Научная статья на тему 'PULVERIZED RIVER SHELLFISH SHELLS AS A CHEAP ADSORBENT FOR REMOVING OF MALATHION FROM WATER: EXAMINATION OF THE ISOTHERMS, KINETICS, THERMODYNAMICS AND OPTIMIZATION OF THE EXPERIMENTAL CONDITIONS BY THE RESPONSE SURFACE METHOD'

PULVERIZED RIVER SHELLFISH SHELLS AS A CHEAP ADSORBENT FOR REMOVING OF MALATHION FROM WATER: EXAMINATION OF THE ISOTHERMS, KINETICS, THERMODYNAMICS AND OPTIMIZATION OF THE EXPERIMENTAL CONDITIONS BY THE RESPONSE SURFACE METHOD Текст научной статьи по специальности «Химические технологии»

CC BY
25
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Vojnotehnički glasnik
Scopus
Ключевые слова
REMOVAL / ADSORBENT / KINETICS / ISOTHERMS / OPTIMIZATION / PESTICIDE / WATER / RIVER SHELLS

Аннотация научной статьи по химическим технологиям, автор научной работы — Velickovic Zlate S., Vujicic Bogdan D., Stojanovic Vladica N., Stojisavljevic Predrag N., Bajic Zoran J.

Introduction/purpose: In this study, we investigated the possibility of removing the organophosphorus pesticide malathion from water using a new adsorbent based on the biowaste of river shell shards from the Anodonta Sinadonta woodiane family, a material that accumulates in large quantities as waste on the banks of large rivers. Two adsorbents were tested -mechanically comminuted river shells (MRM) and mechanosynthetic hydroxyapatite from comminuted river shells (RMHAp). Methods: The obtained adsorbents were characterized and tested for the removal of the organophosphorus pesticide malathion from water. In order to predict the optimal adsorption conditions using the Response Surface Method (RSM), the authors investigated the influence of variable factors (adsorption conditions), pH values, adsorbent doses, contact times, and temperatures on the adsorbent capacity. Results: The best adsorption of malathion was achieved at mean pH values between 6.0 and 7.0. The adsorption data for malathion at 25, 35, and 45 °C were compared using the Langmuir, Freundlich, Dubinin-Radushkevich (DR), and Temkin isothermal models, as well as pseudo-first order, pseudo-second order and Elovic kinetic models for modeling adsorption kinetics. The maximum Langmuir adsorption capacity for MRM and RMHAp at 25 °C was 46,462 mg g -1 and 78,311 mg g -1 , respectively. Conclusion: The results have showed that malathion adsorption on both adsorbents follows the pseudo-second kinetic model and the Freundlich isothermal model. The thermodynamic parameters indicate the endothermic, feasible, and spontaneous nature of the adsorption process.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PULVERIZED RIVER SHELLFISH SHELLS AS A CHEAP ADSORBENT FOR REMOVING OF MALATHION FROM WATER: EXAMINATION OF THE ISOTHERMS, KINETICS, THERMODYNAMICS AND OPTIMIZATION OF THE EXPERIMENTAL CONDITIONS BY THE RESPONSE SURFACE METHOD»

PULVERIZED RIVER SHELLFISH SHELLS AS A CHEAP ADSORBENT FOR REMOVING OF MALATHION FROM WATER: EXAMINATION OF THE ISOTHERMS, KINETICS, THERMODYNAMICS AND OPTIMIZATION OF THE EXPERIMENTAL CONDITIONS BY THE RESPONSE SURFACE METHOD

Zlate S. Velickovic3, Bogdan D. VujiCiCb, Vladica N. Stojanovicc, Predrag N. Stojisavljevicd, Zoran J. Bajice, Veljko R. Bokicf, Negovan D. Ivankovicg Pavel P. Otrisald

a University of Defence in Belgrade, Military Academy, Department for Military Chemical Engineering, Belgrade, Republic of Serbia, e-mail: zlatevel@yahoo.com, corresponding author, ORCID iD: https://orcid.org/0000-0001-5335-074X b University of Defence in Belgrade, Military Academy, Department for Military Chemical Engineering, Belgrade, Republic of Serbia, e-mail: bogdanvujicic47@gmail.com, ORCID iD: https://orcid.org/0000-0003-3026-4544 c University of Defence in Belgrade, Military Academy, Department for Military Chemical Engineering, Belgrade, Republic of Serbia, e-mail: vllajkoo.vs@gmail.com, ORCID iD: https://orcid.org/0000-0002-9844-2477 d Serbian Armed Forces, Technical Test Center, Belgrade, Republic of Serbia, e-mail: pedjastojis@yahoo.com, ORCID iD: https://orcid.org/0000-0002-1170-7912 e University of Defence in Belgrade, Military Academy, Department for Military Chemical Engineering, Belgrade, Republic of Serbia, e-mail: angrist2@gmail.com, ORCID iD: https://orcid.org/0000-0002-8492-3333 f University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Republic of Serbia, e-mail: vdjokic@tmf.bg.ac.rs, ORCID iD: https://orcid.org/0000-0003-2541-0420 g University of Defence in Belgrade, Military Academy, Department for Military Chemical Engineering, Belgrade, Republic of Serbia, e-mail: negovan.ivankovic@gmail.com, ORCID iD: https://orcid.org/0000-0003-0202-8210 h Palacky University, Olomouc, Czech Republic, e-mail: pavel.otrisal@upol.cz, OR CID iD: https://orcid.org/0000-0002-9345-3978

ACKNOWLEDGMENTS: This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No.: 213-1/21 -08-03-2021).

DOI: 10.5937/vojtehg69-32844; https://doi.org/10.5937/vojtehg69-32844

FIELD: Environmental protection, Chemical engineering ARTICLE TYPE: Original scientific paper

Abstract:

Introduction/purpose: In this study, we investigated the possibility of removing the organophosphorus pesticide malathion from water using a new adsorbent based on the biowaste of river shell shards from the Anodonta Sinadonta woodiane family, a material that accumulates in large quantities as waste on the banks of large rivers. Two adsorbents were tested - mechanically comminuted river shells (MRM) and mechanosynthetic hydroxyapatite from comminuted river shells (RMHAp).

Methods: The obtained adsorbents were characterized and tested for the removal of the organophosphorus pesticide malathion from water. In order to predict the optimal adsorption conditions using the Response Surface Method (RSM), the authors investigated the influence of variable factors (adsorption conditions), pH values, adsorbent doses, contact times, and temperatures on the adsorbent capacity.

Results: The best adsorption of malathion was achieved at mean pH values between 6.0 and 7.0. The adsorption data for malathion at 25, 35, and 45 °C were compared using the Langmuir, Freundlich, Dubinin-Radushkevich (DR), and Temkin isothermal models, as well as pseudofirst order, pseudo-second order and Elovic kinetic models for modeling adsorption kinetics. The maximum Langmuir adsorption capacity for MRM and RMHAp at 25 °C was 46,462 mg gand 78,311 mg g-1, respectively. Conclusion: The results have showed that malathion adsorption on both adsorbents follows the pseudo-second kinetic model and the Freundlich isothermal model. The thermodynamic parameters indicate the endothermic, feasible, and spontaneous nature of the adsorption process.

Key words: removal, adsorbent, kinetics, isotherms, optimization, pesticide, water, river shells.

Introduction

The development of technology undoubtedly contributes to the development of society; however, it also causes environmental pollution. A distinct surge in the world's population and an increase in food needs condition the development of intensive agricultural production based on the use of inputs to overcome factors that limit production such as insects, fungi, weeds, and land scarcity (Kamga, 2019). The usage of pesticides is intended to combat animals and plants that are harmful to crops, thus enabling increased yields and ensuring the sustainability of

the human population. Non-selective use of pesticides in agricultural activities leads to the pollution of surface and underground water accumulations. Due to its potential danger to health by entering the food chain for humans and animals, pesticide pollution has reached alarming proportions. (Chatterjee et al, 2010)

Pesticides are ecologically very important because of their high toxicity to living organisms, including humans; the toxicological profile of this pollutant poses a potential risk to the environment and public health (Kamga, 2019). According to numerous studies, many insecticides such as DDT, deildrin, heptachlor, and aldrin bioaccumulate in blood, milk, and tissues and are also found in food products (Singh et al, 2010).

It has been confirmed that patients with acute organophosphate poisoning suffer from problems such as vomiting, nausea, miosis, excessive salivation, blurred vision, headache, dizziness, and disturbances of consciousness (Singh et al, 2010). In the case of malathion, which is one of widely used organophosphorus pesticides, almost all the observed effects occur due to its active metabolite malacon (Singh et al, 2010) on the nervous system or gives secondary effects to its primary action.

