17.

11. Земсков А.Н., Гайдин А.М., Сабирова Л.Б. Способы борьбы с сероводородом в подземых водах // Известия вузов. Горный журнал. 2015. № 4. С. 67-74.

12. Шарапов В.И., Замалеев М.М. Решение проблем бактериологического загрязнения систем теплоснабжения // Теплоэнергетика. 2015. № 9. С. 77.

13. Клячко В.А., Апельцин Н.Э. Очистка природных вод. М.: Стройиздат, 1971. 579 с.

14. Золотарева Е.Ф., Асс Г.Ю. Очистка вод от железа, марганца, фтора и сероводорода. М.: Строрйиздат, 1975, 176 с.

15. Журба М.Г., Савельев С.П., Урусов Д.Ю. и др. Усовершенствование технологии обезжелезивания и деманганации подземных вод г. Ульяновска // Водоснабжение и санитарная техника. 2013. № 2. С. 40-45.

16. Тарасенко С.Я. Обезжелезивание и деманганация подземных вод хозяйственно-питьевого назначения // Вестник учебно-методического объединения по образованию в области природоустройства и водопользования. 2014. № 6. С. 283-299.

17. Ватин Н.И., Чечевичкин В.Н., Чечевичкин А.В. Особенности очистки воды из р. Вуокса в летний период. // Инженерно-строительный журнал. 2010. № 2(12). С. 23-26.

18. Мельников В.И., Герасимчук Н.В., Полянская Е.Н. Совершенствование техники и технологии систем теплоснабжения высотных зданий // Вестник ТГАСУ. 2009. № 4. С. 113-119.

19. Батуев С.П., Аносов П.А. Применение инженерно-гравитационных фильтров-грязевиков в системах тепло- и водоснабжения // Энергобезопасность и энергоснабжение. 2016. № 1. С. 40-45.

20. Волков В.Н., Горбунов С.А. Новые материалы и технологии очистки вод в системах теплоснабжения // Энергосбережение и водоподготовка. 2011. № 2(70). С. 24-27.

21. Ватин Н.И., Чечевичкин В.Н., Чечевичкин А.В., Шилова Е.С. Применение цеолитов клиноптилолитового типа для очистки природных вод // Инженерно-строительный журнал. 2013. № 2. С. 81-88.

22. Самонин В.В., Чечевичкин А.В. Особенности поглощения иона двухвалентного марганца из водных растворов цеолитами // Журнал прикладной химии. 2013. Т. 86. № 11. С. 1724-1729.

23. Тарасевич Ю.И. Природные цеолиты в процессах очистки воды // Химия и технология воды. 1988. Т. 10. № 3. С. 210-218.

24. Вейсгейм А.С., Назаренко О.Б., Зарубина Р.Ф. Удаление железа из скважинной воды на фильтре с

summer period. Magazine of Civil Engineering. 2010. No. 2(12). Pp. 23-26. (rus)

18. Melnikov V.I., Gerasimchuk N.V., Polyanskaya Ye.N. Sovershenstvovaniye tekhniki i tekhnologii sistem teplosnabzheniya vysotnykh zdaniy [Perfection of engineering and technology of heat supply systems for high-rise buildings]. Vestnik TGASU. 2009. No. 4. Pp. 113-119. (rus)

19. Batuyev S.P., Anosov P.A. Primeneniye inzhenerno-gravitatsionnykh filtrov-gryazevikov v sistemakh teplo-i vodosnabzheniya [Application of engineering-gravity filters-muders in heat and water supply systems]. Energobezopasnost i energosnabzheniye. 2016. No. 1. Pp. 40-45. (rus)

20. Volkov V.N., Gorbunov S.A. Novyye materialy i tekhnologii ochistki vod v sistemakh teplosnabzheniya [New materials and technologies for water treatment in heat supply systems]. Energosberezheniye i vodopodgotovka. 2011. No. 2(70). Pp. 24-27.

