UDK 632.952 +632.953
doi: 10.15407/biotech9.01.064
Pseudomonas chlororaphis subsp. o,ureofaciens NATIVE AND MODIFIED BY COMPLEXES OF GE(IV) AND SN(IV) LIPOPOLYSACCHARIDE
ANTIVIRAL ACTIVITY
L. D. Varbanets1 Ä. N. Kyrychenko1 1.1. Seifullina2 N. V. Shmatkova2 О. S. Brovarskaya1 L. V. Yaroshenko1 L. D. Popov3
1Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
2
Mechnikov Odesa National University
3 Southern scientific centre of the Russian Academy of Sciences, Rostov-on-Don, Russia
E-mail: [email protected]
Received 06.11.2015
The purpose of the research was to investigate changes of antiviral activity of Pseudomonas chlororaphis subsp. аureofaciens lipopolysaccharides as a result of their modifications by coordination compounds of Sn(IV) and Ge(IV) synthesised on the basis of aromatic, pyridinecarboxylic acids hydrazides and appropriate hydrazones of aromatic aldehydes. A wide range of Ge(IV) and Sn(IV) coordinative compounds was chosen for P. chlororaphis subsp. аureofaciens UCM-306 LPS modification. "Tobacco mosaic virus - hypersensitive plant" model study of lipopolysaccharide and its modified preparations (1-35) antiviral activity showed that a lot of the tested preparations exhibit high antiviral activity due to their composition and structural peculiarities. Such preparations are of interest as perspective agents in struggle against plant virus diseases. Antiviral action of preparations (% of inhibition, I,%) which neutralizes virus infectivity depends on: complexing metal [complexes of Sn(IV) are more active (I, % 65-79) as compared to Ge(IV) complexes (I,% 26-62)]; amount of functional groups in ligand molecules [hydrazone complexes of Sn(IV) are more active (I, % 69-79) then hydrazide ones (I, % 48-63)]; and also on coordination form of ligand coupling with different substituents [complexes with salicyloyl hydrazones of 4-metoxy- (I, % 71), 4-hydroxybenzaldehydes (I, % 77) and pyrogallol (I, % 72) with ketone O(C=O)-N(CH=N) form of a ligand are more active than with enol O(C-O)-N(CH=N) form of isonicotinoyl hydrazones of the same aldehydes (I, % 32-63)]. Introduction of two substituents (OH- and Br-) into the hydrazide fragment of hydrazone molecule significantly increases the activity of Sn(IV) complexes with enol form of the ligand (I, % 79).
Key words: Pseudomonas chlororaphis subsp. аureofaciens, lipopolysaccharide, Ge(IV) and Sn(IV) coordination compounds, antiviral action, tobacco mosaic virus.
Viral plant diseases are widespread in agro- and biocenoses, therefore they play an important role in crops yield reducing, which leads to significant economic losses in crop production. There are various methods of plants viral disease control; disease prevention and resistant to viruses species breeding are the most effective among them. All stages of viruses reproduction are closely related to the metabolic, energy and enzymatic reactions of the cell, so chemicals usage to virus infections control is often ineffective because drugs that inhibit the reproduction of viruses tend to inhibit the normal metabolic processes in plants. Such compounds are characterized by a significant phytotoxicity, so the problem of plants therapy and viral infections prophylaxis
by biological agents usage is urgent nowadays. At the Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine on the basis of two strains of Pseudomonas chlororaphis subsp. aureofaciens, earlier [1] a complex biopreparation gaupsin, inhibiting the growth of pathogenic bacteria and fungi, possessing as antimicrobial activity as strong entomopathogenic activity, has been created and patented. In subsequent years it has been found that gaupsin is characterized by pronounced antiviral properties as it inhibits by 80-97% the progression of induced by tobacco mosaic virus (TMV) necroses [2]. The authors have shown that gaupsin antiviral activity is associated with exometabolites synthesis; in particular, it has been hypothesized that high molecular weight
polysaccharides, primarily lipopolysaccharide (LPS) and exopolysaccharides, probably participate in these antiviral mechanisms. We have found [3] that lipopolysaccharide of Р. chlororaphis subsp. aureofaciens B-111 and B-306 are highly active antiviral agents. It is interesting that lipopolysaccharides derived from microorganisms belonging to other genera and species (Rahnella aquatilis and Ralstonia solanacearum), were not active against TMV, and sometimes even stimulated necrosis formation.