Malathion is slowly absorbed through the skin, but is more rapidly and efficiently absorbed via ingestion. Once they are absorbed, phosphorothioates such as malathion are metabolically activated to the "oxon" forms which have greater toxicity than the parent insecticide. The metabolism of malathion leads to the formation of malathion monocarboxylic acid, malathion dicarboxylic acid, dialkyl phosphate metabolites, and other metabolites (Bouchard et al, 2003).

In recent years, research on the removal of pollutants from water has been intensified, based on the phenomenon of adsorption, among which the removal of pesticides from water occupies a special place. We have a large number of potentially highly effective adsorbents for removing pesticides from water such as activated carbon (Kamga, 2019; Ohno et al, 2008; Hameed et al, 2009), but the high price of activated carbon limits its mass use in many poor countries. Therefore, the attention of researchers is increasingly focused on finding a cheap, environmentally friendly, and highly efficient adsorbent to solve this problem. Various adsorbents such as agricultural by-products, waste materials, cheap minerals and biomass have been used to remove various pollutants from wastewater (Chatterjee et al, 2010; Pantic et al, 2019; Bajic et al, 2013; Stevanovic et al, 2020; Karanac et al, 2018; Perendija et al, 2021).

4 e

9 6

10

>

2 0 2

of IE IR

ZD

O C L A C

X

C E T

Y R

A T

< -J

CD >o

X LU I—

O

o >

0

Malathion, an organophosphorus highly selective insecticide, is widely used in agriculture worldwide (Chatterjee et al, 2010), primarily in the control of insects, including mosquitoes, aphids, grass insects, and many other parasites of vegetable crops and fruits. Until today, the removal of malathion from wastewater has not been studied in detail and only a few studies are available in this regard (Chatterjee et al, 2010).

The shards of river shells are waste that burdens a large number of beaches and the banks of rivers, seas, and lakes. They also appear as waste after use in human nutrition. The aim of this paper is to apply shellfish as a cheap, widely available, environmentally friendly material for removing organophosphorus pesticides from water. In this way, we get a double benefit: we use waste that burdens the shores of different watercourses to remove pollutants that load the water and cause negative effects on life and health of humans and animals as well as on the environment in general.

Materials and methods Materials

A large number of different chemicals were used during the research. Bearing in mind that the properties of the adsorbent, as well as the research results largely depend on the purity of the reagent, high purity chemicals were used:

- 5% hydrogen peroxide solution - H2O2 (Sigma-Aldrich, PA),

- concentrated nitric acid HNO3 (Fluka, ultrapure) - used for digestion of shells in order to determine the elemental composition and adjust the pH level,

- concentrated phosphoric acid H3PO4 (Sigma-Aldrich, PA),

- sodium hydroxide - NaOH (Sigma Aldrich, PA) - used to adjust the pH of the solution in the adsorption process and titration during the synthesis of adsorbents,

- 96% ethyl alcohol (Sigma Aldrich, PA) - used in the washing of adsorbents,

- deionized water (resistance of 18 MQ cm) - used for sample preparation and dilution of the solution,

- malathion, 60% technical solution (Galenika-Fitofarmacija) - used for performing an adsorption experiment (as 20 mg dm-3 concentration solution),

- biowaste of shellfish from the genus Anodonta Sinadonta woodiane, collected from the banks of the Tisza River.

Synthesis of adsorbents

During the research, two types of adsorbents based on river shell shards were synthesized and tested in the process of adsorption:

1. shells, washed, mechanically ground, sieved, washed, and dried in a vacuum oven - clean shells (MRM), and

2. fish carp scales chemically modified by converting calcium carbonate to hydroxyapatite by mechanosynthesis (RMHAp).

The shards of the Anodonta Sinadonta woodiane river shell were thoroughly washed and rinsed in distilled water, air-dried for 24 h, ground in a steel mill for crushing sediments and sifted into a 0.5 -1 mm granulation powder. The shell powder was washed in vacuo with deionized water, ethyl alcohol and dried in vacuo for 24 h at 110 oC to give the first MRM adsorbent (mechanically prepared river shells).

In the stainless steel vessel of a planetary ball mill (Retsch PM100 CM), 10 g of MRM was mixed with 11.23 ml (18.92 g) of concentrated H3PO4 - CaCO3 ratio: H3PO4 ^ Ca / P = 1.67; zirconium beads were added in ratio 20:1 of the bead mass to a sample and the mixture was treated in a ball mill for 10 h at 500 grp for further mechanosynthesis. After the treatment in a ball mill, the obtained mixture was washed copiously in vacuo with deionized water to remove unreacted parts of the acid and dried in vacuo for 24 h at 110 oC to obtain a second RMHAp adsorbent (hydroxyapatite).

Material characterization methods

The synthesized adsorbents were characterized by FTIR, XRD, SEM and EDS techniques. The elemental composition was determined by a chemical elemental analyzer, the content of individual elements was determined by dissolving in acids and measuring the content on a plasma mass spectrometer with a plasma-coupled plasma ICP-MS system Agilent 7500C (Agilent Technologies, Inc.) and an atomic adsorption spectrometer. The concentration of malathion before and after adsorption was determined using a gas chromatograph (GC) equipped with a flame ionization detector (FID) - Varian 3400 with FID operating system. The specific surface area of the adsorbent, the specific pore volume, and the pore diameter were determined by the BET method of adsorption / desorption in a stream of nitrogen at 72.4 K, using a gas sorption analyzer Micromeritics ASAP 2020MP v 1.05 H. The infrared Fourier transform spectrum (FTIR) was recorded in the transformation mode between 400 and 4000 cm-1 at a resolution of 4 cm-1 using an infrared (IR) spectrometer with Fourier transformation (FT) - Nicolet iS 50

manufactured by Thermo Scientific. The adsorbents morphology was observed using Tescan Mira 3 FEG scanning electron field microscopy (FESEM). The morphological structure was determined by x-ray diffraction, XRD, using an ENRAF NONIUS FR590 XRD (Bruker AKSS, MA, USA) diffractometer with Cu Ka 1,2 radiation and a step / scan time regime of 0.05 / 1 s. The pH value of the zero charge point (pHPZC) of adsorbents was determined by the "drift" method (Gao et al, 2009).

Malathion adsorption research

Adsorption experiments were performed in a batch system where the initial concentration of malathion solution was fixed Co = 20.32 mg L-1, and the adsorbent dose was varied from 100 to 1000 mg L-1. In order to examine the pH value influence on the adsorption process, the pH value was varied from 4.0 to 10.0. Thermodynamic and kinetic adsorption experiments were performed at temperatures of 25, 35 and 45 oC, and the adsorption process was monitored in a time interval of 10 to 180 minutes. The amount of adsorbed molecules was calculated as the difference between the initial and equilibrium concentration.

The adsorbent capacity was calculated in accordance with Eq. (1):

q = Q^Q v (1)

m

where q is the adsorption capacity in mg g-1, C and C are the initial and final malathion concentrations in mg L-1 (^g L-1), respectively, V is the volume of the solution in L, and m is the adsorbent mass, expressed in g.

Kinetic studies

The study of kinetics provides an insight into a possible mechanism of adsorption along with the reaction pathways. The adsorption data were analyzed by linear, non-linear least-squares and graphic methods in the form of pseudo-first, pseudo-second-order (Lagergreen) and second order models (Table 1).

Diffusion models such as Weber-Morris, Dunwald-Wagner model, and Homogenous Solid Diffusion Model (HSDM) were used for modeling diffusional processes/limiting step of the overall process (Table 2) (Budimirovic et al, 2017; Taleb et al, 2015; Taleb et al, 2019).