21. Vatin N.I., Chechevichkin V.N., Chechevichkin A.V., Shilova Ye.S. Primeneniye tseolitov klinoptilolitovogo tipa dlya ochistki prirodnykh vod [Possible applications of clinoptilolites for natural water purification]. Magazine of Civil Engineering. 2013. No. 2(37). Pp. 81-88. (rus)

22. Samonin V.V., Chechevichkin A.V. Osobennosti pogloshcheniya iona dvukhvalentnogo margantsa iz vodnykh rastvorov tseolitami [Peculiarities of the absorption of a divalent manganese ion from aqueous solutions by zeolites]. Zhurnal prikladnoy khimii. 2013. Vol. 86. No. 11. Pp. 1724-1729. (rus)

23. Tarasevich Yu.I. Prirodnyye tseolity v protsessakh ochistki vody [Natural zeolites in water purification processes]. Khimiya i tekhnologiya vody. 1988. Vol. 10. No. 3. Pp. 210-218. (rus)

24. Veysgeym A.S., Nazarenko O.B., Zarubina R.F. Udaleniye zheleza iz skvazhinnoy vody na filtre s zagruzkoy iz Badinskogo tseolita [Removal of iron from borehole water on a filter loaded from Badinsky zeolite]. Vestnik nauki Sibiri. 2012. No. 4(5). Pp. 23-29. (rus)

25. Mahmoudi R., Falamaki C. Ni2+-ion-exchanged dealuminated clinoptilolite: A superior adsorbent for deep desulfurization. Fuel. 2016. Vol. 173. No. 2. Pp. 277-284.

26. Karatayev O.R., Novikov V.F., Shamsutdinova Z.R. Ochistka stochnykh vod tseolito-soderzhashchimi porodami [Wastewater treatment with zeolite-containing rocks]. Vestnik kazanskogo tekhnologicheskogo universiteta. 2014. Vol. 17. No. 15. Pp. 169-174. (rus)

27. Gubonina Z.I., Tarchigina N.F., Kharichev O.Ye. Izucheniye vozmozhnosti ispolzovaniya modifitsirovannoy tseolitovoy porody v tekhnologii ochistki prirodnykh vod ot ftorid-ionov [Study of the possibility of using a modified zeolite rock in the technology of purifying natural waters from fluoride ions]. Energosberezheniye i vodopodgotovka. 2015. No. 1(93). Pp. 21-25. (rus)

28. Epova Ye.S., Yeremin O.V., Rusal O.S., Filenko R.A. Protsessy aktivatsii sorbtsionnykh svoystv tseolitovykh porod Shivyrtuyskogo mestorozhdeniya (Vostochnoye zabaykalye) [Processes of activation of sorption properties of zeolite rocks of the Shivirtui deposit (Eastern Transbaikalia)]. Mineralogiya tekhnogineza. 2015. No. 16. Pp. 148-154.

29. Gogina Ye.S., Yantsen O.V., Khodyrev V.M. i dr. Issledovaniya printsipialnoy vozmozhnosti ochistki stochnykh vod poligona tBo s primeneniyem tseolita [Research of the principle possibility of sewage treatment of the landfill with the use of zeolite]. Yestestvennaya i tekhnicheskaya nauk. 2014. No. 9-10. Pp. 404-406. (rus)

30. EPA 635/R - 03/005/ Toxicological review of hydrogen sulphide. CAS№ 7783-06-4. Government printing office. Environmental Protection Agency, Washington, 2003. 62 p.

31. Dohnalek D.A., Fritzpatrick D.A. The chemistry of reduced

загрузкой из Бадинского цеолита // Вестник науки Сибири. 2012. № 4(5). С. 23-29.

25. Mahmoudi R., Falamaki C. Ni2+-ion-exchanged dealuminated clinoptilolite: A superior adsorbent for deep desulfurization // Fuel. 2016. Vol. 173. № 2. Pp. 277-284.