One of the methods for biopolymers activity alteration is their modification, in particular by binding to activators (inhibitors) such as biometals and bioligands complexes. It is known [4] that the complex compounds of germanium with nitrogen-containing compounds of the purine row provide a high level of biological activity against herpes viruses of the 1st and the 2nd types and also are effective when used in the comprehensive treatment of HIV-infected and cancer patients; for a series of germanium (IV) complexes the effect on the activity of glycosidases [5] and proteases [6, 7] is revealed. The effect of tin complex compounds is less studied; as it is known [7], tin is a part of the gastric enzyme gastrin, affects the activity of flavin enzymes, and is also an effective inhibitor of hemeoxidase [8].
The aim of this work was to study the changes in antiviral activity of P. chlororaphis subsp. аureofaciens lipopolysaccharides by modifying them with new coordination compounds of tin (IV) and germanium (IV), which are synthesized by Seifullina and Shmatkova [9-15] on the basis of aromatic, pyridinecarboxylic acids hydrazides and corresponding aromatic aldehyde hydrazones. These ligands, due to the presence in their molecules composition as an analog of peptide C (O) NH-group and other functional groups, are biologically active compounds [16, 17]. Thus, germanium (IV) with hydrazones complexes are characterized by anti-inflammatory activity [18-20], and complexes of a tin (IV) exhibit antiseptic [11, 12] and antibacterial [13-15] action.
Materials and Methods
The object of the study was the strain of Pseudomonas chlororaphis subsp. аureofaciens UCM B-306, isolated from the rhizosphere of cabbage and was deposited in Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, number IMV B-7096.
Cultivation of the strain was performed in semi-synthetic King medium of the following composition (g/l): peptone — 20, K2SO4 — 20, glycerol — 20, MgCl2 — 7, in Erlenmeyer flasks of 750 ml filled with 150 ml of culture medium, for 24 hours, on a shaker (220 rev / min) at 28 °C.
Lipopolysaccharides were obtained by extraction from the cells, dried with acetone and ether, with 45% aqueous phenol solution at 65-68 °C. The resulting aqueous fractions were dialyzed against tap water, and then against distilled water to remove phenol, hereafter clarified from nucleic acids by precipitation with trichloroacetic acid and also by ultracentrifugation (104 000 g, 4 h). Purified LPS was lyophilized [21].
To modify the LPS of P. chlororaphis subsp. аureofaciens UCM-306 a wide range of coordination compounds was selected:
- germanium (IV) with 2-R-benzoyl (R-H2Bs), nicotinoyl- (H2Ns) and isonicotinoyl — (H2Is) hydrazones of salicyl aldehyde of compositions: [Ge (R-Bs)2], where R = 2-OH (1), 2-NH2 (2), [Ge(Ns)2] (3), [Ge(Is)2] (4) with O(C-O)-N(CH =N)-O(Ph-O) form of the ligand;
- tin (IV) with hydrazides of R-benzoic (R-HBg), 2-OH-5Br-benzoic and 2-naphthoic (HLg) acids of compositions:[SnCl4(R-HBg)], where R=H (12), 2-OH (13), 2-OCH3 (15), [SnCl4(2-OH-5Br-HBg)] (14), [SnCl4(HLg)] (17) with O(C=O)-N(NH2) form of the ligand;
- tin (IV) with hydrazides of 2-NH2-benzoic (NH2-HBg), nicotinic (HNg) and isonicotinic (HIg) acids of compositions: [SnCl4(NH2-HBgH)] (16), [SnC^NgH)] (18), [SnC^Ig-H)] (19) with O(C-O) -N(NH2) form of the ligand;
- tin (IV) with aroyl- and pyridinoyl-hydrazones of 4-N(CH3)2-benzaldehyde: R-benzoyl-(R-HBdb) [SnCl4(R-Bdb H)],where R=H (5), 2-OH (6), 2-OCH3 (8), 2-NH2-(28), 2-OH-5-Br-benzoyl-[SnCl4(2-OH-5Br-BdbH)] (7), nicotinoyl-[SnCl4(Ndb-H)j (9), isonicotinoyl- [SnCl4(Idb H)] (10) and 2-naphthoyl-[SnCl4(Ldb-H)] (11) with O(CO)-
N
(CH=N)
form of the ligand;
- tin (IV) with salicyloylhydrazones of aromatic aldehydes: R-benzoic (2-OH-HB-R-b) of compositions: [SnCl4(2-OH-HB-R-b)], where R= H (24), 4-OCH3 (20), 4-OH (21) , 4-Br (22), and also pyrogallol (23) and 4-OH-3-OCH3-benzoic aldehyde (35) with O(C=O)-N(CH=N) form of the ligand;