Table 1 - Kinetic model equations Таблица 1 - Уравнения кинетических моделей Табела 1 - Jедначине кинетичких модела

Kinetic model Nonlinear form Model parameters Equation

Pseudo-first-order equation q = qe(1-e-klt) k1- pseudo first-order rate constant, (min-1) qe- adsorption capacity at time t, (mg g-1) q- adsorption capacity, (mg g-1) t - time, (min) (2)

Pseudo-second order equation (Lagergreen) t q= 1 k.2q2e qe k2 - pseudo-second order rate constant, (g mg-1 min-1) (3)

Second order t q= 1 keq2 qe k2 - second order rate constant, (L mg-1 min-1) (4)

Table 2 - Equations of the diffusion kinetic models Таблица 2 - Уравнения диффузионных кинетических моделей. Табела 2 - Jедначине дифузионих кинетичких модела

Kinetic model Nonlinear form Equation

Weber-Morris q = kjt + С (5)

Dunwald-Wagner model — = 1 n2K £] qe л2 ¿—¡n2 n=1 1°*(1-О) = -2.303< (6)

Homogenous Solid Diffusion Model (HSDM) dt r2 dr\ dr) q 2R ^ (-1)n плг \—Ds t л2 n2l = 1+ / sm n exP n2 qs лг/—1П R R2 n=1 (7)

The activation energy for arsenate adsorption was calculated using Arrhenius (Eq. 8):

= k0ex p

— F

RT

8)

where k (g mg-1 min-1) is the pseudo-second order rate adsorption constant, ko ( g mmol-1 min-1) is the temperature independent factor, Ea (kJ mol-1) is the activation energy, R (8.314 J mol-1 K-1) is the gas constant, and T (K) is the adsorption absolute temperature. A plot of ln K versus 1/T gave a straight line with a slope -Ea/R from which the activation energy was calculated.

Isotherm models

The equilibrium adsorption data were fitted by the isotherm models Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isothermal models (Karanac et al, 2018).

The Langmuir equation is based on the assumption that the point of maximum adsorption corresponds to a saturated mono-layer of adsorbate molecules on the adsorbent surface - where the energy of adsorption remains constant and no transfer of the adsorbate in the surface plane occurs.

The Freundlich sorption isotherm, widely and reliably utilized as a mathematical determining expression, allows for a calculation encompassing surface heterogeneity and exponential distribution of active sites as well as their respective energies (Karanac et al, 2018).

Temkin conceived this equation for subcritical vapors in micropore solids where the adsorption process follows a pore filling mechanism onto an energetically non-uniform surface.

The Temkin isotherm is based on the assumption that the decline of the heat of sorption as a function of temperature is linear rather than logarithmic. The Dubinin-Radushkevich model states that the adsorption capacity depends on the adsorbed amount on the surface of the material, differently from the Langmuir model." (Karanac et al, 2018).

The equations of adsorption isotherms models are presented in Table 3.

Table 3 - Adsorption isotherms equations Таблица 3 - Уравнения изотермы адсорбции Табела 3 - Jедначине адсорпционих изотерми

Isotherms Nonlinear form Model parameters Equation

Langmuir Сe 4e~l+KLCe qe- adsorption capacity at th eequilibrium, (mg g-1) qm- maximum adsorption capacity, (mg g-1) KL- Langmuir equilibrium constant, (L mg-1) Ce- metal ion concentration at the equilibrium (mg L-1) (9)

Freundlich q = KFC1/n KF- Freundlich equilibrium constant, (mg g )(L mg- 1y/n n- Freundlich equilibrium constant (intensity of the adsorption or surface heterogeneity) (10)

Temkin RT qe = — ln( ACe) Ь A -Temkin isotherm equilibrium binding constant (L g-1) b - Temkin isotherm constant R-universal gas constant (8.314J mol"1K"1) T-Temperature at 298K. (11)

Dubinin-Radushkevich ( 2( ( i Yi2^ qe = qmexp - b(rtУ ln 1+11 V V Ce J) , (12)

Thermodynamic studies

The feasibility of the experimental data obtained from the adsorption studies were analyzed through the thermodynamic investigation. The parameters of free energy change (AG°, kJ/mol), enthalpy change (AH°, kJ mol-1), and entropy change (AS°, J mol-1 K-1) were calculated using the Van't Hoff equations (13) and (14) (Karanac et al, 2018):

(13)

AG0 = -RT ln(b)

ln(b) =

AS0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

AH0

R (RT)

(14)

The separation factor (Rl) is in relation to the Langmuir isotherm and it is used to assess adsorption feasibility on the given adsorbent. It is calculated using the next Eq (15):

1--(15)

Rl =

(1+bCo)

e

C5 CD

lo

>

CM o CM

of

UJ

a:

ZD O o

_J

<

o

H

o

lu

I—

>-

a: <

i—

< -j

CD >o

X lu I—

O

o >

0

where Co (mol dm-3) is the initial adsorbate concentration, b (dm3 mol-1) is the Langmuir constant. The value of Rl points out to the isotherm type: irreversible (Rl = 0), favorable (0 < Rl <1), linear (Rl = 1), unfavorable (Rl > 1).

Statistical analysis of the experimental data

All adsorption experiments were repeated three times and the mean values were taken for further processing and modeling. The obtained results were analyzed using the normalized standard deviation Aq (%) which is calculated using the following equation:

where qexp and qcal are the experimental and calculated values of adsorbed malathion, and N is the number of data used in the analysis. The maximum deviation is <3%, which is an experimental error. Standard errors for isothermal, kinetic, and thermodynamic parameters were determined using the commercial software Microcal Origin 8.0 (Pantic et al, 2019).

In order to confirm the adsorption model that best corresponds to the experimental data, they were analyzed by the ANOVA variance analysis, using the F value together with the values of the correlation coefficient (R) from the regression analysis. (Pantic et al, 2019; Bajic et al, 2019)

Optimization of the experimental adsorption conditions

The optimization of the adsorption conditions was performed using the RSM (Surface Response Methodology) method. Classical adsorption optimization usually involves examining the impact of each variable separately. However, it is difficult to predict optimal reaction conditions based on such results due to possible interactions between different independent variables involved in adsorption reactions. (Pantic et al, 2019; Bajic et al, 2019) Recently, various statistical programs have been used that are useful to help establish the design of the experiment. Using response surface methodology (RSM) as a mathematical function, it is possible to examine the individual and interactive influences of different variables in relation to different predictors. In that way, we get the optimal conditions that are needed to get the best results. (Pantic et al, 2019) In addition, it has been proven that the central composition design (CCD) and the Bok-Behnken design (BBD) are efficient designs of RSM models in optimizing the adsorption process. (Pantic et al, 2019) In this study, the

synthesized modified adsorbent RMHAp was used to remove malathion from water. The adsorption process is optimized by numerical and graphical optimization methods using the Bok-Behnken design. We used the design with four factors (input variables) and three levels of values in which 29 experiments with five replications in the central point were performed. The capacity of the adsorbent was taken as a response. Extremely optimized conditions were confirmed by additional experimental testing. The conditions of the adsorption experiment are given in Table 4.

Table 4 - An experimental malathion adsorption plan was performed using a four-factor

BBD design with three levels of value Таблица 4 - Экспериментальный план адсорбции малатиона с использованием

четырехфакторного BBD моделирования с тремя уровнями величин Табела 4 - Експериментални план адсорпци^е малатиона доби^ен коришПешем

Ordinal number A Dose ads. (mg/L) B t (min) C pH D T(oC) Response qe (mg g-1)

1. 1000 95 7 45 14.1

2. 1000 95 7 25 12.6

3. 100 95 4 35 30.11

4. 550 95 4 45 12.05

5. 1000 180 7 35 15.06

6. 100 95 10 35 27.4

7. 1000 95 10 35 6

8. 550 95 10 25 9.38

9. 550 95 7 35 24.3

10. 550 10 7 25 13.2

11. 100 95 7 45 71.2

12. 100 180 7 35 81.15

13. 550 95 4 25 10.1

14. 550 10 4 35 8

15. 550 95 10 45 13.1

16. 100 10 7 35 27.3

17. 550 180 7 25 28.5

18. 550 10 7 45 14

19. 550 95 7 35 24.3

20. 1000 10 7 35 5.21

21. 550 180 7 45 28.75

22. 550 95 7 35 24.3

23. 550 180 10 35 13.8

24. 550 95 7 35 24.3

25. 550 95 7 35 24.4

26. 1000 95 4 35 6.75

27. 550 180 4 35 15.11

28. 100 95 7 25 64.4

29. 550 10 10 35 5.6

Results and discussion

Physical and chemical characterizations of adsorbents

The elemental composition of shellfish shards is given in Table 5. This elemental composition is similar to that of other authors (Vei et al, 2018; Buasri et al, 2013) and indicates that shellfish shards are mostly composed of calcium carbonate-based minerals ( calcite and argonite) and the organic part of chitin that connects calcite structures. The composition of shells also includes various microelements - ions, which replace Ca2+ in the structure of calcium carbonate and are incorporated into the shell during its formation. The availability and rate of bioaccumulation of these ions is a function of environmental and biological factors. Thus, different habitats, contamination - the presence in the water of different ionic species, different stages of shell development can represent different patterns of metal incorporation.