26. Каратаев О.Р., Новиков В.Ф., Шамсутдинова З.Р. Очистка сточных вод цеолито-содержащими породами // Вестник казанского технологического университета. 2014. Т. 17. № 15. С. 169-174.

27. Губонина З.И., Тарчигина Н.Ф., Харичев О.Е. Изучение возможности использования модифицированной цеолитовой породы в технологии очистки природных вод от фторид-ионов // Энергосбережение и водоподготовка. 2015. № 1(93). С. 21-25.

28. Эпова Е.С., Еремин О.В., Русаль О.С., Филенко Р.А. Процессы активации сорбционных свойств цеолитовых пород Шивыртуйского месторождения (Восточное забайкалье) // Минералогия техногинеза. 2015. № 16. С. 148-154.

29. Гогина Е.С., Янцен О.В., Ходырев В.М. и др. Исследования принципиальной возможности очистки сточных вод полигона ТБО с применением цеолита // Естественная и техническая наука. 2014. № 9-10. С. 404-406.

30. EPA 635/R - 03/005/ Toxicological review of hydrogen sulphide. CAS№ 7783-06-4. Government printing office. Environmental Protection Agency Washington, 2003. 62 p.

31. Dohnalek D. A., Fritzpatrick D. A. The chemistry of reduced sulfur species and their removal from groundwater supplies // Journal of American water Works Association. 1983. Vol. 75. Pp. 298-308.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

32. Kato S., Hirano V., Iwata M., et. al. Photo catalytic degradation of gaseous sulfus compounds by silver-deposited titanium dioxide // Applied Catalysis. 2005. Vol. 57. Pp. 109-115.

33. Thompson M.A., Kelkar U.G., Vickers J.C. The treatment of ground water containing hydrogen sulphide using microfiltration // Desalination. 1995. Vol. 102. Pp. 287-297.

34. Edwards S., Alharhi R., Ghaly A. E. Removal of hydrogen sulphide from water // American Journal of Environmental Sciences. 2011. Vol. 7. № 4. Pp. 295-305.

35. Бочкарев Г.Р., Скитер Н.А. Использование марганцевых руд для деманганации и обезжелезования подземных вод // Известия вузов. Строительство. 2005. № 11-12. С. 61-66.

36. Aguiar A.O., Duarte R.A., Ladeira A.C.Q. The application of MnO2 in the removal of manganese from acid mine water // WaterAirSoilPollut. 2013. Vol. 224. Pp. 1690.

37. Гончиков В.Ч., Губайдулина Т.А., Каминская О.В., Апкарьян А.С. Фильтрующий материал для очистки воды от железа, марганца и сереводорода // Известия Томского политехнического университета. 2012. Т. 320. № 3. С. 37-40.

38. Chen C., Wei L., Gno X. et. al. Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides // Fuel Processing Technology. 2014. Vol. 124. № 2. Pp. 165-173.

39. Babaeivelni K., Khodadoust A. P., Bogdan D. Adsorption and removal of arsenic (V) using crystalline manganese (II, III) oxide: Kinetics, equilibrium effect of pH and ionic strength // Journal of Environmental Science and Health, Pat A. 2014. Vol. 49. Pp. 1462-1473.

40. Иванец. А.И., Кузнецова Т.Ф., Азарова Т.А. Варанец Е.А. Синтез и свойтва Mn - оксидных катализаторов нанесенных на доломитовую подложку // Физика и химия стекла. 2013. Т. 39. № 6. С. 920-926.

41. Апкарьян А.С., Губайдулина Т.А., Каминская О.В. Структура и свойства гранулированной пеностеклокерамики на основе боя стекла, модифицированный оксидами марганца //Экология

sulfur species and their removal from groundwater supplies. Journal of American water Works Association. 1983. Vol. 75. Pp. 298-308.