- tin (IV) with isonicotinoylhydrazones of aromatic aldehydes: R-benzoic (HI-R-b) of the compositions: [SnCl4(I-R-b H)], where R=H (31), 4-OCH3 (30), 4-OH (21) , 4-Br (32), and also of pyrogallol (33) and 4-OH-3-OCH3 of
benzoic aldehyde (34) with O(C-O)-N(CH=N) form of the ligand;
- tin (IV) with hydrazone — product of 2-aminobenzoic acid hydrazide and 4-N(CH3)2-benzaldehyde [2-NH2-HB(db)2] double condensation of the composition [SnCl4(Bdb)2 H)] (29) with O(C-O)-N(CH =N) form of the ligand;
- tin (IV) with terephthaloyldihydrazones of 4-N(CH3)2-benzaldehyde (H2Tfdb) and 2-OH-benzaldehyde (H4Tfs) [(SnCl4)2(p-Tfdb 2H)] (26), [(SnC^U-^Tfs)] (25)
O(C-O)-N(CH =N) (26) and O(C=O)-N(CH =N)-O(Ph-O) (25) forms of bridge ligands; [SnCl4(H4Oxs)] (27) with O(C=O)-O(C=O) form of 2-OH-benzaldehyde (H4Oxs) oxaloylhydrazone.
The choice of these compounds makes it possible to trace the several factors (complexing agent (Ge, Sn), coordination site composition and variety of substituents presence in the ligand molecule) impact on the investigated LPS antiviral activity.
The antiviral activity of Р. chlororaphis subsp. aureofaciens was studied in a model of tobacco mosaic virus (TMV U1 strain), derived from systemically infected Nicotiana tabacum L. varieties Immune 580 (revertant) plants according to [22, 23]. Investigations were carried out on leaves of hypersensitive to TMV datura plant Datura stramonium L., reacting to virus inoculation by the formation of local necrosis. Experimental halves of leaves previously carborundum dusting were inoculated with a mixture of virus and each of the test preparations (1-35) in a ratio of 1:1, and control halves of leaves — with virus only. LPS preparations at concentrations of 1.5, 1.0 or 0.75 mg/ml were added to TMV (1 or 0.75 g/ml) for 30 min before plants inoculation (in control distilled water was added to TMV). Lipopolysaccharides antiviral action in vitro against TMV was evaluated by the number of local necrosis induced by virus. The inhibitory effect (I) of preparations was determined using the formula:
I = (1 - E / C) x 100 %,
where E and C — an average number of necrosis formed on the experimental and control halves of leaves respectively.
To assess the reliability of experimental data the parametric criteria of normal distribution were used; calculating the arithmetic mean (Xa), mean square inaccuracy measure (Sx ) at a significance level of 0.05 or 0.01, the Student's t test (t) was determined and according to the table for small samples the levels of significance (P) of the mean values difference or ratio were found. Results of
statistical processing were represented in the form of confidence intervals or Xa ± Sx . The relative mean values error was obtained bay the processing of 15-20 repetitions [24].
Results and Discussion
Previously [3] we have shown that lipopolysaccharides (^HC) of Р. chlororaphis subsp. aureofaciens B-111 and B-306 (gaupsin components) are highly active antiviral agents. In studies in 2010-2012 they invariably showed efficacy against TMV on the model of three types of indicator plants of the family Solanaceae. Inhibition of virus infectivity was 98-100% by LPS at a concentration of 1-10 mg/ml, 57-69% — at a concentration of 0.1 mg/ml, 43-44% — at a concentration of 0.01 mg/ml. LPS at a concentration of 1 pg / ml caused reduction of virus infectivity at various indicator datura (Datura stramonium L.) and tobacco (Nicotiana sanderae H., Nicotiana tabacum L.) plants ranged from 10.2 to 46.0%. LPS activity of both Р. chlororaphis subsp. aureofaciens strains was approximately the same. Therefore, in this study the effect of LPS modified by different complexes was carried out using LPS of one strain only — Р. chlororaphis subsp. aureofaciens B-306.