Table 5 - Concentrations of major, minor and trace elements obtained in this study using the ICP-AES and ICP-MS methods Таблица 5 - Концентрации основных, второстепенных и микроэлементов, полученных в данном исследовании с помощью методов ICP-AES и ICP-MS. Табела 5 - Концентраци^е главних, споредних и микроелемената у траговима доби^ене у овом истраживашу применом методе ИКП-АЕС и ИКП-МС

Element ICP-AES Method Ca (wt %) Fe (wt %) Mg (wt %) Si (wt %) Na (wt %) Mn (^g g-1)

34.1 0.003 0.104 0.004 0.182 30.4

Element ICP-MS Method Cd (^g g-1) Co g-1) Cu g-1) Ni (и g-1) Pb (^g g-1) Zn (^g g-1)

0.094 0.079 31.2 2.01 3.09 21.5

The analyzed shards of the river shell Anodonta Sinadonta woodiane are composed of two polymorphs of calcium carbonate: calcite and aragonite, with calcite being the dominant form. Recent studies have found that the dominant CaCO3 polymorph may be temperature dependent - aragonite deposition is at high temperature and calcite deposition is at low temperature (Kuklinski and Taylor, 2009; Ramajo et al, 2015; Krzeminska et al, 2016). The confirmation of the composition of the shells can also be seen on the spectrum of energy dispersive spectrometry (Figure 1) where the main building blocks are observed before (a) and after the modification of the shells (b). After modification, we notice the presence of phosphorus in the adsorbent, which confirms the transition of calcium carbonate to hydroxyapatite.

Figure 1 - EDS spectrum of shellfish powder before (a) and after modification (b) Рис. 1 - Спектр EDS порошка раковины до (а) и после модификации (б) Слика 1 - ЕДС спектар праха школке пре (а) и након модификаци^е (б)

In the scanning electron microscopy photographs (Figure 2) with different magnifications, we can clearly see the lamellar structure of the shell. The lamellae consist of materials based on calcium carbonate (calcite and argonite) with a thickness of about 1 ^m and with cavities between the lamellae with a diameter of about 50 to 100 nm. They are interconnected by organic polymer chitin; nanopores are observed on the lamellae surface.

Figure 2 - SEM representation of mechanically prepared shells at different magnifications Рис. 2 - СЭМ-изображение механически подготовленных раковин при различном

увеличении

Слика 2 - СЕМ приказ механички припрем^ених школки при различитим

увеПашима

After mechanosynthesis, the lamellar structure derived from calcium carbonate is lost and we get the granular morphology of hydroxyapatite, presented in Figure 3. Electron scanning microscopy images showed the presence of rounded HAp microparticles in isolated and agglomerated forms. Based on the observations, HAp particles can be considered as microspheres whose crystal size is well below 1 ^m.

The physical properties of the adsorbent, the specific surface area, the pore volume and the zero charge point are given in Table 6. The change in the pHpzc value occurred under the influence of the change in the surface properties of the adsorbent due to modification (Table 6). At pH <pHpzc, negatively charged species participate in electrostatic attraction with a positively charged adsorbent surface and vice versa, at pH> pHpzc, electrostatic repulsion is a major factor leading to low adsorption efficiency.

-= ' II

Ж V ^ $ ' щЯ I ■ i 11111 111 2pm ►

L_

Figure 3 - SEM representation of the shells modified by mechanosynthesis at different

magnifications

Рис. 3 - СЭМ-изображение раковин, модифицированных механосинтезом, при

различном увеличении Слика 3 - СЕМ приказ механосинтезом модификованих школки при различитим

увеПа^има

Table 6 - Physical properties of MRM and RMHAp adsorbents Таблица 6 - Физические свойства адсорбентов MRM и RMHAp Табела 6 - Физичке карактеристике MRM и RMHAp адсорбената

Adsorbent Specific surface area (m2 g-1) Pore volume (cm3g-1) Mean pore diameter (nm) pHpzc

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

MRM 2,58 0,096 6,7 7,2

RMHAp 1,95 0,088 9,18 7,05

Figure 4 shows the FTIR spectra of both adsorbents (MRM and RMHAp) before and after the adsorption of malathion from aqueous solution. In the spectrum a, the characteristic peaks at 710, 856 and 1460 cm-1 indicate the carbonate group in the sample which confirm that the sample contains CaCO3. In addition, small infrared absorption spectra are shown at ~ 1790, and ~ 2874 cm-1 and have been attributed to regimens of combining different ranges of CO32- (Khiri et al, 2016). The spectrum at ~ 1083 cm -1 is related to the C - O tensile vibrations as CO2 adsorbed on the CaO surface (Khiri et al, 2016).

The FTIR spectrum (c) of the RMHAp adsorbent showed pronounced peaks at 560 cm-1 corresponding to the symmetrical bending regime of PO43- and 1064 cm-1 corresponding to the asymmetric stretching regime of the PO43- group corresponding to the vibrational structures of hydroxyapatite (Khiri et al, 2016). The large peak in Figure 4 in the spectrum a and a smaller peak in the spectrum c at 1460 cm -1 represent carbonate (CO3), which is more pronounced before

mechanosynthesis, i.e. before the conversion of calcium carbonate into hydroxyapatite.

Figure 4 - FTIR spectrum of shellfish shards and modified shards before and after the adsorption of malathion from aqueous solution

Рис. 4 - FTIR-спектр осколков раковин и модифицированных осколков до и после адсорбции малатиона из водного раствора

Слика 4 - FTIR спектар ъуштура школки и модификованих ъуштура пре и након

адсорпци]е малатиона

The characteristic vibration peaks of shell dust before and after modification with a comparative review by other researchers are given in Table 7.

Table 7 - FTIR shell powder vibration mode before and after mechanosynthesis (MRM

and RMHAp) and references Таблица 7 - FTIR режим вибрации порошка раковины до и после механосинтеза

(MRM и RMHAp) и ссылки Табела 7 - FTIR режим вибраци]а праха школке пре и после механосинтезе (MRM

и RMHAp) и референце

Vibration freq uency (cm-1)

Our research FTIR (Khiri et al, 2016) (Salma et al, 2010) (Islam et al, 2013)

Symmetrical deformation CO32" 710 708 706

Asymmetric deformations CO32- 856, 1460 855, 1454 857, 1455

Symmetric stretching vibration CO32" 1083 1082 1082

CO32-deformations 1790 1786 1794

PO43" bending 560 565 560, 599

PO43" stretching 1064 1024 1046

CO32" group 1460 1454 1424

After sorption of malathion (spectra b and d) on both adsorbents, changes were observed in the appearance of new peaks, decrease in their intensity as well as in their disappearance and displacement.

The diffraction analysis (XRD) results showed that the composition of the river shell (spectrum a) mainly consists of two forms of CaCO3, primarily calcite as shown by the diffraction peak at 2 9 about 29.52, 39.56, 43.27, 47.6, and 48.63 (Wei et al, 2018) and argonite (Islam et al, 2013). Other minerals are present in smaller quantities as a consequence of the uptake of these minerals from the water during shell formation. The XRD spectrum of synthesized HAp also shows relatively high intensities and sharp peaks in the range of 23-39 (about 25.80 and 32.90 (Skwarek et al, 2014) corresponding to (hkl) indices) at (002) and (300), and lower peak intensities in the range of 40-39. 60, which is consistent with the formation of the lower crystal structure of HAp.

« Silica

® Argonite

♦ Calcite

p Iron hydroxy carbonate

Lilill

b)

* Silica

0 Hydroxyapatite

О

0

1 1 »

K1 1 1 *

----h_j

10 20 30 40 50 29[°]

70 80 10 20 30 40 50 60 70 80

2en

Figure 5 - X-ray diffraction analysis (XRD) spectrum of shellfish shards before (a) and after modification by mechanosynthesis (b) Рис. 5 - Спектр рентгеновского дифракционного анализа (XRD) осколков раковин

до (а) и после модификации механосинтезом (б) Слика 5 - Спектар дифракционе анализе помоПу Х-зрака (XRD) ъуштура школки пре (а) и након модификаци^е механосинтезом (б)

Influence of the solution pH on adsorption

The influence of the pH value on the system is manifested through surface tension, surface properties, degree of ionization of groups present on the surface of the adsorbent, as well as through the speciation of ions in aqueous solution at a certain pH value.

The pH effect on malathion removal is presented in Figure 6. As mentioned above, malathion retention depends on the nature of the adsorbent. Removal by RMHAp adsorbent is greater than removal by MRM. Similarly to the Saib study (Bouchenafa-Saib et al, 2014), the pH value of 6 appears to be optimal for malathion sorption for both adsorbents. At this pH, HsO+ ions attract surface oxygenated adsorbent groups, which could lead to the formation of a bond between H3O+ and any doublet without malathion-sulfur. Below and above this pH value, adsorption is lower due to the hydrolysis of malathion at values higher than 8 and lower than 5 and the formation of ionic species with lower affinity for the adsorbent surface, i.e. precipitation contributes to ion removal.