32. Kato S., Hirano V., Iwata M., et. al. Photo catalytic degradation of gaseous sulfus compounds by silver-deposited titanium dioxide. Applied Catalysis. 2005. Vol. 57. Pp. 109-115.

33. Thompson M.A., Kelkar U.G., Vickers J.C. The treatment of ground water containing hydrogen sulphide using microfiltration. Desalination. 1995. Vol. 102. Pp. 287-297.

34. Edwards S., Alharhi R., Ghaly A. E. Removal of hydrogen sulphide from water. American Journal of Environmental Sciences. 2011. Vol. 7. No. 4. Pp. 295-305.

35. Bochkarev G.R., Skiter N.A. Ispolzovaniye margantsevykh rud dlya demanganatsii i obezzhelezovaniya podzemnykh vod [Use of manganese ores for demanganization and deironization of groundwater]. Izvestiya vuzov. Stroitelstvo. 2005. No. 11-12. Pp. 61-66. (rus)

36. Aguiar A.O., Duarte R.A., Ladeira A.C.Q. The application of MnO2 in the removal of manganese from acid mine water. Water Air Soil Pollut. 2013. Vol. 224. Pp. 1690.

37. Gonchikov V.Ch., Gubaydulina T.A., Kaminskaya O.V., Apkaryan A.S. Filtruyushchiy material dya ochistki vody ot zheleza, margantsa i serevodoroda [Filter material for water purification from iron, manganese and hydrogen sulfide]. Izvestiya Tomskogo politekhnicheskogo universiteta. 2012. Vol. 320. No. 3. Pp. 37-40.

38. Chen C., Wei L., Gno X. et. al. Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides. Fuel Processing Technology. 2014. Vol. 124. No. 2. Pp. 165-173.

39. Babaeivelni K., Khodadoust A. P., Bogdan D. Adsorption and removal of arsenic (V) using crystalline manganese (II, III) oxide: Kinetics, equilibrium effect of pH and ionic strength. Journal of Environmental Science and Health, Pat A. 2014. Vol. 49. Pp. 1462-1473.

40. Ivanets A.I., Kuznetsova T.F., Azarova T.A. Varanets Ye.A. Sintez i svoytva Mn - oksidnykh katalizatorov nanesennykh na dolomitovuyu podlozhku [Synthesis and properties of Mn-oxide catalysts deposited on a dolomite substrate]. Fizika i khimiya stekla. 2013. Vol. 39. No. 6. Pp. 920-926. (rus)

41. Apkaryan A.S., Gubaydulina T.A., Kaminskaya O.V. Struktura i svoystva granulirovannoy penosteklokeramiki na osnove boya stekla, modifitsirovannyy oksidami margantsa [Structure and properties of granular foam glass ceramics based on glass combat, modified with manganese oxides]. Ekologiya promyshlennogo proizvodstva. 2014. No. 4. Pp. 30-33.

42. Gohori R.J. , Halakoo E., Nazri N.A.M. et. al. Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination. 2014. Vol. 335. No. 3. Pp. 87-95.

43. Maliye K.K. S.M., Lisha K.P., Pradeep T. A novel cellulose

- manganese oxide hybrid material, by in citi soft chemical synthesis and its application for the removal of Pb (II) from water. Journal of Hazardous Materials. 2010. Vol. 131. No. 1-2. Pp. 986-995.

44. Comacho L.M., Parra R.R., Deng S. Arsenic removal from groundwater by MnO2 - modified natural clinoptilolite zeolite: Effects of pH and initial feed concentration. Journal of Hazardous Material. 2003. Vol. 163. No. 3. Pp. 286-293.

45. Jimenez-Cedillo M.J., Olguin M.T., Fall C. Adsorption kinetic of arsenates as water pollutant on iron, manganese

- modified clinoptilolite-rich tuffs. Journal of Hazardous Materials. 2009. Vol. 163. No. 3. Pp. 939-945.