It is known [25] that the complexes of biopreparations with metals may induce non-specific resistance of plants to viruses or enhance the inhibitory effect of the drug. Therefore, it was interesting to study the antiviral activity of the modified LPS (LPS-m). Along with the modified LPS we investigated the original unmodified LPS (LPS-o) antiviral activity as positive control.
It should be noted that all LPS preparations in a concentration of 1.5 mg/ml possessed phytotoxicity that appeared on the treated leaves as burns. The first signs of burns in the form of whitish or brown spots on the leaves appeared 2-3 days after treatment (Figure). Preparations 6-10, 16-35 caused focal burns of lamina at an initial concentration of 1 mg/ml, so in subsequent experiments they were investigated in a concentration of 0.75 mg/ml.
As is evident from the results shown in the table, all investigated LPS-m have antiviral activity, which manifested in virus-induced local necrosis number in the experimental halves of leaves decreasing compared to controls. The inhibitory effect of the preparations at LPS-m concentration of 1.0-0.75 mg/ml was 32-77%. For preparations 3, 4, 24, 28, 30, it was lower than that of LPS-o which inhibited the formation of local
Phytotoxic action of investigated LPS at concentration of 1 mg/ml (a) and 1.5 mg/ml (b)
necrosis in the experimental halves of leaves by 40%. Preparations 2, 6, 8, 9, 11, 13, 19, 22, 25, 27, 31, 32, 34, on account of table data, have no significant effect on antiviral activity. Preparations 7, 14, 20, 21, 23, 26, 12 inhibited TMV infectivity by 65-79% and exhibited the highest activity against the tobacco mosaic virus. Among the designated groups of complexes some regularities can be found:
- among germanium (IV) complexes (1-4) the composition of hydrazide fragment of hydrazone influence on LPS antiviral activity is observed, salicylic acid derivatives (1) contribute to its increase (I, % 62), and nicotinic (3) and isonicotinic (4) — a significant decrease (I,% 26 and 28, respectively);
- among tin (IV) complexes with hydrazides (12-19) [SnCl4(2-OH-5Br-Bg)] (14) with two OH- and Br- substituents in the ligand molecule showed the highest activity (I, %, 73) as compared to [SnCl4(HBg)] (12) (I, % 65), wherein the substituents are absent;
- among tin (IV) complexes with hydrazones of 4-N(CH3)2-benzaldehyde (511) [SnCl4(2-OH-5Br-Bdb H)] (7) (I, % 79) containing the same substituents in hydrazide moiety as (14) (I, 73%) had the highest activity;
- activity of tin (IV) complexes with salicyloylhydrazones (20-24, 35) changes depending on the aldehyde moiety in their molecules, the maximum inhibition of TMV infectivity the complexes with derivatives of 4-OCH3-benzaldehyde (20) (I, 71%), of 4-OH-benzaldehyde (21) (I, 77%) and of pyrogallol (23) (I, 72%) have exerted;
- tin (IV) complexes with isonicotinoyl-hydrazones (30-34) is significantly inferior in activity to the complexes with salicyloylhydrazones; from this group hydrazone pyrogallol complex (33) (I, 63%) stands out;
- among tin (IV) complexes with dihydrazones (25-27) and double condensation product (29) the maximum inhibition of TMV infectivity (I, 69%) binuclear (26) complex with terephthaloyldihydrazone of 4-N(CH3)2-benzaldehyde has expressed.
From the above it follows that preparations virucidal effect neutralizing virus infectivity depends on: metal-complexing agent [tin (IV) compounds are more active (I, % 65-79) as compared to germanium (IV) complexes (I, % 26-62)], the number of functional groups in ligand molecules [hydrazone complexes of tin (IV) are more active (I, 69-79%) than hydrazide (I, % 48-63)], as well as coordination form of the ligand in combination with various substituents [complexes with salicyloylhydrazones of 4-methoxy- (I, % 71), 4-hydroxybenzaldehydes (I, % 77) and pyrogallol (I, % 72) with ketone O(C=O)-N(CH=N) form of the ligand are more active than with enol O(C-O)-N(CH=N) isonicotinoylhydrazones form of the same aldehydes (I, % 32-63)]. Introduction of two substituents (OH- and Br-) into the hydrazide moiety of hydrazone molecule significantly increases the activity of tin (IV) with the enol form of the ligand complexes (I, % 79).