Figure 6 - Influence of the pH value of the initial solution on malathion removal Рис. 6 - Влияние значения pH первичного раствора на удаление карбофоса. Слика 6 - Утицаj pH вредности почетног раствора на укла^а^е малатиона

Adsorption largely depends on the solution pH so the process itself is more favorable at medium pH values. Also in the natural environment (water) at pH values lower than 5 and higher than 8, malathion easily hydrolyzes to metabolites that are more toxic than malathion itself (Bouchard et al, 2003), which is another reason why sorption experiments are performed at pH 6.

Adsorption kinetics

The effect of time on malathion adsorption was monitored in the range of 10 to 180 minutes. The final equilibrium was established after 300 minutes but, since the difference in the removal of As (V) ions from 180 to 300 minutes ranged from 3 to 7% in order to speed up the process, we took 180 minutes as the final time.

In order to determine the kinetic model that accompanies adsorption in order to interpret the adsorption mechanism, we used pseudo-first, pseudo-second-order and second-order models (Table 3).

Table 8 shows the kinetic parameters for malathion absorption on MRM and RMHAp adsorbents.

Table 8 - The kinetic parameters for malathion adsorption on MRM and RMHAp adsorbents (Ci[malathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25 oC)

Таблица 8 - Кинетические параметры адсорбции малатиона на адсорбентах MRM и RMHAp (Ci [малатион] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25 oC)

Табела 8 - Кинетички параметри адсорпци^е малатиона на адсорбентима MRM и RMHAp (Ci[maiathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25 oC)

Adsorbent Model parameters Pseudo-first Pseudosecond Second-order

MRM qe 37.247 53.589 53.589

k (ki, k2) 0.01589 0.00054 0.000093

R2 0.960 0.992 0.931

RMHAp Qe 67.425 92.142 92.142

k (ki, k2) 0.02041 0.00031 0.00025

R2 0.974 0.994 0.941

The results shown in Table 8, according to the regression coefficient (R2) and the standard error for all model parameters, indicate that the kinetics for all adsorbents is best described using a pseudo-second order model.

The rate constants of diffusion kinetic models, intra-particle diffusion, Weber-Morris, Dunwald-Wagner and homogeneous solid diffusion models for malathion adsorption on MRM and RMHAp adsorbents under the same experimental conditions are presented in Table 9.

The complex nature of the kinetics of adsorption processes can be described by observing the adsorption of all ions adsorbed on the adsorbent as a single step, as described by a pseudo-second order equation, but can also be described by consecutive / competitive steps.

The Weber-Morris model reveals two linear steps that describe the adsorption process: fast kinetics in the first step and slower in the second. The first linear part describes the external mass transfer to the adsorbent surface, while the second part describes the process of material transfer into the porous structure of the adsorbent, and strictly depends on the size and shape of the pores as well as on the density of their network on MRM and RMHAp adsorbents. Intra-particle and film diffusions slow down the transport of adsorbates. In the final phase of the process, adsorption takes place slowly until saturation is achieved on the entire available surface of the adsorbent.

Table 9 - Parameters of diffusion kinetic models (Ci[maiathion] = 20.32 mg L-1, pH = 6; m/V =

100 mg L-1, T = 25 oC)

Таблица 9 - Параметры диффузионных кинетических моделей (Ci [малатион] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25 oC) Табела 9 - Параметри дифузионих кинетичких модела (Ci[maiathion] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1, T = 25 oC)

Adsorbent Model Model parameters Values

MRM Weber-Morris Step 1 kpi (mg g-1 min-05) 3.6188

(Intra-particle diffusion) C (mg g-1) 3.176

R2 0.995

Weber-Morris Step 2 kp2 (mg g-1 min-05) 0.304

(equilibrium) C (mg g-1) 40.247

R2 0.999

Dunwald-Wagner model K 0.00711

R2 0.953

Homogenous Solid Diffusion Model (HSDM) Ds 9.34 • 10-12

R2 0.950

RMHAp Weber-Morris Step 1 kp1 (mg g-1 min-05) 6.792

(Intra-particle diffusion) C (mg g-1) 2.286

R2 0.998

Weber-Morris Step 2 kp2 (mg g-1 min-05) 0.608

(equilibrium) C (mg g-1) 67.719

R2 0.999

Dunwald-Wagner model K 0.00698

R2 0.956

Homogenous Solid Diffusion Model (HSDM) Ds 9.24 • 10-14

R2 0.950

Adsorption activation energy

In relation to the results of the kinetic research performed at temperatures of 298, 308, and 318 K, it is possible to determine the activation energy using the Arrhenius equation (Table 10). The linear form of the Arrhenius equation (19) is:

Ea

lnK' =--- + ЫА

RT

(19)

where K' is the reaction rate constant at a certain temperature, Ea shows the activation energy, R is the universal gas constant (8.314), T is the temperature in K and A is the Arenius factor (frequency for a given reaction).

Table 10 - Pseudo-second kinetic model parameters for malathion adsorption on MRM and RMHAp adsorbents (Ci[maiath,on] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1)

Таблица 10 - Параметры псевдо-второго порядка кинетической модели адсорбции малатиона на адсорбентах MRM и RMHAp (Ci [малатион] = 20.32 mg L-1,

pH = 6; m/V = 100 mg L-1)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Табела 10 - Параметри псеудодругог кинетичког модела адсорпци^е малатиона на адсорбентима MRM и RMHAp (Ci[maiathbn] = 20.32 mg L-1, pH = 6; m/V = 100 mg L-1)

Adsorbent Temperature qe (mg g-1) k2 (g (mg min)-1) R2

MRM 25 oC 53.594 0.000537 0.992

35 oC 57.658 0.000636 0.992

45 oC 62.271 0.000706 0.993

RMHAp 25 oC 92.142 0.000308 0.994

35 oC 92.333 0.000351 0.995

45 oC 94.224 0.000374 0.995

Physosorption or physical adsorption generally possesses energy up to 40 kJ mol-1, while hemisorption requires higher energy and activation energy over 40 kJ mol-1 (Karanac et al, 2018). Based on the obtained results where Ea for MRM is 10.816 kJ mol-1 and for RMHAp 7.711 kJ mol-1, we can conclude that the main mechanism of adsorption is physical adsorption.

Adsorption isotherms

The state of interactions / bonds on the surface of the adsorbate / adsorbent can be observed by fitting the experimental data with different adsorption isotherms. The normalized correlation coefficient and standard deviation were used to estimate the fit of the adsorption data.

The experimental data were compared with the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models already discussed, the parameters of which are shown in Table 11. By analyzing the experimental data on the adsorption of malathion molecules on the tested adsorbents, the best fit for both adsorbents is given by the Freundlich isothermal model. The results of modeling malathion adsorption on the tested adsorbents are given in Table 11.

Table 11 - Parameters of the adsorption isotherms of malathion adsorption on MRM and

RMHAp adsorbents

Таблица 11 - Параметры изотермы адсорбции малатиона на адсорбентах MRM

и RMHAp.

Табела 11 - Параметризотерми адсорпци^е малатиона на адсорбентима MRM и

RMHAp

Adsor- Isothermal models and parameters Temperature

bent 25 oC 35 oC 45 oC

qm (mg g-1) 46.462 48.135 49.789

Langmuir Kl (L mg-1) 1.918 1.968 2.027

isotherm Kl (L mol-1) 633570 650164 669551

R2 0.992 0.994 0.995

Freundlich isotherm Kf (mg g-1) (dm3 mg-1)1/n 28.469 29.252 30.066

1/n 0.182 0.189 0.195

R2 0.997 0.998 0.988

MRM Temkin isotherm At (dm3 g-1) 443.06 376.95 329.44

br 4.95 5.25 5.54

R2 0.980 0.980 0.978

Dubinin-Radushkovic h isotherm qm (mg g-1) 34.25 35.18 36.12

Kad (mol2 kJ-2) 9.17 9.15 9.12

Ea (kJ mol-1) 7.38 7.39 7.40

R2 0.802 0.796 0.791

qm (mg g-1) 78.311 84.502 87.485

Langmuir Kl (L mg-1) 1.531 1.614 1.715

isotherm Kl (L mol-1) 505829 533409 566567

R2 0.980 0.982 0.985

Freundlich isotherm Kf (mg g-1) (dm3 mg-1)1/n 39.432 42.473 44.313

1/n 0.275 0.279 0.289

R2 0.998 0.996 0.987

RMHAp Temkin At (dm3 g-1) 80.959 100.29 7 99.368

isotherm br 10.03 10.17 11.05

R2 0.938 0.933 0.958

Dubinin-Radushkovic h isotherm qm (mg g-1) 47.82 49.48 51.05

Kad (mol2 kJ-2) 8.84 8.81 8.78

Ea (kJ mol-1) 7.52 7.53 7.55

R2 0.792 0.766 0.766

According to the Freundlich isotherm, the mechanism of ion adsorption on MRM and RMHAp can be described as heterogeneous adsorption, where the adsorbed ions / molecules have different enthalpies and adsorption activation energies. The value of n from the Freundlich isotherm is a measure of adsorption intensity or surface heterogeneity. Values of n near zero indicate a highly heterogeneous surface. Values of n <1 (Table 11) imply a hemisorption process, and

higher values indicate combined adsorption, e.g. physisorption and hemisorption with different process contributions at different system balancing steps. The values in Table 16 indicate that the adsorption was combined in all cases.