46. Chechevichkin A.V., Samonin V.V. Zhidkofaznaya MnO2-modifikatsiya klinoitilolita [Liquid-phase MnO2-modification of clinoitilolite]. Zhurnal prikladnoy khimii. 2017. Vol. 90.

промышленного производства. 2014. № 4. С. 30-33.

42. Gohori R.J. ,Halakoo E., Nazri N.A.M. et. al. Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles // Desalination. 2014. Vol. 335. № 3. Pp. 87-95.

43. Maliyekkal S.M., Lisha K.P., Pradeep T. A novel cellulose -manganese oxide hybrid material, by in citi soft chemical synthesis and its application for the removal of Pb (II) from water // Journal of Hazardous Materials. 2010. Vol. 131. № 1-2. Pp. 986-995.

44. Comacho L.M., Parra R.R., Deng S. Arsenic removal from groundwater by MnO2 - modified natural clinoptilolite zeolite: Effects of pH and initial feed concentration // Journal of Hazardous Material. 2003. Vol. 163. № 3. Pp. 286-293.

45. Jimenez-Cedillo M.J., Olguin M.T., Fall C. Adsorption kinetic of arsenates as water pollutant on iron, manganese - modified clinoptilolite-rich tuffs // Journal of Hazardous Materials. 2009. Vol. 163. № 3. Pp. 939-945.

46. Чечевичкин А.В., Самонин В.В. Жидкофазная MnO2-модификация клиноитилолита // Журнал прикладной химии. 2017. Т. 90. № 1. С. 18-24.

47. ГОСТ 16188-70 Сорбенты. Методы испытаний. М.: Издательство стандартов, 1970. 11 с.

48. Вода питьевая. Методы анализа. Сборник стандартов. М.: Издательство стандартов, 1984. 240 с.

49. Лурье Ю.Ю. Аналитическая химия сточных вод. М.: Химия, 1984. 448 с.

50. Yin H., Feng X., Qin G., et.al. Characterization of Co-doped birnessites and application for removal of lead and arsenite // Journal of Hazardous Material. 2011. Vol. 188. № 1-2. Pp. 341-349.

No. 1. Pp. 18-24. (rus)

47. GOST 16188-70 Sorbenty. Metody ispytaniy [Russian State Standard GOST 16188-70 Sorbents. Test methods]. Moscow: Izdatelstvo standartov, 1970. 11 p. (rus)

48. Voda pityevaya. Metody analiza. Sbornik standartov [Drinking water. Methods of analysis. Collection of standards]. Moscow: Izdatelstvo standartov, 1984. 240 p. (rus)

49. Lurye Yu.Yu. Analiticheskaya khimiya stochnykh vod [Analytical chemistry of sewage]. Moscow: Khimiya, 1984. 448 p.

50. Yin H., Feng X., Qin G., et.al. Characterization of Co-doped birnessites and application for removal of lead and arsenite. Journal of Hazardous Material. 2011. Vol. 188. No. 1-2. Pp. 341-349.

Alexey Chechevichkin, +7(921)971-84-47; 01@6400840.ru

Nikolai Vatin,

+7(921)964-37-62; vatin@mail.ru Vyacheslav Samonin,

+7(812)903-84-65; samonin@mail.admiral.ru Mikhail Grekov,

+7(812)297-20-45; disgpu@spbstu.ru

Алексей Викторович Чечевичкин, +7(921)971-84-47; эл. почта: 01@6400840.ru

Николай Иванович Ватин, +7(921)964-37-62; эл. почта: vatin@mail.ru

Вячеслав Викторович Самонин, +7(812)903-84-65;

эл. почта: samonin@mail.admiral.ru

Михаил Александрович Гоеков, +7(812)297-20-45; эл. почта: disgpu@spbstu.ru

© Chechevichkin A.V.,Vatin N.I.,Samonin V.V.,Grekov M.A., 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.