The most active complexes antivirus action possible mechanisms may be the TMV direct inhibition by attaching to the structural proteins of TMV and conglomerates formation (aggregates of the virus and the modified LPS) or the degradation of viral RNA (by host RNAase at mechanical inoculation). It is possible involvement of preparations in the induction (stimulation) of plant defense mechanisms, which consequence is the increased resistance of plants to TMV and inhibition of viral reproduction (obstacle to the development of productive infection).
Thus, "TMV — ultrasensitive plant" model study of LPS and its modified preparations (1-35) antiviral activity showed high antiviral activity of preparations 7, 21, 14, 23, 20 and 26, which may be due to their composition and structural features. Such preparations are of interest as promising agents in the fight against viral diseases of plants.
In available literature we have not found the data on antiviral effect of bacteria of the genus Pseudomonas LPS, however, based on the above data it is fair to assume that the observed activity of Р. chlororaphis subsp. aureofaciens strains may be associated with non-specific stimulation of infected with TMV plants protective forces.
Lipopolysaccharide preparations of Р. chlororaphis subsp. aureofaciens UCM-306
effect on TMV infectivity
LPS LPS, mg/ml Number of necrosis E/C I,%
experiment control
Original (LPS-o) 1.0 31.2 50.6 0.62 ± 0.06 38
Modified (LPS-m):
1 1 8.6 22.6 0.38 ± 0.08 62 ± 5*
2 1 29.5 53.6 0.55 ± 0.05 45 ± 90
3 1 62.1 83.8 0.74 ± 0.02 26 ± 20
4 1 46.3 64.3 0.72 ± 0.08 28 ± 110
5 1 24.1 60.2 0.40 ± 0.01 60 ± 2*
11 1 63.2 100.3 0.63 ± 0.02 37 ± 30
12 1 17.3 49.1 0.35 ± 0.03 65 ± 8*
13 1 22.9 44.9 0.51 ± 0.08 49 ± 160
14 1 20.0 74.1 0.27 ± 0.03 73 ± 11*
15 1 25.7 64.3 0.40 ± 0.03 60 ± 8*
Original (LPS-o) 0.75 26.5 44.2 0.60 ± 0.06 40 ± 100
Modified (LPS-m):
6 0.75 26.5 46.3 0.57 ± 0.007 43 ± 10
7 0.75 10.1 47.9 0.21 ± 0.05 79 ± 23*
8 0.75 39.1 63.1 0.62 ± 0.06 38 ± 90
9 0.75 82.6 135.4 0.61 ± 0.05 39 ± 8
10 0.75 21.4 49.7 0.43 ± 0.01 57 ± 2*
16 0.75 8.2 20.5 0.40 ± 0.05 60 ± 12*
17 0.75 19.3 43.8 0.44 ± 0.06 56 ± 130
18 0.75 41.8 112.8 0.37 ± 0.04 63 ± 10*
19 0.75 39.4 75.6 0.52 ± 0.05 48 ± 90
20 0.75 37.3 128.0 0.29 ± 0.02 71 ± 7*
21 0.75 10.9 46.6 0.23 ± 0.03 77 ± 13*
22 0.75 24.5 47.7 0.51 ± 0.06 49 ± 110
23 0.75 11.6 41.4 0.28 ± 0.01 72 ± 4*
24 0.75 26.7 39.2 0.68 ± 0.04 32 ± 5
25 0.75 20.8 45.2 0.46 ± 0.06 54 ± 130
26 0.75 11.3 36.5 0.31 ± 0.03 69 ± 9*
27 0.75 37.7 78.5 0.48 ± 0.09 52 ± 180
28 0.75 38.4 59.1 0.65 ± 0.06 35 ± 90
29 0.75 24.8 55.1 0.45 ± 0.01 55 ± 20
30 0.75 45.9 67.6 0.68 ± 0.06 32 ± 80
31 0.75 35.9 61.6 0.58 ± 0.06 42 ± 100
32 0.75 28.5 51.8 0.55 ± 0.05 45 ± 90
33 0.75 17.6 47.6 0.37 ± 0.03 63 ± 8*
34 0.75 35.8 70.2 0.51 ± 0.02 49 ± 30
35 0.75 29.6 68.8 0.43 ± 0.04 57 ± 9*
Note: LPS-m is LPS modified with variety of complexes 1-35; LPS-o is original LPS; * — confidence level P is within 0,1% < Р < 1%; 0 — Р > 5%.