The calculation of the separation factor (Rl) according to equation (20) which is based on the parameter b of the Langmir isotherm indicates the feasibility of adsorption on a given adsorbent. It is calculated using the following equation:

1

= (20)

where Co (mol L-1) is the initial adsorbate concentration and b (L mol-1) is the Langmir constant. The value of Rl indicates the feasibility of the adsorption process: irreversible (Rl = 0), favorable (0 <Rl <1), linear (Rl = 1), and unfavorable (Rl> 1). The Rl for adsorption of malathion ions on MRM ranges from 0.023 to 0.204 and for RMHAp from 0.027 to 0.243 indicating that the adsorption process is favorable.

a) 50

30

П--20

___— *

- - . Л ^^¿-^tT" ~ f^...... * Exp. data 25 °C

■J * Exp. data 35 °C

7 ■ Exp. data 45 °C

........Langmuirfit 25 cC

Langmuirfit 35 °C

Langmuir fit 45 CC

Freundlich fit 25 °C

Freundlich fit 35 flC

¡.■.I — Freundlich fit 45 °C

10

12 14

Exp. data 25 C Exp data 35 °C Exp data 45 °c Langmuirfit 25 °C Langmuirfit 35 "c Langmuirfit 45 °C Freundlich fit 25 °C Freundlich fit 35 °C Freundlich fit 45 °C

10

C/mgdm"3} Ct (mg dm"3)

Figure 7 - Review of the results of the adsorption experiments with the best-fitting models of isotherms (solid line) for the removal of malathion on adsorbents MRM (a) and RMHAp

(b)

Рис. 7 - Обзор результатов адсорбционных экспериментов с наиболее подходящими моделями изотерм (сплошная линия) для удаления малатиона на адсорбентах MRM (а) и RMHAp (б) Слика 7 - Преглед резултата адсорпционих експеримената са наjбоъе уклоп^еним моделима изотерми (пуна лини'а) за уклашаше малатиона на адсорбентима MPM (а) и RMHAp (б)

Thermodynamic studies

Gibbs free energy (AG0), enthalpy (AH0) and entropy (ASP) were calculated by Van't Hoff equation (21) and (22):

AG0 = -RTln(b) ¿S0 AH0

ln(b) =

(21) (22)

R (RT)

where T is the absolute temperature in K, R is the universal gas constant (8.314 mol-1 K-1) and the adsorption constant b is calculated using the Langmir isotherm (Table 12). ДН0 and AS° were calculated from the slope and the sections in the diagram ln(b) - T-1, assuming that the adsorption kinetics values are stationary. The calculated thermodynamic parameters are shown in Table 12.

Table 12 - Calculated Gibbs free adsorption energy, enthalpy and entropy for malathion

adsorption on MRM, and RMHAp at 25, 35, and 45 oC Таблица 12 - Расчет свободной адсорбционной энергии, по Гиббсу, энтальпия и энтропия адсорбции малатиона на MRM и RMHAp при 25, 35 и 45 oC Табела 12 - Прорачун Гибсове слободне енерг^е, енталпи'е и ентроп^е адсорпци'е малатиона на MRM и RMHAp на 25, 35 и 45 oC

Adsorbent ДG0 (kJ mol-1) ДН° (kJ mol-1) ДБ° (J mol-1 K-1) R2

25 oC 35 oC 45 oC

MRM -43.07 -44.58 -46.11 2.18 151.75 0.996

RMHAp -42.51 -44.07 -45.66 4.47 157.56 0.997

Negative values of Gibbs free energy (AG°) and positive values of entropy (AS°) at all temperatures indicate that reactions in the adsorption process take place spontaneously. A decrease in the Gibbs free energy (AG°) with an increase in temperature also indicates that the spontaneity of the reaction increases.

Positive values of AS0 indicate a tendency of greater disorder of the MRM and RMHAp surface systems and malathion solution. In Table 12, we can see that the Gibbs free energy values (AG°) for both adsorbents are approximate, and the positive entropy values (AS°) at all temperatures, while the positive enthalpy values (AH0) for MRM and RMHAp are noticeable, which indicates the endothermic process. In general, the exchange of free energy in the case of physisorption is somewhere between -20 and 0 kJ mol-1, for simultaneous hemisorption and physisorption between -20 and -80 kJ mol-1, and hemisorption less than -80 kJ mol-1. The obtained results indicate that in these cases, hemisorption and physisorption are present at the same time.

Optimization of adsorption conditions

The individual interaction and the impact of various variables in relation to different predictors were tested using the response surface methodology (RSM) as a mathematical function by commercial software design Expert 9. The mutual influence of the input variables was analyzed by analyzing the variances of ANOVA using the quadratic model of the equation shown in Table 13.

Table 13 - ANOVA variance analysis for a square response surface model for the removal of malathion from water using the RMHAp adsorbent Таблица 13 - Дисперсионный анализ ANOVA квадратной модели поверхности отклика для удаления малатиона из воды с использованием адсорбента RMHAp

Табела 13 - Анализа вар^анси ANOVA за квадратни модел jедначине методе одзивних површина за уклашаше малатиона из воде помоПу адсорбента RMHAp

Source Sum of square df Mean Square F Value p-value Prob > F

Model 9102.20579 14 650.1575566 8.986135 0.0001 significant

A-dose adsorbent 4873.88213 1 4873.882133 67.36423 < 0.0001

B-t 991.173633 1 991.1736333 13.69948 0.0004

C-pH 3.8988 1 3.8988 0.053887 0.8198

D-T 18.8000333 1 18.80003333 0.259844 0.6182

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

AB 484 1 484 6.689593 0.0215

AC 0.9604 1 0.9604 0.013274 0.9099

AD 7.0225 1 7.0225 0.097061 0.7600

BC 0.297025 1 0.297025 0.004105 0.9498

BD 0.075625 1 0.075625 0.001045 0.9747

CD 0.783225 1 0.783225 0.010825 0.9186

AA2 756.17519 1 756.1751903 10.45145 0.0060

BA2 37.4530282 1 37.45302815 0.517656 0.4837

CA2 1399.36149 1 1399.361488 19.34124 0.0006

DA2 27.51492 1 27.51492005 0.380297 0.5473

Residual 1012.91668 14 72.35119167

Lack of Fit 1012.90868 10 101.2908683 50645.43 < 0.0001 significant

Pure Error 0.008 4 0.002

Cor Total 10115.1225 28

A graph of the optimal conditions with respect to the input variables for removing malathion from water using RMHAp is shown in Figure 7.