REFFERENCES
1. Kiprianova E. А., Goral S. V. Insectofungicidic preparation gaupsin against pests and diseases of agricultural plants. Patent of Ukraine №73682 АО 1N 63/00 C 12 N 1/20, 10.03.2004. Published. 15.08.2005, Biul. № 8.
2. Balko A I., Kiprianova E. А., Kovalenko A. G., Shepelevych V. V., Avdeeva L. V. Antiphitovirus activity of preparation gaupsin. Microbiology & Biotechnology. 2010, N 2, P. 51-57. (In Ukrainian).
3. Kiprianova E. А., Varbanets L. D,, Shepelevich V. V., Voychuk S. I. Antiviral activity of lipopolysaccharides of Pseudomonas chlororaphis subsp. aureofaciens. Biotechnol. acta. 2013, 6 (2), 68-73. (In Russian). doi: 10.15407/biotech 6.02.0 68.
4. Isaev A. D., Ambrosov I. V., Manasherov T. O., Matelo S. К. Complex compounds of germanium with derivatives of nitrogenous bases of the purine series, methods for their preparation and medicinal products containing them. RFPanent 2487878. 20 July, 2013.
5. Varbanets L. D., Rzaeva О. N., Avdiyuk E. V., Seifullina I. I., Martsinko E. E., Pesaroglo A. G. The influence of complex compounds of germanium on the activity of a number of glycosidases. Mikrobiol. Zh. 2007, 69 (3), 11-18. (In Russian).
6. Shubchinska A. S., Varbanets L. D., Seifulli-na 1.1., Martsinko E. E., Pesaroglo A. G. The influence of complex compounds of germanium on the biosynthesis and activity of Bacillus sp. and Yarrowia lipolytica proteases. Mikrobiol. Zh. 2008, 70 (4), 3-9. (In Ukrainian).
7. Varbanets L. D., Matseliukh E. V., Nidialkova N. A, Gudzenko E. V., Avdiyuk E. V., Shmatkova N. V., Seifullina I. I. The influence of complex compounds of germanium (IV) and stanum (IV) on activity of some microbial enzymes with glycolytical and proteolytical action. Mikrobiol. Zh. 2014, 76 (6), 11-18. (In Ukrainian).
8. Lenskiy А. S., Belavin I. Yu., Bilikin S. Yu. Biophysical and bioinorganic chemistry. Moskva: MIA. 2008, 408 p. (In Russian).
9. Shmatkova N. V., Seifullina 1.1., Masepa А. V., Ognichenko L. N., Kuzmin V. Е. Synthesis, structure, thermal stability of complexes of tin tetrachloride with hydrazides of aromatic acids. Ukr. Chem. J. 2014, 80 (5), 3-8. (In Ukrainian).
10. Seifullina I. I., Shmatkova N. V. New stage in development of coordination chemistry of aroyl-(pyridinoyl)hydrozones substituted benz-(1-naphth)aldehydes. Odesa National University Herald. Chemistry. 2007, 13 (2), 5-26. (In Russian).
11. Shmatkova N. V., Seifullina I. I., Alexandrova A. I., Polishchuk A. V.The complexes [tetrachlorido-(N-4-R-benzylidenesalicyloylhydrazinato-N,O) tin(IV)] (R = OCH3, Br, N(CH3)2) and their anti-inflammatory activity. Odesa National University Herald. Chemistry. 2013, 18 (2), 16-24. (In Russian).
12. Shmatkova N. V., Seifullina I. I., Alexandro-va A. I., Kravchenko I. A., Kobernik A. A.
About new complexes tin (IV) with 5- brom salicyloylhydrazones of substituted of benzaldehyde. Odesa National University Herald. Chemistry. 2013, 18(3), 53-60. (In Russian).
13. Zinchenko O. Yu., Shmatkova N. V., Seifullina I. I., Galkin B. N., Filippova T. O. The antimicrobial activity of the derivatives of isonicotinic acid and complexes of tin (IV) based on them. Microbiology & Biotechnology. 2013, N 2, P. 69-78. (In Russian).
14. Shmatkova N. V., Seifullina I. I., Zin-chenko O. Yu. Synthesis, structure and antimicrobial activity chelates of SnCl4 with pyridinoylhydrazones of aromatic aldehydes. Ukr. Chem. J. 2013, 79 (3), 33-39. (In Russian).