Figure 8 -- Optimization of the input parameters in relation to the maximum capacity of

the adsorbent

Рис. 8 - Оптимизация входных параметров в зависимости от максимальной

емкости адсорбента. Слика 8 - Оптимизацц'а улазних параметара у односу на максимални капацитет

адсорбента

Design-Expert® Software

250.00

400.00

550.00

70000

А: m atjs (mg L~1 ) 850.00

Б: t {min)

1000.00 1000

Figure 9 - 3D diagram of the mutual interactions of dependence of significant input variables (adsorbent dose and time) Рис. 8 - Трехмерная диаграмма взаимодействий зависимостей значимых входных переменных (доза и время адсорбента) Слика 8 - 3D ди^аграм ме^усобних интеракци^а зависности знача]них улазних промен^ивих (доза адсорбента и време)

<u

CD CD

O >

CM o CM

of

UJ

a:

ZD O o

_J

<

o

X

o

LU

I—

>-

a: <

i—

< -j

CD >Q

X LU I—

o

o >

0

Conclusion

MRM and RMHAP showed excellent malathion removal performance. The results of isothermal, kinetic, and thermodynamic studies suggested simultaneous physisorption and hemisorption between malathion molecules and the surface of MRM and RMHAP adsorbents during the adsorption process. The optimal parameters for the maximum malathion adsorption were: system pH value - 6, adsorbent dose - 100 mg L-1, adsorption time - 180 minutes, and temperature - 45 °C. Adsorption was spontaneous and endothermic as described by thermodynamic parameters. The Bok-Behnken's design within the response surface method has been successfully used in the optimization of experimental adsorption conditions, the goal of optimization being to determine the optimal adsorption conditions with a smaller number of experiments. Optimization methods are maximally harmonized with the principles of environmental protection thus reducing: the number of experiments, the amount of consumed expensive and environmentally harmful chemicals, and the generation of waste. The errors and the predicted response values, derived from a mathematical model, showed acceptable results and confirmed the favorable effect of the studied factors on malathion adsorption using RMHAP. This paper investigates the sustainable use of biowaste for the treatment of water contaminated with organophosphorus pesticides, whereby the biowaste that burdens the banks of rivers is used to remove water pollutants, thus leading to a double benefit for the environment.

References

Bajic, Z.J., Djokic, V.R., Velickovic, Z.S., Vuruna, M.M., Ristic, M.B., Issa, N.B. & Marinkovic, A.D. 2013. Equilibrium, kinetic and thermodynamic studies on removal of Cd(II), Pb(II) and As(V) from wastewater using carp (Cyprinus Carpio) scales. Digest Journal of Nanomaterials and Biostructures, 8(4), pp.1581-1590 [online]. Available at: https://chalcogen.ro/1581_Bajic.pdf [Accessed: 15 June 2021].

Bajic, Z.J., Pamucar, D.S., Bogdanov, J.B., Bucko, M.M. & Velickovic, Z.S. 2019. Optimization of arsenite adsorption on hydroxy apatite based adsorbent using adaptive neuro-fuzzy inference system. Vojnotehnicki glasnik/Military Technical Courier, 67(4), pp.735-752. Available at: https://doi.org/10.5937/vojtehg67-21519.

Bouchard, M., Gosselin, N.H., Brunet, R.C., Samuel, O., Dumoulin, M-J. & Carrier, G. 2003. A toxicokinetic model of malathion and its metabolites as a tool to assess human exposure and risk through measurements of urinary biomarkers. Toxicological Sciences, 73(1), pp.182-194. Available at: https://doi.org/10.1093/toxsci/kfg061.

Bouchenafa-Saib, N., Mekarzia, A., Bouzid, B., Mohammedi, O., Khelifa, A., Benrachedi, K. & Belhaneche, N. 2014. Removal of malathion from polluted water by adsorption onto chemically activated carbons produced from coffee grounds. Desalination and Water Treatment, 52(25-27), pp.4920-4927. Available at: https://doi.org/10.1080/19443994.2013.808845.

Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P. & Trongyong S. 2013. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal, 2013(art.ID:460923). Available at: https://doi.org/10.1155/2013/460923.

Budimirovic, D., Velickovic, Z.S., Djokic, V.R., Milosavljevic, M., Markovski, J., Levic, S. & Marinkovic, A.D. 2017. Efficient As(V) removal by -FeOOH and -FeOOH/-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes. Chemical Engineering Research and Design, 119, pp.75-86. Available at: https://doi.org/10.1016Zj.cherd.2017.01.010.

Chatterjee, S., Das, S.K., Chakravarty, R., Chakrabarti, A., Ghosh, S. & Guha, A.K. 2010. Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174(1-3), pp.47-53. Available at: https://doi.org/10.1016/jJhazmat.2009.09.014.

Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu J. 2009. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. Journal of Hazardous Materials, 167(1-3), pp.357-365. Available at: https://doi.org/10.1016/jJhazmat.2009.01.050.

Hameed, B.H., Salman, J.M. & Ahmad, A.L. 2009. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials, 163(1), pp.121-126. Available at: https://doi.org/10.1016/jJhazmat.2008.06.069.

Islam, K.N., Ali, M.E., Bakar, M.Z., Loqman, M.Y., Islam, A., Islam, M.S., Rahman, M.M. & Ullah, M. 2013. A novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technology, 246, pp.434-440. Available at: https://doi.org/10.1016/j.powtec.2013.05.046.

Kamga, F.T. 2019. Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Applied Water Science, 9(art.number:1). Available at: https://doi.org/10.1007/s13201-018-0879-3.

Karanac, M., Bolic, M., Veljovic, B., Rajakovic-Ognjanovic, V., Velickovic, Z., Pavicevic, V. & Marinkovic A. 2018. The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Management, 78, pp.366-378. Available at:

https://doi.org/10.1016/j.wasman.2018.05.052.

Khiri, M.Z.A., Matori, K.A., Zainuddin, N., Abdullah, C.A.C., Alassan, Z.N., Baharuddin, N.F. & Zaid M.H.M. 2016. The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature. SpringerPlus, 5(art.number: 1206). Available at: https://doi.org/10.1186/s40064-016-2824-y.

Krzeminska, M., Kuklinski, P., Najorka, J. & Iglikowska, A. 2016. Skeletal Mineralogy Patterns of Antarctic Bryozoa. Journal of Geology, 124(3). Available at: https://doi.org/10.1086/685507.

Kuklinski, P. & Taylor P.D. 2009. Mineralogy of Arctic bryozoan skeletons in a global context. Facies, 55, pp.489-500. Available at: https://doi.org/10.1007/s10347-009-0179-3.

Ohno, K., Minami, T., Matsui, Y. & Magara, Y. 2008. Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: desorption and oxon formation. Water Research, 42(6-7), pp.1753-1759. Available at: https://doi.org/10.1016/j.watres.2007.10.040.

Pantic, K., Bajic, Z.J., Velickovic, Z.S., Djokic, V., Rusmirovic, J., Marinkovic, A. & Peric-Grujic, A. 2019. Adsorption performances of branched aminated waste polyacrylonitrile fibers: experimental versus modelling study. Desalination and Water Treatment, 171, pp.223-249. Available at: https://doi.org/10.5004/dwt.2019.24758.

Perendija, J., Velickovic, Z.S., Cvijetic, I., Levic, S., Marinkovic, A., Milosevic, M. & Onjia, A. 2021. Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. Process Safety and Environmental Protection, 147, pp.609625. Available at: https://doi.org/10.1016/j.psep.2020.12.027.

Ramajo, L., Rodriguez-Navarro, A.B., Duarte, C.M., Lardies, M.A. & Lagos, N.A. 2015. Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Marine and Freshwater Research, 66(12), pp.1147-1157. Available at: https://doi.org/10.1071/MF14232.

Salma, K., Berzina-Cimdina, L. & Borodajenko, N. 2010. Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Processing and Application of Ceramics, 4(1), pp.45-51. Available at: https://doi.org/10.2298/PAC1001045S.

Singh, V.K., Singh, R.S., Tiwari, P.N., Singh, J.K., Gode, F. & Sharma, Y.C. 2010. Removal of Malathion from Aqueous Solutions and Waste Water Using Fly Ash. Journal of Water Resource and Protection, 2(4), pp.322-330. Available at: https://doi.org/10.4236/jwarp.2010.24037.

Skwarek, E., Janusz, W. & Sternik, D. 2014. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. Journal of Radioanalytical and Nuclear Chemistry, 299, pp.2027-2036 Available at: https://doi.org/10.1007/s10967-013-2825-z.

Stevanovic, M., Bajic, Z.J., Velickovic, Z.S., Karkalic, R., Pecic, Lj., Otrisal, P.& Marinkovic, A. 2020. Adsorption performances and antimicrobial activity of the nanosilver modified montmorillonite clay. Desalination and Water Treatment, 187, pp.345-369. Available at: http://dx.doi.org/10.5004/dwt.2020.25451

Taleb, K., Markovski, J., Milosavljevic, M., Marinovic-Cincovic, M., Rusmirovic, J., Ristic, M. & Marinkovic, A., 2015. Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: material performance. Chemical Engineering Journal, 279, pp.66-78. Available at: https://doi.org/10.1016/j.cej.2015.04.147.

Taleb, K., Markovski, J., Velickovic, Z., Rusmirovic, J., Rancic, M., Pavlovic, V. & Marinkovic, A. 2019. Arsenic removal by magnetite-loaded aminomodified nano/microcellulose adsorbents: Effect of functionalization and media size. Arabian Journal of Chemistry, 12(8), pp.4675-4693. Available at: https://doi.org/10.1016/j.arabjc.2016.08.006.

Wei, D., Zhang, H., Cai, L., Guo, J., Wang, Y., Ji, L. & Song, W. 2018. Calcined Mussel Shell Powder (CMSP) via Modification with Surfactants: Application for Antistatic Oil-Removal. Materials, 11(8), 1410. Available at: https://doi.org/10.3390/ma11081410.

ИЗМЕЛЬЧЕННЫЕ РАКОВИНЫ ПРЕСНОВОДНЫХ МОЛЛЮСКОВ В КАЧЕСТВЕ ДЕШЕВОГО АДСОРБЕНТА ДЛЯ УДАЛЕНИЯ МАЛАТИОНА ИЗ ВОДНОЙ СРЕДЫ: ИССЛЕДОВАНИЯ ИЗОТЕРМЫ, КИНЕТИКИ, ТЕРМОДИНАМИКИ И ОПТИМИЗАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ УСЛОВИЙ МЕТОДОМ ПОВЕРХНОСТИ РЕАГИРОВАНИЯ

Злате С. Величковича, корреспондент, Богдан Д. Вуичича, Владица Н. Стояновича, Предраг Н. Стоисавлевичб, Зоран Й. Баича, Велько Р. Джокичв, Негован Д. Иванкович3, Павел П. Отрисалг

a Университет обороны в г. Белград, Военная академия, департамент военного химического инжиниринга, г. Белград, Республика Сербия

6 Вооружённые Силы Республики Сербия, Опытно-экспериментальный технический центр, г. Белград, Республика Сербия в Белградский университет, факультет технологии и металлургии, г. Белград, Республика Сербия

г Университет им. Палацкого, Оломоуц, Чешская Республика

РУБРИКА ГРНТИ: 61.00.00 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ.

ХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ: 61.01.00 Общие вопросы химической технологии и

химической промышленности. 61.01.91 Отходы химических производств и их переработка. Вторичное сырье. Ресурсосбережение. 61.01.94 Охрана окружающей среды ВИД СТАТЬИ: оригинальная научная статья

Резюме:

Введение/цель: В данной статье представлены результаты исследования возможности удаления фосфорорганического пестицида малатиона из водной среды с помощью нового адсорбента на основе биоотходов - раковин пресноводных моллюсков семейства Anodonta Sinadonta woodiane, материала, который в больших количествах накапливается в виде отходов на побережьях крупных рек.

ф

О) CD

О >

Ol

0

01

of ш а:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ZD О О

_J

<

о

X

о ш

н

^

Od

с

I-

сл <

-J

о >о

X ш н

о

о >

ф

Методы: Были испытаны два адсорбента - механически измельченные речные раковины (MRM) и гидроксиапатит из измельченных речных раковин, полученный механосинтезом (RMHAp). Полученные адсорбенты были исследованы (элементный анализ, сканирующая электронная микроскопия -SEM, энергодисперсионная рентгеновская спектроскопия - EDS, рентгеноструктурный анализ - HRD, инфракрасная спектроскопия с преобразованием Фурье (ИКФС, FTIR) и испытаны методом прерывания на удаление органофосфорного пестицида малатиона из водной среды. Оптимизация условий адсорбции проводилась методом поверхностей отклика - RSM, при этом исследовалось влияние переменных факторов (условий адсорбции), значений pH, доз адсорбента, времени контакта и температуры на адсорбционную способность адсорбента.

Результаты: Наилучшая адсорбция малатиона была достигнута при средних значениях pH от 6,0 до 7,0. Максимальная адсорбционная способность Ленгмюра по MRM и RMHAp при 25 ° C составляла 46 462 мг г-1 и 78 311 мг г-1. Результаты показали, что адсорбция малатиона на обоих адсорбентах соответствует кинетической модели псевдовторого порядка и модели изотермы Фрейндлиха. Термодинамические параметры указывают на эндотермический, самопроизвольный характер, приемлимый в процессе адсорбции.

Выводы: В ходе исследования был получен дешевый биосовместимый адсорбент с отличными адсорбционными свойствами в отношении малатиона. Таким образом из отходов моллюсков извлекается двойная выгода: используются отходы, которыми завалены побережья различных водотоков, и удаляются загрязняющие воду вещества, оказывающие негативное воздействие на окружающую среду в целом.

Ключевые слова: удаление, адсорбент, кинетика, изотермы, оптимизация, пестициды, вода, пресноводные моллюски.

СПРАШЕНЕ ^УШТУРЕ РЕЧНИХ ШКОЛКИ КАО JЕФТИНИ АДСОРБЕНТ ЗА УКЛА^А^Е МАЛАТИОНА ИЗ ВОДЕ: ИСПИТИВА^Е ИЗОТЕРМИ, КИНЕТИКЕ, ТЕРМОДИНАМИКЕ И ОПТИМИЗАЦША ЕКСПЕРИМЕНТАЛНИХ УСЛОВА МЕТОДОМ ОДЗИВНИХ ПОВРШИНА

Злате С. Величкови1а, аутор за преписку, Богдан Д. Ву]ичи1а, Владица Н. Сто]анови1а, Предраг Н. Сто]исав^еви1б, Зоран ^ Ба]и1а, Ве^ко Р. Ъоки1в, Негован Д. Иванкови1а, Павел П. Отрисалг

a Универзитет одбране у Београду, BojHa академи]а, Катедра

BojHoxeMMjcKor инженерства, Београд, Република Срби]а б Во]ска Срби]е, Технички опитни центар, Београд, Република Срби]а

в Универзитет у Београду, Технолошко-металуршки факултет, Београд, Република Срби]а

г Универзитет Палацки, Оломоуц, Чешка Република

ОБЛАСТ: заштита животне средине, хеми]ско инженерство ВРСТА ЧЛАНКА: оригинални научни рад

Сажетак:

Увод/цил>: У овом истраживашу испитиване су могупности уклашаша органофосфорног пестицида малатиона из воде помопу нових адсорбената на бази биоотпада речних школ>ки из породице Anodonta Sinadonta woodiane, материала ко]и се у великим количинама накупъа као отпад на обалама великих река. Методе: Синтетисана су два адсорбента: механички уситшена речна школка (MRM) и хидроксиапатит доби}ен механосинтезом из уситшених речних школ>ки (RMHAp). Доби]ени адсорбенти су окарактерисани (елементарна анализа, скенира]упа електронска микроскопи]а - СЕМ, електродисперзивна спектроскопи]а - ЕДС, рендгенска дифракциона анализа - ХРД, Фури}ева трансформаци}а ИР зрака - ФТИР) и испитани у шаржном систему за уклашаше органофосфорног пестицида малатиона из воде. Оптимизаци}а услова адсорпци}е извршена jе методом одзивних површина - РСМ, где jе испитан утица] променъивих фактора (услова адсорпци}е), пХ вредности, дозе адсорбента, времена контакта и температуре на капацитет адсорбента.

Резултати: На}боъа адсорпци}а малатиона постигнута jе при средшим пХ вредностима измену 6,0 и 7,0. Максимални Лангмуиров капацитет адсорпци]е за MRM и RMHAp на 25°Ц износио ¡е 46,462 мг г-1 и 78,311 мг г-1, редом. Резултати су показали да адсорпцща малатиона на оба адсорбента следи псеудодруги кинетички модел и Фро}ндлихов изотермни модел. Термодинамички параметри указу]у на ендотермну, спонтану и изводъиву природу процеса адсорпци}е.

Закъучак: У току истраживаша доби}ен jе jефтин биокомпатибилни адсорбент са одличним адсорпционим карактеристикама према малатиону. Коришпеше отпада од школ>ки врло jе корисно: }ер отпад ко\и оптерепу]е обале различитих водотокова уклаша зага^иваче ко\и оптереп^у воду и изазива}у негативне ефекте на животну средину уопште.

Къучне речи: уклашаше, адсорбент, кинетика, изотерме, оптимизаци}а, пестициди, вода, речне школке.

^ Paper received on / Дата получения работы / Датум приема чланка: 21.06.2021. ф Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 28.09.2021.

Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 30.09.2021.

о

> © 2021 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier

(www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).

O.

ш © 2021 Авторы. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и q распространяется в соответствии с лицензией «Creative Commons»

О (http://creativecommons.org/licenses/by/3.0/rs/). -j

< © 2021 Аутори. Об]авио Во]нотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier

(www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово ]е чланак отвореног приступа и дистрибуира се у

X складу са Creative Commons лиценцом (http://creativecommons.org/licenses/by/3.0/rs/). О ш

I>-

ее с

с о

о

X ш н

о —>

О

О

i Надоели баннеры? Вы всегда можете отключить рекламу.