15. Shmatkova N. V. Products of complexformation of tin tetrachloride with hydrazides and hydrazones. Technology audit and production reserves. 2012, 3/2 (5), 33-34. (In Russian).
16. Sharma C. S., Jadon G.3 Singh H. P., Ankalgi A. D., Ranawat M. S., Diwaker A. K. Synthesis, spectral and biological evaluation of some hydrazone derivatives. International J. Advanced Res. Pharmaceutical Bio Sci. 2012, 2 (1), 28-33.
17. Sevim Rollas §, Guniz Kugukguzel. Biological Activities of Hydrazone Derivatives. Molecules. 2007, V. 12, P. 1910-1939.
18. Seifullina I. I., Nikitin A. V., Galkin B. M, Shmatkova N. V. Anti-inflammatory activity of germanium complexes with salicylidenehy-drazones of nitrobenzoic acids. Odesa Medical J. 2003, 3 (77), 21-23. (In Ukrainian).
19. Seifullina I. I., Shmatkova N., Galkin B., Nikitin A. Germanium complexes with substituted pyridincarbonic acids hydzazones as anti-inflammatory agents. Poster Abstract 7th Intern. Symp. on Applied Bioinorg. Guanajuato (Mexico). 2003, P. 96.
20. Nikitin A. V., Galkin B. M., Shmatkova N. V., Seifullina I. I. The study of the influence of complexes of germanium (IV) with salicylidenehydrazones of chlorobenzoic and hydroxybenzoic acids on exudative inflammation, which is caused by different agents flogogennymi. Biomedical and Biosocial Anthropology. 2004, N 3, P. 81-83. (In Ukrainian).
21. Varbanets L. D., Zdorovenko G. M., Knirel Yu. A. Methods of endotoxin investigations. Kyiv: Naukova dumka. 2006, 238 p. (In Russian).
22. Kurstack E. Ed. Handbook of Plant Virus Infections and Comparative Diagnosis. Amsterdam: Elsevier/ North Holland Biomedical Press. 1981.
23. Hall Р. Purification, biochemical and biophysical characterisation of viruses (advantagely plant viruses). Virology. Methods. Meichi B. (Ed.). Moskva: Mir. 1988. (In Russian).
24. Lakin G. F. Biometry. Moskva: Vyschaya shkola. 1973, 352 p. (In Russian).
25. Zelenin К. N. Physiologically active complexes of hydrazones. Soros Obshcheobr. Zh. 1996, N 12, P. 41-46. (In Russian).
АНТИВ1РУСНА АКТИВН1СТЬ НАТИВНОГО ТА МОДИФ1КОВАНОГО КОМПЛЕКСАМИ GE(IV) I SN(IV) Л1ПОПОЛ1САХАРИДУ
Pseudomonas chlororaphis subsp. aureofaciens
Л. Д. Варбанецъ1, А. М. Кириченко1, 1.1. Сейфуллта2, Н. В. Шматкова2, О. С. Броварсъка1, Л. В. Ярошенко1, Л. Д. Попов3
Институт мшробмлогй i вiрусологil iM. Д. К. Заболотного НАН Украши, Ки1в 2Одеський нащональний унiверситет iM. I. I. Мечникова, Укра1на 3Пiвденний науковий центр РАН, Ростов-на-Дону, Роия
E-mail: [email protected]
Метою роботи було вивчити змши проти-вiрусноl активностi лiпополiсахариду Pseudomonas chlororaphis subsp. аureofaciens за модифшаци його координацшними сполуками олова (IV) i германiю (IV), синтезованими на основi гiдразидiв ароматичних, тридинкарбо-нових кислот та вщповщних гiдразонiв ароматичних альдегщв. Для модифшаци лшополка-хариду P. chlororaphis subsp. аureofaciens УКМ-306 було вибрано широкий ряд координацшних сполук гермашю (IV) та олова (IV). Вивчення антивiрусноl активност лiпополiсахариду та його модифiкованих препарамв (1-35) на модел1 <^рус тютюново! моза!ки — надчутлива росли-на» показало, що багато з дослщжуваних препа-ратiв виявляють високу антивiрусну активнiсть, що пов'язано з !хшм складом та структурними особливостями. Так препарати становлять ш-терес як перспективш агенти у боротьбi з вiрус-ними захворюваннями рослин. Антивiрусна дiя препаратiв (% iнгiбування, I, %), що нейтраль зуе шфекцшшсть вiрусу, залежить вiд: мета-лу-комплексоутворювача [сполуки олова (IV) активнiшi (I, % 65-79) порiвняно iз комплексами гермашю (IV) (I, % 26-62)], шлькоси функ-цiональних груп у молекулах лiгандiв [(гщра-зонш комплекси олова (IV) активнiшi (I, % 69-79) за гщразидш (I, % 48-63)], а також вщ форми лианду, що координуеться, у поеднанш з рiзними замiсниками [комплекси iз салщило-шгщразонами 4-метокси- (I, % 71), 4-гщрокси-бензальдегiдiв (I, % 77) та шрогалолу (I, % 72) з кетонною O(C=O)-N(CH=N) формою лiганду бiльш активнi, шж з енольною O(C-O)-N(CH=N) формою iзонiкотиноlлгiдразонiв тих самих альдегiдiв (I, % 32-63)]. Уведення двох зам^нишв (OH- i Br-) у гiдразидний фрагмент молекули гвдразону iстотно пiдвищуе актившсть комплексiв олова (IV) з енольною формою лнанду (I, % 79).
Ключовi слова: Pseudomonas chlororaphis subsp. аureofaciens, лшопол^ахарид, координацшш сполуки Ge(IV) i Sn(IV), антивiрусна дiя, вiрус тютюново! мозаши.
АНТИВИРУСНАЯ АКТИВНОСТЬ НАТИВНОГО И МОДИФИЦИРОВАННОГО КОМПЛЕКСАМИ GE(IV) И SN(IV) ЛИПОПОЛИСАХАРИДА
Pseudomonas chlororaphis subsp. aureofaciens
Л. Д. Варбанец1, А. М. Кириченко1, И. И. Сейфуллина2, Н. В. Шматкова2, О. С. Броварская1, Л. В. Ярошенко1, Л. Д. Попов3
1Институт микробиологии и вирусологии им. Д.К. Заболотного НАН Украины, Киев 2Одесский национальный университет им. И. И. Мечникова, Украина 3Южный научный центр РАН, Ростов-на-Дону, Россия
E-mail: [email protected]
Цель работы — изучить изменение противовирусной активности липополисахаридов Pseudomonas chlororaphis subsp. аureofaciens при модификации их координационными соединениями олова (IV) и германия (IV), синтезированными на основе гидразидов ароматических, пиридинкарбоновых кислот и соответствующих гидразонов ароматических альдегидов. Для модификации липополисахарида P. chlororaphis subsp. аureofaciens УКМ-306 был выбран широкий ряд координационных соединений германия (IV) и олова (IV). Изучение антивирусной активности липополисахарида и его модифицированных препаратов (1-35) на модели «Вирус табачной мозаики — сверхчувствительное растение» показало, что многие из исследуемых препаратов проявляют высокую антивирусную активность, что связано с их составом и структурными особенностями. Такие препараты представляют интерес как перспективные агенты в борьбе с вирусными заболеваниями растений. Антивирусная активность препаратов (% ингибирования, I, %), нейтрализующая инфекционность вируса, зависит от: металла-комплексообразователя [соединения олова (IV) более активны (I, % 65-79) по сравнению с комплексами германия (IV) (I, % 26-62)], количества функциональных групп в молекулах лигандов [гидразонные комплексы олова (IV) активнее (I, % 69-79) гидразидных (I, % 48-63)], а также от координируемой формы лиганда в сочетании с различными заместителями [комплексы с салицилоилги-дразонами 4-метокси- (I, % 71), 4-гидроксибензаль-дегидов (I, % 77) и пирогаллола (I, % 72) с кетонной O(C=o)-N(CH=N) формой лиганда более активны, чем с енольной O(C-O)-N(CH=N) формой изоникотиноил-гидразонов тех же альдегидов (I, % 32-63)]. Введение двух заместителей (OH- и Br-) в гидразидный фрагмент молекулы гидразона значительно повышает активность комплексов олова (IV) с енольной формой лиганда (I,% 79).
Ключевые слова:Pseudomonas chlororaphis subsp. аureofaciens, липополисахарид, координационные соединения Ge(IV) и Sn(IV), антивирусное действие, вирус табачной мозаики.